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Abstract: A two-level factored implicit scheme is considered for solving a two-dimensional unsteady
advection-dispersion equation with spatio-temporal coefficients and source terms subjected to suitable
initial and boundary conditions. The approach reduces multi-dimensional problems into pieces of one-
dimensional subproblems and then solves tridiagonal systems of linear equations. The computational
cost of the algorithm becomes cheaper and makes the method more attractive. Furthermore, the
two-level approach is unconditionally stable, temporal second-order accurate and spatial fourth-order
convergent. The developed numerical scheme is faster and more efficient than a broad range of methods
widely studied in the literature for the considered initial-boundary value problem. The stability of
the proposed procedure is analyzed in the L∞(t0,T f ; L2)-norm whereas the convergence rate of the
algorithm is numerically analyzed using the L2(t0,T f ; L2)-norm. Numerical examples are provided to
verify the theoretical result.
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1. Introduction and motivation

The two-dimensional nonstationary advection-dispersion equation is one of the popular and
important models describing the contaminant transport in aquifers. The solute migration is subject to
physical, chemical and biological activities such as: contaminant density, absorption and desorption,
retardation, degradation and chemical-biological reactions. A general theory of dispersion of pollutants
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was developed in unsteady flow in heterogeneous aquifers [1]. Both temporal and spatial variations
in groundwater velocity have been analyzed in [2, 3]. Advection-dispersion model is often used
in several fields such as environmental sciences, groundwater hydrology, petroleum engineering,
chemical engineering and biological sciences for predicting solute concentration. Furthermore,
advection-dispersion can serve as a model equation for heat conduction, Burgers’ equations, Shallow
water problems, mixed Stokes-Darcy models and Navier-Stokes equations [4–15]. The development
of efficient and accurate numerical approaches in approximate solutions for these equations is of
great importance in the computational fluid dynamic community and has been analyzed by many
authors [16–30]. Because of a wide set of applications of solute transport problems, a large class
of numerical schemes have been discussed in approximate solutions. Concrete models are often
approximated by advection-dispersion equation in a simple geometry (different geological formation,
i.e., aquifer, aquitard, and etc.). In [31] the authors provided efficient solutions to transient advection-
dispersion with spatio-temporal approximation. The obtained solutions lead to transient computed
ones which are free of spurious oscillations and numerical diffusions for any values of Peclet number.
The authors [32] discussed a broad range of finite element schemes in an efficient solution of the
advection-dispersion. The numerical model of two-dimensional flow and transport equation was
developed in simulating transient water flow and nonreactive solute transport in heterogeneous,
unsaturated porous media containing air and water in [33]. It is established in [27] a numerical
technique for solving the variable saturated solute transport equation that is free of oscillations and
limits numerical dispersions. The authors [19, 34, 35] have developed an explicit scheme, implicit
method and predictor-corrector procedure to solve the two-dimensional solute transport through a
clay membrane barrier. In the analysis, the first order spatial derivatives are approximated by the
fourth-order accurate finite difference representation. Efficient computed solutions of contaminant
transport in heterogeneous aquifers which arises from the numerical treatment of both convective and
cross-dispersive terms of the advection-dispersion equation have been deeply studied in [18, 36–38].
Although some methods mentioned above are fast, temporal second-order convergent and spatial
fourth-order accurate, the theoretical analysis has not been considered. Explicit and predictor-corrector
finite difference formulations require a suitable time-step restriction to maintain the stability of the
algorithm while fully implicit approaches provide a substantial amount of computations at each time
level. To overcome this drawback, a two-level factored Crank-Nicolson technique is proposed to solve
the two-dimensional advection-dispersion equation with spatio-temporal coefficients and source terms
in an efficient manner. The method consists of reducing a multidimensional problem into a set of
one-dimensional subproblems which are easily solvable. Solving each subproblem is equivalent to
finding the solution of a tridiagonal linear system of equations, which can be easily obtained by
applying the Thomas technique. This considerably reduces the computational cost of the algorithm
at each calculating time. Furthermore, the constructed approach is unconditionally stable, second-
order convergent in time, spatial fourth-order accurate and it is easy to implement than a broad range
of numerical methods applied to the considered initial-boundary value problems (2.1)–(2.3). For more
details, we refer the readers to [19, 27, 31–34, 36, 39–41].

We recall that the aim of this study is to analyze an efficient computed solution of the initial-
boundary value problems (2.1)–(2.3). Specifically, the analysis considers the following three items:

i) Mathematical formulation and full description of the two-level factored technique for solving the
unsteady advection-diffusion equation with spatio-temporal coefficients and source term (2.1)
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subjects to initial-boundary conditions (2.2) and (2.3).

ii) Stability analysis of the numerical approach.

iii) A wide set of numerical examples which confirm the theoretical result.

In the remainder of this paper, we proceed as follows: Section 2 deals with the mathematical
formulation of the considered model together with a detailed description of the new method for
solving the system of Eqs (2.1)–(2.3). The unconditional stability of the two-level factored Crank-
Nicolson formulation is established in Section 3, using the Von Neumann stability approach. We
present and discuss in Section 4 a broad range of numerical evidence to confirm the theory (stability
and convergence rate). Section 5 considers the general conclusion and presents our future works.

2. Mathematical formulation and description of the three-level factored Crank-Nicolson
method

This section considers the mathematical formulation of the two-dimensional unsteady advection-
dispersion equation with spatio-temporal dispersion coefficients with source term together with a
detailed description of the two-level factored Crank-Nicolson formulation for solving the proposed
model.

Consider the solute invades the groundwater level from the point source. The contaminant being of
a significantly higher density than the groundwater moves towards the bottom of the shallow aquifer
along vertical downward from each point, the pollutant is bound to spread in the horizontal plane
along the unsteady porous media flow. For describing the two-dimensional hydrodynamic dispersion
in homogeneous, isotropic porous media can be expressed as

∂c
∂t
−
∂

∂x

(
D̂1
∂c
∂x
− ûc

)
−
∂

∂y

(
D̂2
∂c
∂y
− v̂c

)
+ µ̂c − q = 0, on Ω × (t0,T f ], (2.1)

with initial condition
c(x, y, t0) = φ1(x, y), on Ω, (2.2)

and boundary condition
c(x, y, t) = φ2(x, y, t), on Γ × (t0,T f ], (2.3)

where

• c = c(x, y, t), is the solute concentration of the dispersing contaminant mass,
• û = û(x, t) and v̂ = v̂(y, t), are called velocity components along the longitudinal direction (x-axis)

and the lateral direction (y-axis), respectively,
• D̂1 = D̂1(x, t) and D̂2 = D̂2(y, t), denote the dispersion coefficients along the longitudinal direction

and the lateral direction, respectively,
• q = q(x, y, t) and µ̂ = µ̂(x, y, t), are the source of pollutant mass injected at a point of the infinite

horizontal groundwater flow domain and first-order reaction rate, respectively,
• φ1 = φ1(x, y), represents the initial condition. This indicates that the region is not solute free

before the pollutant’s source is injected into it,
• φ2 = φ2(x, y, t), designates the boundary condition which suggests that Ω = (a1, b1) × (a2, b2),

where ai and bi (i = 1, 2) are real numbers,
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• Γ denotes the boundary of Ω,
• t0 and T f , are the initial and final times, respectively.

In the literature [42–44], it is shown that: (a) All the coefficients may be reduced to constants,
(b) dispersion coefficients are expressed in a homogeneous quadratic spatial form while velocity
components consider the homogeneous linear spatial expression and (c) the dispersion coefficient may
be time-dependent and velocity components temporally dependent or constants. In this work, we focus
on the case where homogeneous quadratic and linear spatial expressions are considered along the
longitudinal and lateral directions. Thus, the dispersion and velocity coefficients are defined as

D̂1(x, t) = Dx0(α2 + α1x)2 f1(mt) and û(x, t) = u0(α2 + α1x) f2(mt), (2.4)

and
D̂2(y, t) = Dy0(β2 + β1y)2 f1(mt) and v̂(y, t) = v0(β2 + β1y) f2(mt), (2.5)

where (Dx0 ,Dy0) and (u0, v0) are constant dispersion coefficients and velocity components (which are
assumed to be nonnegative), respectively, in the corresponding directions in a steady flow domain
through a homogeneous porous medium, α1 > 0 and β1 > 0 denote the spatial dependent parameters
along the x-axis and y-axis, respectively. Their significant or insignificant values represent the medium
as homogeneous or heterogeneous. m > 0 is called the temporal dependence parameter which is chosen
such that, the functions fi(mt), for i = 1, 2, µ̂(x, y, t) and f2(mt)

f1(mt) are nonnegative, increasing in time and
tend to 1 when m goes to zero, α2 and β2 are two positive constants. To ensure the nonnegativity
of the convective terms, we assume that both functions u0

2α1Dx0

f2(mt)
f1(mt) and v0

2β1Dy0

f2(mt)
f1(mt) are greater than or

equal one. Armed with the above tools, we are ready to provide a detailed description of the two-level
factored Crank-Nicolson approach for solving the initial-boundary value problems (2.1)–(2.3).

Let K, M and N be three positive integers. Set k := ∆t = T f−t0
K ; hx := ∆x = b1−a1

M and hy :=
∆y = b2−a2

N , be the time step and grid spacings, respectively. Set tn = t0 + kn, n = 0, 1, 2, ...,K;
xi = a1+ ihx, i = 0, 1, · · · ,M; and y j = a2+ jhy, 0, 1, · · · ,N. In addition, suppose Ωk = {tn, 0 ≤ n ≤ K};
Ωh = {(xi, y j), 0 ≤ i ≤ M, 0 ≤ j ≤ N}; Ωh = Ωh ∩Ω and ∂Ωh = Ωh ∩ ∂Ω.

Let Ch = {cn
i j, n = 0, 1, ...,K, 0 ≤ i ≤ M, 0 ≤ j ≤ N}, where cn

i j = c(xi, y j, tn), be the space of grid
functions defined on Ωh ×Ωk. We introduce the following operators

δtcn+1
i j =

cn+1
i j − cn

i j

k
; ∆xcn

i j =
cn

i+1, j − cn
i j

hx
; ∇xcn

i j =
cn

i j − cn
i−1, j

hx
; δxcn

i j =
cn

i+1, j − cn
i−1, j

2hx
; ∆ycn

i j =
cn

i, j+1 − cn
i j

hy
;

∇ycn
i j =

cn
i j − cn

i, j−1

hy
; δycn

i j =
cn

i, j+1 − cn
i, j−1

2hy
; δ2

xc
n
i j =
∆xcn

i j − ∇xcn
i j

hx
and δ2

ycn
i j =
∆ycn

i j − ∇ycn
i j

hy
. (2.6)

Using Eq (2.6), it is easy to see that δxcn
i j =

1
2

(
∆xcn

i j + ∇xcn
i j

)
, δycn

i j =
1
2

(
∆ycn

i j + ∇ycn
i j

)
, δ2

xc
n
i j =

cn
i+1, j−2cn

i j+cn
i−1, j

h2
x

and δ2
ycn

i j =
cn

i, j+1−2cn
i j+cn

i, j−1

h2
y

. We define the following discrete norms

∥cn∥L2(Ω) =

hxhy

M∑
i=1

N∑
j=1

|cn
i j|

2


1
2

and ∥|c|∥L∞(t0,T f ;L2) = max
1≤n≤K

∥cn∥L2(Ω), (2.7)

where |·| denotes theC-norm. The spaces L2(Ω) and L∞(t0,T f ; L2(Ω)) are equipped with the norms ∥·∥L2

and ∥| · |∥L∞(t0,T f ;L2), respectively. We recall that a two-level factored Crank-Nicolson procedure consists
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to reducing problems in many space variables into a sequence of one-dimensional subproblems and
then find the solution of linear systems with associated tridiagonal matrix. This considerably reduces
the computational cost of the scheme.

For the convenience of writing, we should provide a simple expression of Eq (2.1) which will be
considered in the following. By direct computations and rearranging terms, Eq (2.1) can be rewritten
as

∂c
∂t
= D1

∂2c
∂x2 + D2

∂2c
∂y2 − u

∂c
∂x
− v

∂c
∂y
− µc + q, (2.8)

where

D1 = D̂1, D2 = D̂2, u = û −
∂D̂1

∂x
, v = v̂ −

∂D̂2

∂y
and µ = µ̂ +

∂̂u
∂x
+
∂̂v
∂y
. (2.9)

The application of the Taylor series expansion for c about (xi, y j, tn) with time step k using backward
and forward differences gives

cn
i j = cn+1

i j − kcn+1
t,i j +

k2

2
cn+1

2t,i j + O(k3) and cn+1
i j = cn

i j + kcn
t,i j +

k2

2
cn

2t,i j + O(k3), (2.10)

where ct =
∂c
∂t and c2t =

∂2c
∂t2 . Combining both equations in (2.10) and performing direct calculations, it

is not hard to observe that
cn+1

i j − cn
i j

k
=

1
2

(
cn+1

t,i j + cn
t,i j

)
+ O(k2). (2.11)

Utilizing Eq (2.8), direct computations result in

cn
t,i j = Dn

1,ic
n
2x,i j + Dn

2, jc
n
2y,i j − un

i cn
x,i j − vn

jc
n
y,i j − µ

n
i jc

n+1
i j + qn

i j, (2.12)

and
cn+1

t,i j = Dn+1
1,i cn+1

2x,i j + Dn+1
2, j cn+1

2y,i j − un+1
i cn+1

x,i j − vn+1
j cn+1

y,i j − µ
n+1
i j cn+1

i j + qn+1
i j . (2.13)

Expanding the Taylor series for c about (xi, y j, tn) and (xi, y j, tn+1) with space steps hx and hy, using
central difference representations, this yields

cn+1
x,i j = δ

xcn+1
i j + O(h2

x); cn
x,i j = δ

xcn
i j + O(h2

x), cn+1
y,i j = δ

ycn+1
i j + O(h2

y), cn
y,i j = δ

ycn
i j + O(h2

y), (2.14)

cn+1
2x,i j = δ

2
xc

n+1
i j + O(h2

x); cn
2x,i j = δ

2
xc

n
i j + O(h2

x), cn+1
y,i j = δ

2
ycn+1

i j + O(h2
y), cn

2y,i j = δ
2
ycn

i j + O(h2
y). (2.15)

Substituting the second and fourth equations of (2.14) and (2.15) into relation (2.13) and the first and
third equations of (2.14) and (2.15) into relation (2.12), it is easy to see that

cn
t,i j = Dn

1,iδ
2
xc

n
i j + Dn

2, jδ
2
ycn

i j − un
i δ

xcn
i j − vn

jδ
ycn

i j − µ
n
i jc

n
i j + qn

i j + O(h2
x + h2

y), (2.16)

and

cn+1
t,i j = Dn+1

1,i δ
2
xc

n+1
i j + Dn+1

2, j δ
2
ycn+1

i j − un+1
i δxcn+1

i j − vn+1
j δycn+1

i j − µ
n+1
i j cn+1

i j + qn+1
i j + O(h2

x + h2
y). (2.17)

Plugging Eqs (2.11), (2.16), (2.17) and rearranging terms, we obtain
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cn+1
i j − cn

i j

k
=

1
2

{
Dn+1

1,i δ
2
xc

n+1
i j + Dn

1,iδ
2
xc

n
i j + Dn+1

2, j δ
2
ycn+1

i j + Dn
2, jδ

2
ycn

i j − un+1
i δxcn+1

i j − un
i δ

xcn
i j

−vn+1
j δycn+1

i j − vn
jδ

ycn
i j − µ

n+1
i j cn+1

i j − µ
n
i jc

n
i j + qn+1

i j + qn
i j

}
+ O(k2 + h2

x + h2
y).

Solving this equation for cn+1
i j provides{

J −
k
2

[
Dn+1

1,i δ
2
x + Dn+1

2, j δ
2
y − un+1

i δx − vn+1
j δy − µn+1

i j J
]}

cn+1
i j

=

{
J +

k
2

[
Dn

1,iδ
2
x + Dn

2, jδ
2
y − un

i δ
x − vn

jδ
y − µn

i jJ
]}

cn
i j +

k
2

(qn+1
i j + qn

i j) + O(k3 + kh2
x + kh2

y), (2.18)

where J denotes the identity operator. Since (1 − a)(1 − b) = 1 − a − b + ab, for any real numbers a
and b, a factored expression is obtained by adding the following term

k2

4

[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

] [
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]
cn+1

i j ,

to both sides of (2.18) and by manipulating the right hand side of the new equation. This fact allows to
write {

J −
k
2

[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

]} {
J −

k
2

[
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]}
cn+1

i j

=

{
J +

k
2

[
Dn

1,iδ
2
x − un

i δ
x −

1
2
µn

i jJ

]} {
J +

k
2

[
Dn

2, jδ
2
y − vn

jδ
y −

1
2
µn

i jJ

]}
cn

i j +
k
2

(qn+1
i j + qn

i j)+ ξ
n
i j, (2.19)

where ξn
i j is the error term which is given by

ξn
i j =

k2

4

{[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

] [
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]
cn+1

i j

−

[
Dn

1,iδ
2
x − un

i δ
x −

1
2
µn

i jJ

] [
Dn

2, jδ
2
y − vn

jδ
y −

1
2
µn

i jJ

]
cn

i j

}
+ O(k3 + kh2

x + kh2
y). (2.20)

Tracking the truncation error O(k3 + kh2
x + kh2

y) in Eq (2.18) and replacing the exact solution cn
i j with

the computed one Cn
i j, it follows a one-step linearized implicit scheme defined as{
J −

k
2

[
Dn+1

1,i δ
2
x + Dn+1

2, j δ
2
y − un+1

i δx − vn+1
j δy − µn+1

i j J
]}

Cn+1
i j

=

{
J +

k
2

[
Dn

1,iδ
2
x + Dn

2, jδ
2
y − un

i δ
x − vn

jδ
y − µn

i jJ
]}

Cn
i j +

k
2

(qn+1
i j + qn

i j). (2.21)

In addition, using relation (2.19) a two-step linearized equation can be constructed as follows
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{
J −

k
2

[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

]}
c∗i j

=

{
J +

k
2

[
Dn

1,iδ
2
x − un

i δ
x −

1
2
µn

i jJ

]} {
J +

k
2

[
Dn

2, jδ
2
y − vn

jδ
y −

1
2
µn

i jJ

]}
cn

i j +
k
2

(qn+1
i j + qn

i j)+ ξ
n
i j, (2.22){

J −
k
2

[
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]}
cn+1

i j = c∗i j, (2.23)

where the superscript asterisk denotes an intermediate value and ξn
i j is defined by Eq (2.20).

Many splitting methods in a numerical solution of the transport equations have been developed
to advance the solution in time. The most popular of these techniques is the compact ADI methods
and the three-level time-split MacCormack deeply studied in [15, 45]. Fully implicit schemes may
be constructed in many different ways (see, for example, Eq (2.21)). The most common of these
techniques is the Euler implicit formulation or Crank-Nicolson method. Although these approaches do
not require a time step restriction for stability (unconditionally stable), they produce a large system of
linear equations to be solved as efficiently as possible. For two-dimensional problems, this becomes a
big challenge when calculating a numerical solution utilizing one-step implicit models. To overcome
this difficulty, this work develops a two-level factored Crank-Nicolson procedure.

Omitting the error term ξn
i j in Eq (2.22) and combining the new equation with (2.23), we obtain the

desired numerical algorithm. For n = 0, 1, 2, · · · ,K − 1, i = 1, 2, · · · ,M − 1, and j = 1, 2, · · · ,N − 1,{
J −

k
2

[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

]}
C∗i j

=

{
J +

k
2

[
Dn

1,iδ
2
x − un

i δ
x −

1
2
µn

i jJ

]} {
J +

k
2

[
Dn

2, jδ
2
y − vn

jδ
y −

1
2
µn

i jJ

]}
Cn

i j +
k
2

(qn+1
i j + qn

i j), (2.24){
J −

k
2

[
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]}
Cn+1

i j = C∗i j, (2.25)

subjects to initial and boundary conditions,

C0
i j=φ1,i j, C∗0 j = Cn+1

0 j = φ
n+1
2,0 j, C∗M j = Cn+1

M j = φ
n+1
2,M j, C∗i0 = Cn+1

i0 = φ
n+1
2,i0 , and C∗iN = Cn+1

iN = φ
n+1
2,iN , (2.26)

for i = 0, 1, 2, · · · ,M and j = 0, 1, 2, · · · ,N. Relations (2.24)–(2.26) represent a two-level factored
Crank-Nicolson approach.

Now, we introduce the following operators

P+x = J −
k
2

[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

]
, P+y = J −

k
2

[
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]
,

P−x = J +
k
2

[
Dn

1,iδ
2
x − un

i δ
x −

1
2
µn

i jJ

]
and P−y = J +

k
2

[
Dn

2, jδ
2
y − vn

jδ
y −

1
2
µn

i jJ

]
, (2.27)

which play a crucial role in the stability analysis of the proposed models (2.24)–(2.26).
It is worth mentioning that the two-level factored Crank-Nicolson algorithm deals with two stages,

as specified in the difference equations (2.24) and (2.25). In each phase, both operators P±x and P±y
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calculate implicitly. Thus, the growth of the error cannot cause any instability in the algorithm. Finally,
it comes from Eq (2.20) that the truncation error ψn

i j satisfies: ψn
i j = O(k2+h4

x+h4
y) (indeed, kh2

x ≤ k2+h4
x

and kh2
y ≤ k2+h4

y). Thus, the new approach is second order accurate in time and fourth order convergent
in space.

In the following, we assume that the exact solution c ∈ L∞(t0,T f ; H2(Ω)) ∩ H1(t0,T f ; L2(Ω)), that
is, there is a positive constant ϱ, independent of the time step k and the space steps hx and hy such that,

∥|c|∥L∞(t0,T f ;H2) + ∥|c|∥H1(t0,T f ;L2) ≤ ϱ. (2.28)

3. Unconditional stability of the two-level factored Crank-Nicolson procedure

We analyze the unconditional stability of the proposed approach (2.24)–(2.26) in an approximate
solution of the two-dimensional nonstationary advection-dispersion equation with spatio-temporal
coefficients and source terms (2.1). We assume that the boundary condition given by Eq (2.3) is
accurate so that an algebraic criterion for the stability analysis of the proposed technique is satisfied by
the amplification factor can be determined by applying the Fourier method to the difference equations
(2.24) and (2.25). Following the Von Neumann criterion for the necessary condition of stability, we
suppose that both analytical and numerical solutions cn

i j and Cn
i j together with the error en

i j = cn
i j − Cn

i j
can be expressed in the form of Fourier series

cn
i j = c̃n exp î(iϕxhx + jϕyhy), Cn

i j = C̃n exp î(iϕxhx + jϕyhy) and en
i j = ẽn exp î(iϕxhx + jϕyhy), (3.1)

where cn
i j = c(xi, y j, tn) and Cn

i j = C(xi, y j, tn) are the exact solutions of Eqs (2.22), (2.23), (2.24) and
(2.25), respectively. Furthermore, c̃n, C̃n and ẽn = c̃n − C̃n, are the amplitudes at time level n, î denotes
the imaginary unit, ϕx and ϕy are called the wave numbers in the x and y directions, respectively. The
products ϕxhx and ϕyhy represent the phase angles.

Theorem 3.1. (Unconditional stability of the proposed approach). Suppose cn
i j and Cn

i j be the solutions
provided by Eqs (2.22), (2.23), (2.24) and (2.25), respectively. Under the assumptions stated in page
3, the paragraph below Eq (2.5) (that is, the physical parameters: m, u0, v0, Dx0 , Dy0 , αi and βi

(i = 1, 2) given in Eqs (2.4) and (2.5) are nonnegative, the functions fi(mt) (i = 1, 2) and µ̂(x, y, t)
given in relations (2.4) and (2.1), respectively, and f2(mt)

f1(mt) are nonnegative and time variable increasing

and both functions u0
2α1Dx0

f2(mt)
f1(mt) and v0

2β1Dy0

f2(mt)
f1(mt) are greater than or equal one), the two-level factored

Crank-Nicolson approach (2.24)–(2.26) applied to the initial-boundary value problems (2.1)–(2.3) is
unconditionally stable. That is,

∥|C|∥L∞(t0,T f ;L2) ≤ Cϱ, (3.2)

where Cϱ is a positive parameter which depends on ϱ but is independent of the time step k and grid
sizes hx and hy.

The following result (namely Lemma 3.1) plays a crucial role in the proof of the stability analysis
of the two-level factored Crank-Nicolson formulation given by Eqs (2.24)–(2.26).
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Lemma 3.1. Under the hypotheses of Theorem 3.1, the operators P±x and P±y defined in Eq (2.27)
satisfy ∣∣∣∣P−x (exp(̂iiϕxhx))

∣∣∣∣2∣∣∣∣P+x (exp(̂iiϕxhx))
∣∣∣∣2 ≤

[
1 − k

2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x
+ 1

2µ
n
i j

)]2
+ k2

4

[
un

i
sin(ϕxhx)

hx

]2

[
1 + k

2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x
+ 1

2µ
n
i j

)]2
+ k2

4

[
un

i
sin(ϕxhx)

hx

]2
≤ 1, (3.3)

and ∣∣∣∣P−y (exp(̂iiϕyhy))
∣∣∣∣2∣∣∣∣P+y (exp(̂iiϕyhy))
∣∣∣∣2 ≤

[
1 − k

2

(
4Dn

2, j
sin2(ϕyhy/2)

h2
y
+ 1

2µ
n
i j

)]2
+ k2

4

[
vn

j
sin(ϕyhy)

hy

]2

[
1 + k

2

(
4Dn

2,y
sin2(ϕyhy/2)

h2
y
+ 1

2µ
n
i j

)]2
+ k2

4

[
vn

j
sin(ϕyhy)

hy

]2
≤ 1. (3.4)

Proof. (Of Lemma 3.1). For the sake of convenience, we should prove only estimate (3.3). The proof
of inequality (3.4) is similar.

Utilizing both operators δx and δ2
x (respectively, P±x ) defined in relation (2.6) (respectively,

Eq (2.27)), it holds

P−x (exp(̂iiϕxhx)) =

exp(̂iiϕxhx) +
k
2

Dn
1,i

exp(̂i(i + 1)ϕxhx) − 2 exp(̂iiϕxhx) + exp(̂i(i − 1)ϕxhx)
h2

x

−un
i
exp(̂i(i + 1)ϕxhx) − exp(̂i(i − 1)ϕxhx)

2hx
−

1
2
µn

i j exp(̂iiϕxhx)


=

1+
k
2

Dn
1,i

exp(̂iϕxhx) − 2 + exp(−̂iϕxhx)
h2

x
− un

i
exp(̂iϕxhx)−exp(−̂iϕxhx)

2hx
−

1
2
µn

i j

 exp(̂iiϕxhx). (3.5)

But, it is easy to see that exp (̂iϕxhx) − 2 + exp (−̂iϕxhx) = 2 cos(ϕxhx) − 2 = −4 sin2(ϕxhx/2) and
exp (̂iϕxhx) − exp (−̂iϕxhx) = 2̂i sin(ϕxhx). A combination of this together with Eq (3.5) provides

P−x (exp(̂iiϕxhx)) =
{

1 +
k
2

[
−4Dn

1,i
sin2(ϕxhx/2)

h2
x

− îun
i
sin(ϕxhx)

hx
−

1
2
µn

i j

]}
exp(̂iiϕxhx).

Squared modulus of both sides results in∣∣∣∣P−x (exp(̂iiϕxhx))
∣∣∣∣2 = [

1 −
k
2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn

i j

)]2

+
k2

4

[
un

i
sin(ϕxhx)

hx

]2

. (3.6)

In addition, it is not hard to see that

P+x (exp(̂iiϕxhx)) =

exp(̂iiϕxhx) −
k
2

Dn+1
1,i

exp(̂i(i + 1)ϕxhx) − 2 exp(̂iiϕxhx) + exp(̂i(i − 1)ϕxhx)
h2

x

−un+1
i

exp(̂i(i + 1)ϕxhx) − exp(̂i(i − 1)ϕxhx)
2hx

−
1
2
µn+1

i j exp(̂iiϕxhx)


=

{
1 +

k
2

[
4Dn+1

1,i
sin2(ϕxhx/2)

h2
x

+ îun+1
i

sin(ϕxhx)
hx

+
1
2
µn+1

i j

]}
exp(̂iiϕxhx).
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The squared modulus gives

∣∣∣∣P+x (exp(̂iiϕxhx))
∣∣∣∣2 = [

1 +
k
2

(
4Dn+1

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn+1

i j

)]2

+
k2

4

[
un+1

i
sin(ϕxhx)

hx

]2

. (3.7)

To establish estimate (3.3), we should prove the following inequalities

k2

4

[
un

i
sin(ϕxhx)

hx

]2

≤
k2

4

[
un+1

i
sin(ϕxhx)

hx

]2

, (3.8)

and [
1 −

k
2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn

i j

)]2

≤

[
1 +

k
2

(
4Dn+1

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn+1

i j

)]2

. (3.9)

Using Eqs (2.4) and (2.9), simple computations yield

Dn
1,x = Dx0(α2 + α1xi)2 f1(mtn), Dn+1

1,x = Dx0(α2 + α1xi)2 f1(mtn+1), ûn
i = u0(α2 + α1xi) f2(mtn),

ûn+1
i = u0(α2 + α1xi) f2(mtn+1), un

i = u0(α2 + α1xi) f2(mtn) − 2Dx0α1(α2 + α1xi) f1(mtn),

un+1
i = u0(α2 + α1xi) f2(mtn+1) − 2Dx0α1(α2 + α1xi) f1(mtn+1), µn

i j = µ̂
n
i j + (α1u0 + β1v0) f2(mtn),

µn+1
i j = µ̂

n+1
i j + (α1u0 + β1v0) f2(mtn+1). (3.10)

Now, since the parameters αi, are positive and the functions fi(mt) ≥ 0, and u0
2α1Dx0

f2(mt)
f1(mt) ≥ 1, are

increasing in time variable, using Eq (3.10) it is easy to see that[
un

i
sin(ϕxhx)

hx

]2[
un+1

i
sin(ϕxhx)

hx

]2 =
(un

i )2

(un+1
i )2

=

[
u0(α2 + α1xi) f2(mtn) − 2Dx0α1(α2 + α1xi) f1(mtn)

]2[
u0(α2 + α1xi) f2(mtn+1) − 2Dx0α1(α2 + α1xi) f1(mtn+1)

]2

=
( f1(mtn))2(
f1(mtn+1)

)2

[
u0 f2(mtn)

2Dx0α1 f1(mtn) − 1
]2

[
u0 f2(mtn+1)

2Dx0α1 f1(mtn+1) − 1
]2 ≤ 1.

The last estimate comes from both inequalities: 0 ≤ f1(mtn) ≤ f1(mtn+1) and 1 ≤ u0 f2(mtn)
2Dx0α1 f1(mtn) ≤

u0 f2(mtn+1)
2Dx0α1 f1(mtn+1) . This completes the proof of estimate (3.8).

Now, let’s prove estimate (3.9). Since the functions f1(mt), f2(mt), µ̂(x, y, t) are increasing in time
variable and the parameters Dx0 , Dy0 , u0, v0, αi, i = 1, 2, and β1 are nonnegative, utilizing relation
(3.10), it is not hard to observe that

Dn
1,i = Dx0(α2 + α1xi)2 f1(mtn) ≤ Dx0(α2 + α1xi)2 f1(mtn+1) = Dn+1

1,i , (3.11)

and

µn
i j = µ̂

n
i j + α1u0 f2(mtn) + β1v0 f2(mtn) ≤ µ̂n+1

i j + α1u0 f2(mtn+1) + β1v0 f2(mtn+1) = µn+1
i j . (3.12)
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Plugging estimates (3.11) and (3.12), direct calculations provide[
1 +

k
2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn

i j

)]2

≤

[
1 +

k
2

(
4Dn+1

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn+1

i j

)]2

, (3.13)

and [
1 −

k
2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn

i j

)]2

≤

[
1 +

k
2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn

i j

)]2

. (3.14)

A combination of (3.13) and (3.14) results in[
1 −

k
2

(
4Dn

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn

i j

)]2

≤

[
1 +

k
2

(
4Dn+1

1,i
sin2(ϕxhx/2)

h2
x

+
1
2
µn+1

i j

)]2

.

This ends the proof of inequality (3.9). Summing side by side estimates (3.8) and (3.9) and dividing
the obtained inequality by the right-hand side to get estimate (3.3). □

Proof. (Of Theorem 3.1).
Subtracting the difference equation (2.24) from Eq (2.22) and approximation (2.25) from (2.23)

provide{
J −

k
2

[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

]}
e∗i j =

{
J +

k
2

[
Dn

1,iδ
2
x − un

i δ
x −

1
2
µn

i jJ

]} {
J +

k
2

[
Dn

2, jδ
2
y

−vn
jδ

y −
1
2
µn

i jJ

]}
en

i j + ξ
n
i j, (3.15){

J −
k
2

[
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]}
en+1

i j = e∗i j, (3.16)

where the predicted error term e∗i j is defined as e∗i j = c∗i j − C∗i j. Now, substituting Eq (3.16) into (3.15),
it is not difficult to observe that{

J −
k
2

[
Dn+1

1,i δ
2
x − un+1

i δx −
1
2
µn+1

i j J

]} {
J −

k
2

[
Dn+1

2, j δ
2
y − vn+1

j δy −
1
2
µn+1

i j J

]}
en+1

i j

=

{
J +

k
2

[
Dn

1,iδ
2
x − un

i δ
x −

1
2
µn

i jJ

]} {
J +

k
2

[
Dn

2, jδ
2
y − vn

jδ
y −

1
2
µn

i jJ

]}
en

i j + ξ
n
i j. (3.17)

Using relation (2.27), Eq (3.17) becomes

P+xP
+
y (en+1

i j ) = P−xP
−
y (en

i j) + ξ
n
i j, (3.18)

where ξn
i j is defined by (2.20). Utilizing the last equation in (3.1), it is not hard to see that

en
i j = ẽn exp î(iϕxhx + jϕyhy) = ẽn exp(̂iiϕxhx) exp(̂i jϕyhy),

and
en+1

i j = ẽn+1 exp î(iϕxhx + jϕyhy) = ẽn+1 exp(̂iiϕxhx) exp(̂i jϕyhy).
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This fact, together with Eq (3.18) give

ẽn+1P+x (exp(̂iiϕxhx))P+y (exp(̂i jϕyhy)) = ẽnP−x (exp(̂iiϕxhx))P−y (exp(̂i jϕyhy)) + ξn
i j.

Omitting the error term ξn
i j, this can be approximated as

ẽn+1P+x (exp(̂iiϕxhx))P+y (exp(̂i jϕyhy)) = ẽnP−x (exp(̂iiϕxhx))P−y (exp(̂i jϕyhy)),

which is equivalent to
ẽn+1

ẽn =
P−x (exp(̂iiϕxhx))

P+x (exp(̂iiϕxhx))

P−y (exp(̂i jϕyhy))

P+y (exp(̂iiϕxhx))
. (3.19)

We remind that relation (3.19) defines the amplification factor provided by the numerical method
(2.24)–(2.26). To show the unconditional stability of the proposed approach, we must prove that the
squared modulus of the amplification factor given by (3.19) is less than or equal 1.

Taking the squared modulus in both sides of Eq (3.19), we get∣∣∣∣∣∣ ẽn+1

ẽn

∣∣∣∣∣∣2 =
∣∣∣∣∣∣∣P−x (exp(̂iiϕxhx))

P+x (exp(̂iiϕxhx))

∣∣∣∣∣∣∣
2 ∣∣∣∣∣∣∣P

−
y (exp(̂i jϕyhy))

P+y (exp(̂iiϕxhx))

∣∣∣∣∣∣∣
2

. (3.20)

But, it comes from estimates (3.3) and (3.4) of Lemma 3.1 that∣∣∣∣P−x (exp(̂iiϕxhx))
∣∣∣∣2∣∣∣∣P+x (exp(̂iiϕxhx))
∣∣∣∣2 ≤ 1 and

∣∣∣∣P−y (exp(̂iiϕyhy))
∣∣∣∣2∣∣∣∣P+y (exp(̂iiϕyhy))
∣∣∣∣2 ≤ 1. (3.21)

Now, a combination of Eq (3.20) and estimates (3.21) results in∣∣∣̃en+1
∣∣∣2

|̃en|
2 ≤ 1,

which can be rewritten as ∣∣∣̃en+1
∣∣∣ ≤ |̃en| , for n = 1, 2, · · · ,K − 1.

By mathematical induction, it is not hard to see that, for n = 1, 2, · · · ,K

|̃en| ≤
∣∣∣̃e1

∣∣∣ . (3.22)

Utilizing the definition of L2-norm given by (2.7) and Eq (3.1), simple computations give

∥en∥L2(Ω) =

hxhy

M∑
i=1

N∑
j=1

|en
i j|

2


1
2

= ((b1 − a1)(b2 − a2))
1
2 |̃en|. (3.23)

Furthermore, it is easy to observe that ∥Cn∥L2(Ω) − ∥cn∥L2(Ω) ≤ ∥cn − Cn∥L2(Ω) = ∥en∥L2(Ω). This fact,
together with estimate (3.22), Eq (3.23) and inequality (2.28) yield

∥Cn∥L2(Ω) ≤ ϱ + ((b1 − a1)(b2 − a2))
1
2
∣∣∣̃e1

∣∣∣ , for n = 1, 2, · · · ,K.

In fact, c is the analytical solution of the initial-boundary value problems (2.1)–(2.3), which satisfies
estimate (2.28). Taking the maximum over n, this completes the proof of Theorem 3.1. □
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4. Numerical experiments and convergence rate

In this section, we carry out numerical experiments to demonstrate the efficiency and effectiveness
of the proposed two-level factored Crank-Nicolson scheme (2.24)–(2.26) applied to the initial-
boundary value problems (2.1)–(2.3). Two examples are taken in [44] to confirm our theoretical
statements. In each test, the results show that the considered approach provides satisfactory
performances. The predicted convergence rate and unconditional stability from the theory are
confirmed (Section 3, Theorem 3.1 and Section 2, Page 7, first paragraph, line 5) and Section 3,
Theorem 3.1). Furthermore, both tables and graphs corresponding to the approximate solution (see
Figures 1–8 and Tables 1 and 2) suggest that the proposed technique is unconditionally stable and
convergent with order O(k2 + h4). Specifically, the convergence rate of the two-level factored Crank-
Nicolson method is obtained by listing the errors between the numerical solution and the analytical
ones with different values of the mesh size h = hx = hy and time step k. As indicated in [44], the
dispersion and velocity coefficients are given by

D̂1(x, t) = Dx0(α2 + α1x)2 f1(mt), D̂2(y, t) = Dy0(β2 + β1y)2 f1(mt) , û(x, t) = u0(α2 + α1x) f2(mt),

and
v̂(y, t) = v0(β2 + β1y) f2(mt).

The source of pollutant mass injected q(x, y, t) is given by

q(x, y, t) = C0û(x0, t)̂u(y0, t)δ(x − x0)δ(y − y0).

In this study, we take

α1 = β1 ∈ {3 × 10−1, 1}, α2 = β2 ∈ {1, 2}, Dx0 = 2 × 10−1, Dy0 = 2 × 10−2, u0 = 5 × 10−1,

v0 = 5 × 10−2, x0 = y0 = 3, C0 = 1, Ω = (0, 6) × (0, 6).

f1(mt), f2(mt) and µ̂(x, y, t) are functions defined as: f1(mt) = f2(mt) ∈ {1, t
1+t } and µ̂(x, y, t) = 0. The

initial condition φ1(x, y) and the boundary one φ2(x, y, t), are directly obtained from the exact solution.
To verify the theoretical results, we take the space step and time step in the range h ∈ {2−r, r =

1, 2, .., 5} and k = 2−l, l = 2, 4, · · · , 10, respectively. We calculate the norms of analytical solution
∥c∥L2 , approximate ones ∥C∥L2 and error estimates, ∥E∥L2 related to the proposed approach to see that the
approach is unconditionally stable, spatial fourth-order accurate and temporal second-order convergent.
Furthermore, for different values of k and h, we plot the exact and computed solutions together with
the error versus n. This analysis indicates that the considered technique is faster and more efficient
than a wide set of numerical schemes widely studied in the literature for solving the initial-boundary
value problems (2.1)–(2.3). Finally, it follows from Tables 1 and 2 that the “CR = log2(E(2h)/E(h))”
obtained from the approximation errors in two adjacent space-levels can be used to estimate the
corresponding convergence rate with respect to h.
• Test 1 (Case: f1(mt) = f2(mt) = 1). In [44] the dispersion coefficients are defined as

D̂1(x, t) = Dx0(α2 + α1x)2 f1(mt) and D̂2(y, t) = Dy0(β2 + β1y)2 f1(mt),
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whereas the velocity coefficients are given by

û(x, t) = u0(α2 + α1x) f2(mt) and v̂(y, t) = v0(β2 + β1y) f2(mt).

In this example, we take α1 = β1 = 3×10−1, α2 = β2 = 1, (t0,T f ) = (1, 5) andΩ = (0, 6)2. Furthermore,
µ̂(x, y, t) = 0 and the function q(x, y, t) is given

q(x, y, t) = C0û(x0, t)̂u(y0, t)δ(x − x0)δ(y − y0),

where δ(·) denotes the dirac function. The analytical solution c taken in [44] is given by

c(x, y, t) =
exp[−(α1u0 + β1v0 + µ̂)t]

4πt
√

Dx0 Dy0(α1x0 + α2)(β1y0 + β2)
exp

− 1
4Dx0t

(
1
α1

log
(
α1x + α2

α1x0 + α2

)
+ (α1Dx0 − u0)t

)2
× exp

− 1
4Dy0t

(
1
β1

log
(
β1y + β2

β1y0 + β2

)
+ (β1Dy0 − v0)t

)2 .
The initial condition φ1 and the boundary one φ2 are obtained from the exact solution c. We assume
that the grid spacing h and time step k satisfy k = h2.

Table 1. Analytical solution “c”, numerical one “C”, error “E” and convergence rates “CR =
log2(E(2h)/E(h))” of the proposed algorithm with different mesh size h.

h ∥|c|∥L2 ∥|C|∥L2 ∥|E(h)|∥L2 RC
2−1 5.3686 × 10−1 6.0311 × 10−1 1.0839 × 100 –
2−2 3.1571 × 10−1 2.6278 × 10−1 1.2311 × 10−1 3.1382
2−3 2.0893 × 10−1 1.9175 × 10−1 9.5015 × 10−3 3.6957
2−4 1.2512 × 10−1 1.1945 × 10−1 5.6779 × 10−4 4.0648
2−5 7.0305 × 10−2 6.7212 × 10−2 3.0865 × 10−5 4.2013

• Test 2 (Case: f1(mt) = f2(mt) = t
1+t ). In this case, the dispersion and velocity coefficients are

given by

D̂1(x, t) = Dx0(α2 + α1x)2 f1(mt), D̂2(y, t) = Dy0(β2 + β1y)2 f1(mt), û(x, t) = u0(α2 + α1x) f2(mt),

and
v̂(y, t) = v0(β2 + β1y) f2(mt).

As in Test 1, we set α1 = β1 = 1, α2 = β2 = 2, (t0,T f ) = (1, 5) and Ω = (0, 6)2. Furthermore,
µ̂(x, y, t) = 0 and the function q(x, y, t) is defined as

q(x, y, t) = C0û(x0, t)̂u(y0, t)δ(x − x0)δ(y − y0),

where δ(·) denotes the dirac function. The analytical solution c taken in [44] is given by
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c(x, y, t) =
exp[−(α1u0 + β1v0 + µ̂)t]

4πτ
√

Dx0 Dy0(α1x0 + α2)(β1y0 + β2)
exp

− 1
4Dx0τ

(
1
α1

log
(
α1x + α2

α1x0 + α2

)
+ α1Dx0τ − u0t

)2
× exp

− 1
4Dy0τ

(
1
β1

log
(
β1y + β2

β1y0 + β2

)
+ β1Dy0τ − v0t

)2 ,
where τ = t − ln(1 + t). The initial and boundary conditions φ1 and φ2, respectively, are determined by
the analytical solution c. Similar to Test 1, the time step k and space step h satisfy k = h2.

Like in Test 1, the time step and mesh grid are chosen such that: k = 2−l, l = 2, 4, ..., 10 and
h ∈ {2−l, l = 1, 2, ..., 5}. We list in Table 2 the approximate solution “C”, the exact one “c” and error
“E” related to a two-level factored Crank-Nicolson formulation to see that the proposed approach
is convergent with accuracy O(k2 + h4). Furthermore, we plot the exact solution and computed one
together with the error versus n to see the efficiency of the developed method.

Table 2. Approximate solution “C”, exact solution “c”, error “E” and convergence rate
“CR = log2(E(2h)/E(h))” for the proposed technique with k = h2.

h ∥|c|∥L2 ∥|C|∥L2 ∥|E(h)|∥L2 RC
2−1 6.8685 × 10−1 7.3217 × 10−1 6.6773 × 10−2 –
2−2 1.1299 × 10−2 1.1623 × 10−2 4.6232 × 10−3 3.8523
2−3 2.7992 × 10−3 2.7987 × 10−3 3.4042 × 10−4 3.7635
2−4 9.8520 × 10−4 8.0479 × 10−4 2.2246 × 10−5 3.9357
2−5 4.3567 × 10−4 4.2106 × 10−4 1.3807 × 10−6 4.0101

The theoretical analysis provided in Section 3 (Theorem 3.1) and Section 2, has suggested that
the proposed numerical scheme is unconditionally stable, temporal second-order accurate and spatial
fourth-order convergent. We observe from Tests 1 and 2 that the expected results from the theory
are confirmed. More precisely, Tables 1 and 2 show that the proposed two-level factored method is
convergent with accuracy O(k2 + h4).

Figures 1–8 indicate that the constructed two-level factored approach is unconditionally stable and
convergent. This numerical result confirms the theoretical one discussed in Section 3 (Theorem 3.1).
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Stability analysis and convergence of the new two-level factored scheme.
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Figure 1. Test 1: decay constant µ = 0, f1(mt) = f2(mt) = 1, α1 = 3 × 10−1 and α2 = 1.

Analysis of stability and convergence of the proposed two-level factored approach.
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Figure 2. Test 1: decay constant µ = 0 and f1(mt) = f2(mt) = 1.
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Stability analysis and convergence of the developed two-level factored numerical method.
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Figure 3. Test 1: decay constant µ = 0 and f1(mt) = f2(mt) = 1.

Analysis of stability and convergence of the constructed two-level factored scheme.
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Stability analysis and convergence of the new algorithm.
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Figure 5. Test 2: decay constant µ = 0 and f1(mt) = f2(mt) = t
1+t .

Stability and convergence of a two-level factored Crank-Nicolson method.
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Analysis of stability and convergence of the proposed two-level factored technique.
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Figure 7. Test 2: decay constant µ = 0 and f1(mt) = f2(mt) = t
1+t .

Stability and convergence of the developed two-level factored approach.
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1+t .

AIMS Mathematics Volume 8, Issue 5, 11498–11520.



11517

5. Conclusions and future works

In this paper, we have proposed a two-level factored numerical scheme to solve the two-dimensional
evolutionary advection-dispersion equation with spatio-temporal dispersion coefficients and source
terms (2.1) subjects to suitable initial and boundary conditions (2.2) and (2.3) and we have analyzed
in detail the stability together with the convergence rate of the method. The theoretical study has
shown that the proposed approach is unconditionally stable, temporal second-order accurate and
spatial fourth-order convergent (Section 3, Theorem 3.1 and Section 2. This theory is confirmed
by two numerical tests (see both Figures 1–8 and Tables 1 and 2). Numerical evidence also
indicated that the new algorithm is: (a) More efficient and effective than a large set of numerical
techniques [6, 9, 12, 19, 27, 41, 45, 46] applied to the initial-boundary value problems (2.1)–(2.3); (b)
Fast and robust tools for the integration of general systems of PDEs. Moreover, the two-level factored
formulation is an efficient scheme for solving from low to high Reynolds number flows where the
viscous region is too thin by providing fewer computations at each calculation step. This substantially
reduces the computational cost of the method. In addition, for multi-dimensional problems, the
procedure reduces to solve a tridiagonal system of equations which should be easily obtained by the
application of the Thomas algorithm. The future works will apply the two-level factored approach to
two-dimensional time-fractional convection-diffusion equation with source terms.
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