In this paper, we introduce quasi $ M $-metric spaces as a generalization of $ M $-metric spaces. We establish some fixed point results along with the examples and application of our results to integral equations and system of linear equations.
Citation: Irshad Ayoob, Ng Zhen Chuan, Nabil Mlaiki. Quasi $ M $-metric spaces[J]. AIMS Mathematics, 2023, 8(5): 10228-10248. doi: 10.3934/math.2023518
In this paper, we introduce quasi $ M $-metric spaces as a generalization of $ M $-metric spaces. We establish some fixed point results along with the examples and application of our results to integral equations and system of linear equations.
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur applications aux equations intgrales, Fund. Math., 3 (1922), 133–181. |
[2] | S. G. Matthews, Partial metric topology, Ann. New York Acad. Sci., 728 (1994), 183–197. https://doi.org/10.1111/j.1749-6632.1994.tb44144.x doi: 10.1111/j.1749-6632.1994.tb44144.x |
[3] | M. Asadi, E. Karapınar, P. Salimi, New extension of $p$-metric spaces with some fixed point results on $M$-metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18 |
[4] | N. Mlaiki, A. Zarrad, N. Souayah, A. Mukheimer, T. Abdeljawed, Fixed point theorems in $M_b$-metric spaces, J. Math. Anal., 7 (2016), 1–9. |
[5] | N. Mlaiki, N. Y. Özgür, A. Mukheimer, N. Taş, A new extension of the $M_b$-metric spaces, J. Math. Anal., 9 (2018), 118–133. |
[6] | M. Jleli, B. Samet, Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), 1–7. https://doi.org/10.1186/1687-1812-2012-210 doi: 10.1186/1687-1812-2012-210 |
[7] | W. A. Wilson, On quasi metric spaces, Amer. J. Math., 53 (1931), 675–684. |
[8] | L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087 |
[9] | M. Asim, A. R. Khan, M. Imdad, Fixed point results in partial symmetric spaces with an application, Axioms, 8 (2019), 1–15. https://doi.org/10.3390/axioms8010013 doi: 10.3390/axioms8010013 |
[10] | M. Asim, M. Imdad, Partial JS-metric spaces and fixed fixed point results, Indian J. Math., 61 (2019), 175–186. |
[11] | N. Y. Özgür, N. Mlaiki, N. Tas, N. Souayah, A new generalization of metric spaces: rectangular $M$-metric spaces, Math. Sci., 12 (2018), 223–233. https://doi.org/10.1007/s40096-018-0262-4 doi: 10.1007/s40096-018-0262-4 |
[12] | A. Mielke, T. Roubcek, A rate-independent model for inelastic behavior of shape-memory alloys, Multiscale Model. Simul., 1 (2003), 571–597. https://doi.org/10.1137/S1540345903422860 doi: 10.1137/S1540345903422860 |
[13] | A. C. G. Mennucci, On asymmetric distances, Anal. Geom. Metr. Space., 1 (2013), 200–231. |
[14] | W. L. Woon, S. Madnick, Asymmetric information distances for automated taxonomy construction, Knowl. Inform. Syst., 21 (2009), 91–111. https://doi.org/10.1007/s10115-009-0203-5 doi: 10.1007/s10115-009-0203-5 |
[15] | M. O. Rieger, J. Zimmer, Young measure flow as a model for damage, Z. Angew. Math. Phys., 60 (2009), 1–32. https://doi.org/10.1007/s00033-008-7016-3 doi: 10.1007/s00033-008-7016-3 |
[16] | S. J. O'Neill, Partial metrics, valuations and domain theory, Ann. New York Acad. Sci., 806 (1996), 304–315. https://doi.org/10.1111/j.1749-6632.1996.tb49177.x doi: 10.1111/j.1749-6632.1996.tb49177.x |
[17] | M. A. Bukatin, J. S. Scott, Towards computing distances between programs via Scott domains, In: Logical foundations of computer sicence, Berlin, Heidelberg: Springer, 1997, 33–43. https://doi.org/10.1007/3-540-63045-7_4 |
[18] | M. A. Bukatin, S. Y. Shorina, Partial metrics and co-continuous valuations, In: Foundations of software science and computation structures, 1998,125–139. https://doi.org/10.1007/BFb0053546 |
[19] | M. H. Escardo, PCF extended with real numbers, Theor. Comput. Sci., 162 (1996), 79–115. https://doi.org/10.1016/0304-3975(95)00250-2 doi: 10.1016/0304-3975(95)00250-2 |
[20] | M. P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theor. Comput. Sci., 305 (2003), 409–432. https://doi.org/10.1016/S0304-3975(02)00705-3 doi: 10.1016/S0304-3975(02)00705-3 |
[21] | M. P. Schellekens, The correpondence between partial metrics and semivaluations, Theor. Comput. Sci., 315 (2004), 135–149. https://doi.org/10.1016/j.tcs.2003.11.016 doi: 10.1016/j.tcs.2003.11.016 |
[22] | P. Waszkierwicz, Quantitative continuous domains, Appl. Categor. Struct., 11 (2003), 41–67. https://doi.org/10.1023/A:1023012924892 doi: 10.1023/A:1023012924892 |
[23] | P. Waszkierwicz, The local triangle axiom in topology and domain theory, Appl. Gen. Topol., 4 (2003), 47–70. https://doi.org/10.4995/agt.2003.2009 doi: 10.4995/agt.2003.2009 |
[24] | M. Asadi, Fixed point theorems for Meir-Keeler type mappings in $M$-metric space with applications, Fixed Point Theory Appl., 2015 (2015), 1–10. https://doi.org/10.1186/s13663-015-0460-9 doi: 10.1186/s13663-015-0460-9 |
[25] | M. Asadi, E. Karapınar, P. Salimi, New extension of $p$-metric spaces with some fixed-point results on $M$-metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-242X-2014-18 doi: 10.1186/1029-242X-2014-18 |
[26] | H. Monfared, M. Asadi, M. Azhini, Coupled fixed point theorems for generalized contractions in ordered $M$-metric spaces, Results Fixed Point Theory Appl., 341 (2018), 1241–1252. |
[27] | H. Monfared, M. Azhini, M. Asadi, Fixed point results on $M$-metric spaces, J. Math. Anal., 7 (2016), 85–101. |
[28] | S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711. https://doi.org/10.1007/s00009-013-0327-4 doi: 10.1007/s00009-013-0327-4 |
[29] | W. Shatanawi, On $w$-compatible mappings and common coupled coincidence point in cone metric spaces, Appl. Math. Lett., 25 (2012), 925–931, https://doi.org/10.1016/j.aml.2011.10.037 doi: 10.1016/j.aml.2011.10.037 |
[30] | W. Shatanawi, V. C. Rajic, S. Radenovic, A. Al-Rawashhdeh, Mizoguchi-Takahashi-type theorems in tvs-cone metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–7. https://doi.org/10.1186/1687-1812-2012-106 doi: 10.1186/1687-1812-2012-106 |
[31] | A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sehmim, W. Shatanawi, On common fixed points for $\alpha-F$-contractions and applications, J. Nonlinear Sci. Appl., 9 (2016), 3445–3458. http://dx.doi.org/10.22436/jnsa.009.05.128 doi: 10.22436/jnsa.009.05.128 |
[32] | W. Shatanawi, Z. Mustafa, N. Tahat, Some coincidence point theorems for nonlinear contraction in ordered metric spaces, Fixed Point Theory Appl., 2011 (2011), 1–15. https://doi.org/10.1186/1687-1812-2011-68 doi: 10.1186/1687-1812-2011-68 |
[33] | W. Shatanawi, Some fixed point results for a generalized $\psi$-weak contraction mappings in orbitally metric spaces, Chaos Solitons Fract., 45 (2012), 520–526. https://doi.org/10.1016/j.chaos.2012.01.015 doi: 10.1016/j.chaos.2012.01.015 |