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1. Introduction

Fixed point theory has become the focus of many researchers in the last couple decades and that is
due to its applications in the existence and uniqueness of solutions of differential and integral equations,
engineering, mathematical economics,dynamical systems, neural networks and many other fields. The
classic result of the fixed point, widely studied by researchers, is that of Banach [1], Banach’s fixed
theorem has been generalized by expanding the underlying metric space or by changing the contraction
condition. A few examples of existing concepts where the underlying metric has been extended include
cone metric space [8, 29, 30], partial symmetric space [9], partial JS-metric space [10], M-metric
space [3], Mb-metric space [4], extendedMb-metric space [5], rectangular M-metric space [11], and
others. Various types of mappings for which the fixed points have been investigated in the extended
metric spaces include Banach contraction mapping, Kannan contraction mapping, Ciric contraction
mapping, Riech contraction mapping, Hardy-Roger contraction mapping, Caristi contraction mapping
and several others [31–33].
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2. Preliminaries

In [7], Wilson initiated the concept of quasi-metric space (also known as asymmetric metric space)
as an extension of the metric space. This is defined as a metric space (X, η), but η is not required to
be symmetric. The intuitive example of a quasi-metric space is a circle, where the distance η between
two points A and B on the circle is defined as the length of the shortest arc measured in the clockwise
direction. Clearly, η(A, B) , η(B, A) unless A and B are diametrically opposite on the circle. Recent
developments in applied mathematics have seen a wide range of applications for quasi-metric spaces,
including shape-memory alloys [12], questions about the existence and uniqueness of Hamilton-Jacobi
equations [13], automated taxonomy construction [14], models for material failure [15] and several
others.

We recall the definition of quasi-metric space.

Definition 2.1. [7] Let X be a nonempty set. A quasi-metric on X is a function η : X2 → [0,+∞) such
that for all µ, ω,w ∈ X,

(1) η(µ, ω) = 0 if and only if µ = ω,
(2) η(µ, ω) ≤ η(µ,w) + η(w, ω).

A pair (X, η) is called a quasi-metric space.

Every metric space is a quasi-metric space, while the converse is not true, in general. The
topological concepts in quasi-metric space such as convergence, Cauchyness, completeness and
continuity, differ from those in metric spaces. For these concepts in quasi-metric spaces, the reader
may refer to [6].

As a further generalization of metric spaces, Matthews [2] introduced the concept of partial metric
spaces and established the Banach type fixed point theorem in the same space. Several researchers
such as O’Neill [16], Bukatin and Scott [17, 18], Escardo [19], Romaguera and Schellekens [20, 21]
and Waszkiewicz [22, 23] have studied the connection between domain theory and partial metrics.

We state the definition of partial metric space.

Definition 2.2. [2] Let X be a nonempty set. A partial metric on X is a function J : X2 → [0,+∞)
such that for all µ, ω,w ∈ X,

(1) J(µ, µ) = J(ω,ω) = J(µ, ω) if and only if µ = ω,
(2) J(µ, µ) ≤ J(µ, ω),
(3) J(µ, ω) = J(ω, µ),
(4) J(µ,w) ≤ J(µ, ω) +J(ω,w) − J(ω,ω).

A pair (X,J) is called a partial metric space.

In [3], Asadi et al. extended the definition of partial metric space to M-metric space. The authors
in [3] also established that every partial metric space is an M-metric space, however, every M-metric
space need not to be a partial metric space.

We need the following notations to state the definition of M-metric space.

Notation 2.1. [3]

(1) mµ,ω := min{N(µ, µ),N(ω,ω)}.
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(2) Nµ,ω := max{N(µ, µ),N(ω,ω)}.

Definition 2.3. [3] Let X be a nonempty set. An M-metric on X is a function N : X2 → [0,+∞) such
that for all µ, ω,w ∈ X,

(1) N(µ, µ) = N(ω,ω) = N(µ, ω) if and only if µ = ω,
(2) mµ,ω ≤ N(µ, ω),
(3) N(µ, ω) = N(ω, µ),
(4)
(
N(µ, ω) − mµ,ω

)
≤
(
N(µ,w) − mµ,w

)
+
(
N(w, ω) − mw,ω

)
.

A pair (X,N) is called an M-metric space.

Example 2.1. Let X = [0,∞). Then, N : X2 → [0,+∞) defined by N(µ, ω) = µ+ω

2 is an M-metric
on X.

Example 2.2. [3] Let X = {a, b, c}. Define

N(a, a) = 1, N(b, b) = 9, N(c, c) = 5,

N(a, b) = N(b, a) = 10, N(a, c) = N(c, a) = 7, N(b, c) = N(3, c) = 7,

Then, N is an M-metric on X but not a partial metric.

M-metric spaces have been extensively studied by several researchers [4,5,11,24–27]. In this study,
we extend the M-metric spaces to quasi M-metric spaces, and prove the related fixed point results along
with the examples and applications. We shall use the following notations:

Notation 2.2. [3]

(1) zµ,ω := min{ζ(µ, µ), ζ(ω,ω)}.
(2) Rµ,ω := max{ζ(µ, µ), ζ(ω,ω)}.

Definition 2.4. Let X be a nonempty set. A quasi M-metric on X is a function ζ : X2 → [0,+∞) such
that for all µ, ω,w ∈ X,

(1) ζ(µ, µ) = ζ(ω,ω) = ζ(µ, ω) = ζ(ω, µ) if and only if µ = ω,
(2) zµ,ω ≤ ζ(µ, ω),
(3)
(
ζ(µ, ω) − zµ,ω

)
≤
(
ζ(µ,w) − zµ,w

)
+
(
ζ(w, ω) − zw,ω

)
.

A pair (X, ζ) is called a quasi M-metric space.

Every M-metric space is a quasi M-metric space, however, the converse is not true in general. We
note that in quasi M-metric space that self-distance is not necessarily zero, and that symmetry is not
necessarily preserved.

Example 2.3. Let X = {a, b, c} and ζ : X × X −→ [0,∞) be defined by

ζ(a, a) = 1, ζ(b, b) = 9, ζ(c, c) = 5, ζ(a, c) = 7 = ζ(c, a),

ζ(b, c) = 8 = ζ(c, b), ζ(a, b) = 10, ζ(b, a) = 11.

It is not difficult to verify that (X, ζ) is a quasi M-metric space. Since ζ(a, b) , ζ(b, a), we see that
(X, ζ) is not an M-metric space.
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Example 2.4. Let X = [0, 1] and ζ : X × X −→ [0,∞) be defined by ζ(µ, ω) = 2µ + ω. Then (X, ζ) is
a quasi M-metric space.

Proof. First suppose that µ = ω, then we have

ζ(µ, µ) = 3µ, ζ(ω,ω) = 3µ, ζ(µ, ω) = 3µ, ζ(ω, µ) = 3µ,

that is,
ζ(µ, µ) = ζ(ω,ω) = ζ(µ, ω) = ζ(ω, µ).

Conversely, assume that ζ(µ, µ) = ζ(ω,ω) = ζ(µ, ω) = ζ(ω, µ). These imply, 3µ = 3ω = 2µ + ω =
2ω + µ, which further implies that µ = ω. Hence the condition (1) of Definition 2.4 is satisfied.

Without loss of generality, we may assume that µ < ω, µ, ω ∈ [0, 1], we have

ζµ,ω = min{ζ(µ, µ), ζ(ω,ω)} = min{3µ, 3ω} = 3µ
≤ 2µ + ω = ζ(µ, ω),

which proves the condition (2) of Definition 2.4.
Let µ, ω,w ∈ [0, 1]. We prove the triangular inequality for the case µ < w < ω. Other cases can be

treated in a similar way.

ζ(µ, ω) − ζµ,ω = 2µ + ω −min{ζ(µ, µ), ζ(ω,ω)}
= 2µ + ω −min{3µ, 3ω}
= 2µ + ω − 3µ
= (2µ + w − 3µ) + (2w + ω − 3w)
= (2µ + w −min{ζ(µ, µ), ζ(w,w)}) + (2w + ω −min{ζ(w,w), ζ(ω,ω)})
= (ζ(µ,w) − ζµ,w) + (ζ(w, ω) − ζw,ω).

□

Similar to the Remark 1.1 in [3], and Proposition 2.4 in [5], it is not difficult to see that the following
holds in a quasi M-metric space:

Proposition 2.1. Let (X, ζ) be a quasi M-metric space, then for µ, ω,w ∈ X, we have

(1) 0 ≤ Rµω + zµω = ζ(µ, µ) + ζ(ω,ω),
(2) 0 ≤ Rµω − zµω = |ζ(µ, µ) − ζ(ω,ω)|,
(3) Rµω − zµω ≤

(
Rµw − zµw

)
+ (Rwω − zwω).

Proposition 2.2. Let (X, ζ) be a quasi M-metric space and K : X2 → [0,+∞) be defined by

K(µ, ω) = ζ(µ, ω) + ζ(ω, µ) − 2zµ,ω

for all µ, ω ∈ X. Then K is a Euclidean metric, and the pair (X,K) is a usual metric space.

Proof. The first two conditions of K being a Euclidean metric follow easily. We establish the triangle
inequality.
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Let µ, ω, z ∈ X, we have

K(µ, ω) = ζ(µ, ω) + ζ(ω, µ) − 2zµ,ω
= (ζ(µ, ω) − zµ,ω) + (ζ(ω, µ) − zµ,ω)
= (ζ(µ, ω) − zµ,ω) + (ζ(ω, µ) − zω,µ)

≤
[ (
ζ(µ,w) − zµ,w

)
+
(
ζ(w, ω) − zw,ω

) ]
+
[ (
ζ(ω,w) − zω,w

)
+
(
ζ(w, µ) − zw,µ

) ]
≤
[ (
ζ(µ,w) − zµ,w

)
+
(
ζ(w, µ) − zw,µ

) ]
+
[ (
ζ(w, ω) − zw,ω

)
+
(
ζ(w, ω) − zw,ω

) ]
=
[
ζ(µ,w) +

(
ζ(w, µ − 2zµ,w

)
)
]
+
[
ζ(w, ω) +

(
ζ(w, ω) − 2zw,ω

) ]
= K(µ,w) + K(w, ω).

□

The proof of the following proposition is easy.

Proposition 2.3. Let (X, ζ) be a quasi M-metric space and H : X2 → [0,+∞) be defined by

h(µ, ω) =
ζ(µ, ω) + ζ(ω, µ)

2

for all µ, ω ∈ X. Then H is an M-metric, and the pair (X,H) is an M-metric space.

3. Topology of quasi M-metric space

Definition 3.1. Let (X, ζ) be a quasi M-metric space. Let g ∈ X and ϵ > 0. Then:

(1) The forward open ball B+ centered at g is defined as

B+(g, ϵ) = {h ∈ X|ζ(g, h) − zg,h < ϵ}.

(2) The backward open ball B− centered at g is defined as

B−(g, ϵ) = {h ∈ X|ζ(h, g) − zh,g < ϵ}.

Remark 3.1. A topological space X is called T0 if there exists an open set that contains one of any
two distinct points x and y but not the other. In Definition 3.1, we have defined forward open ball
and backward open ball in (X, ζ). Both of these open balls give rise to two types of T0 topologies
on X, which we call forward topology τ+ and backward topology τ−. More precisely, the collection
of forward open balls {B+(g, ϵ) : g ∈ X, ϵ > 0} and backward open balls {B−(g, ϵ) : g ∈ X, ϵ > 0}
constitute the bases for the forward topology τ+ and backward topology τ−, respectively.

In this paper, we shall work with forward topology τ+.

Remark 3.2. We observe that the collection of forward open balls {B+(g, 1
n ) : g ∈ X} constitutes a

countable neighbourhood base for each point g ∈ X. Therefore, (X, ζ) is a first countable space under
forward topology τ+.

Now we give some topological definitions in (X, ζ).
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Definition 3.2. (Compactness) Let (X, ζ) be a quasi M-metric space. The space X is called compact
with respect to forward topology τ+ generated by the quasi M-metric ζ if each of its open covers has a
finite subcover.

Definition 3.3. (Connectedness) Let (X, ζ) be a quasi M-metric space. The spaceX is called connected
with respect to forward topology τ+ generated by the quasi M-metric ζ if it cannot be divided into two
disjoint non-empty open sets.

The different sorts of countability and separability axioms, as well as many other characteristics
like sequential compactness and path-connectedness for the space (X, ζ), are fascinating to investigate
in depth in future.

Definition 3.4. Let (X, ζ) be a quasi M-metric space, and {θn} be a sequence in X.

(1) Then, the sequence {θn} converges to a point g ∈ X from the left if and only if

lim
n→+∞

(
ζ(θn, g) − zθn,g

)
= 0.

(2) Then, the sequence {θn} converges to a point g ∈ X from the right if and only if

lim
n→+∞

(
ζ(g, θn) − zg,θn

)
= 0.

(3) The sequence {θn} converges to a point g ∈ X if and only if it converges to g from the left, and
from the right.

Definition 3.5. Let (X, ζ) be a quasi M-metric space, and {θn} be a sequence in X. We say that:

(1) The sequence {θn} is left ζ-Cauchy if and only if

lim
n,m→+∞

(
ζ(θn, θm) − zθn,θm

)
and

lim
n,m→+∞

(
Rθn,θm − zθn,θm

)
exist finitely.

(2) The sequence {θn} is right ζ-Cauchy if and only if

lim
n,m→+∞

(
ζ(θm, θn) − zθm,θn

)
and

lim
n,m→+∞

(
Rθm,θn − zθm,θn

)
exist finitely.

(3) The sequence {θn} is ζ-Cauchy if and only if it is both left ζ-Cauchy and right ζ-Cauchy.

Note that the definitions of left ζ-Cauchy and right ζ-Cauchy are essentially same, however, for the
sake of interest and completeness, we have included both the definitions.

Definition 3.6. Let (X, ζ) be a quasi M-metric space, and {θn} be a ζ-Cauchy in X. We say that:
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(1) (X, ζ) is left ζ-complete, with respect to forward topology τ+, if every left ζ-Cauchy sequence
converges to a point g ∈ X such that

lim
n→+∞

(
ζ(θn, g) − zθn,g

)
= 0

and
lim

n→+∞

(
Rθn,g − zθn,g

)
= 0.

(2) (X, ζ) is right ζ-complete, with respect to forward topology τ+, if every right ζ-Cauchy sequence
converges to a point g ∈ X such that

lim
n→+∞

(
ζ(g, θn) − zg,θn

)
= 0

and
lim

n,m→+∞

(
Rg,θn − zg,θn

)
= 0.

(3) (X, ζ) is ζ-complete, with respect to forward topology τ+, if and only if (X, ζ) is both left ζ-
complete and right ζ-complete.

Definition 3.7. Let (X, ζ) be a quasi M-metric space, and a map F : X −→ X. We say that:

(1) F is left ζ-continuous if and only for each sequence {θn} in X converging to g ∈ X from the left
implies that {Fθn} converges to Fg from the left, that is, we have

lim
n→+∞

(
ζ(θn, g) − zθn,g

)
= 0 =⇒ lim

n→+∞

(
ζ(Fθn, Fg) − zFθn,Fg

)
= 0.

(2) F is right ζ-continuous if and only for each sequence {θn} in X converging to g ∈ X from the right
implies that {Fθn} converges to Fg from the right, that is, we have

lim
n→+∞

(
ζ(g, θn) − zg,θn

)
= 0 =⇒ lim

n→+∞

(
ζ(Fg, Fθn) − zFg,Fθn

)
= 0.

(3) F is ζ-continuous if it is both left and right ζ-continuous.

Analogous to Lemma 2.1 in [3], we have the following result.

Proposition 3.1. Let (X, ζ) be a quasi M-metric space, and (X,K) be the corresponding usual metric
space given in Proposition 1.2. Let {θn} be a sequence in X, then we have:

(1) The sequence {θn} is Cauchy in the usual metric space (X,K) if and only if it is ζ-Cauchy in (X, ζ).
(2) The space (X,K) is complete if and only if (X, ζ) is ζ-complete.

Proof. The proof easily follows from the definition of K. □

The proof of the following result is similar to Lemma 3.5 in [5].

Lemma 3.1. Let (X, ζ) be a quasi M-metric space where ζ is continuous in the usual Euclidean metric.
Suppose the self mapping F : X −→ X satisfies

ζ(Fg, Fh) ≤ kζ(g, h)
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for some k ∈ [0, 1). Define a sequence {θn} ∈ X by θn = Fθn−1. If {θn} converges to a point s ∈ X from
the left (or right), then {Fθn} converges to Fs ∈ X from the left (or right), in the sense of Definition 2.2.
That is,

lim
n→+∞

ζ(θn, s) − zθn,s = 0,

implies
lim

n→+∞

(
ζ(Fθn, Fs) − zFθn,Fs

)
= 0.

4. Main result

The following result is analogous to the classical Banach contraction principle.

Theorem 4.1. Let (X, ζ) be a complete quasi M-metric space. Suppose that F : X → X is a self map
satisfying

ζ(Fg, Fh) ≤ kζ(g, h), (4.1)

for all g, h ∈ X, where k ∈ (0, 1). Then F has a unique fixed point in X.

Proof. Fix θ0 ∈ X and define a sequence {θn} in X inductively by taking θn = Fθn−1, n ≥ 0.

ζ (θn, θn+1) = ζ (Fθn−1, Fθn)

≤ kζ (θn−1, θn)

= kζ (Fθn−2, Fθn−1)

≤ k2ζ (θn−2, θn−1)
...

≤ knζ (θ0, θ1) .

(4.2)

That is,
ζ (θn, θn+1) ≤ knζ (θ0, θ1) . (4.3)

Similarly, we have
ζ (θn+1, θn) ≤ knζ (θ1, θ0) . (4.4)

Now, consider n,m ∈ N where n > m. Then using triangular inequality repeatedly, we have

ζ(θn, θm) − zθn,θm ≤

n−1∑
i=m

(
ζ(θi, θi+1) − zθi,θi+1

)
≤

n−1∑
i=m

ζ(θi, θi+1)

≤

n−1∑
i=m

kiζ(θ0, θ1) ≤
kn − km

k − 1
ζ(θ0, θ1).

(4.5)

Since k ∈ [0, 1), letting n,m→ ∞, we conclude that

lim
n,m→+∞

(
ζ(θn, θm) − zθn,θm

)
= 0. (4.6)

Similarly, using (4.4), we can establish that

lim
n,m→+∞

(
ζ(θm, θn) − zθm,θn

)
= 0. (4.7)

AIMS Mathematics Volume 8, Issue 5, 10228–10248.



10236

For n > m, we have
ζ(θn, θn) = ζ(Fθn−1, Fθn−1)

≤ kζ(θn−1, θn−1)
...

≤ kn−mζ(θm, θm).

(4.8)

The inequality (4.8) implies that

Rθn,θm = max{ζ(θn, θn), ζ(θm, θm)} = ζ(θn, θn).

Hence, we get
Rθn,θm − zθn,θm ≤ Rθn,θm

= ζ(θn, θn)
= ζ(Fθn−1, Fθn−1)
≤ kζ(θn−1, θn−1)
...

≤ knζ(θ0, θ0).

(4.9)

Letting n→ ∞, we deduce that
lim

n,m→+∞

(
Rθn,θm − zθn,θm

)
= 0. (4.10)

Similarly, we can establish that

lim
n,m→+∞

(
Rθm,θn − zθm,θn

)
= 0. (4.11)

By (4.6), (4.8), (4.10) and (4.11), we conclude that {θn} is ζ-Cauchy in X. Since X is ζ-complete,
{θn} converges to a point θ ∈ X so that we have

lim
n→+∞

ζ(θn, θ) − zθn,θ = 0 (4.12)

and
lim

n→+∞
ζ(θ, θn) − zθ,θn = 0. (4.13)

Next, we prove that Fθ = θ.
By the Lemma 3.1, F is ζ-continuous. The Definition 3.7 and Eq (4.12) imply that

lim
n→+∞

(
ζ(θn−1, Fθ) − zθn−1,Fθ

)
= lim

n→+∞

(
ζ(Fθn, Fθ) − zFθn,Fθ

)
= 0. (4.14)

By the triangular inequality, we have

ζ(θ, Fθ) − zθ,Fθ ≤
(
ζ(θ, θn) − zθ,θn

)
+
(
ζ(θn, Fθ) − zθn,Fθ

)
. (4.15)

Taking the limit in the above inequality, and using (4.13) and (4.14), we obtain

ζ(θ, Fθ) − zθ,Fθ ≤ 0. (4.16)
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By the definition of quasi M-metric space, we have

zθ,Fθ − ζ(θ, Fθ) ≤ 0. (4.17)

The inequalities (4.16) and (4.17) imply

ζ(θ, Fθ) = zθ,Fθ. (4.18)

Now, by condition (4.1), we have ζ(Fθ, Fθ) ≤ kζ(θ, θ) < ζ(θ, θ). This implies

Rθ,Fθ = max{ζ(θ, θ), ζ(Fθ, Fθ)} = ζ(θ, θ) (4.19)

and
zθ,Fθ = min{ζ(θ, θ), ζ(Fθ, Fθ)} = ζ(Fθ, Fθ). (4.20)

By (4.18) and (4.20), we obtain
ζ(θ, Fθ) = ζ(Fθ, Fθ). (4.21)

Now,
ζ(θn, θn) = ζ(Fθn−1, Fθn−1)

≤ kζ(θn−1, θn−1)
...

≤ knζ(θ0, θ0).

(4.22)

This implies
lim

n→+∞
ζ(θn, θn) = 0. (4.23)

By Eq (4.23), we get
lim

n→+∞
zθn,θ = lim

n→+∞
min{ζ(θn, θn), ζ(θ, θ)}

= min{0, ζ(θ, θ)}
= 0.

(4.24)

By Proposition 2.1, we have

ζ(θn, θn) + ζ(θ, θ) = Rθn,θ + zθn,θ

or
ζ(θ, θ) = Rθn,θ + zθn,θ − ζ(θn, θn)

= (Rθn,θ − zθn,θ) + 2zθn,θ − ζ(θn, θn).
(4.25)

Since (X, ζ) is ζ-Complete, by Definition 3.6,

lim
n→+∞

(Rθn,θ − zθn,θ) = 0. (4.26)

Using (4.23), (4.24) and (4.26) in (4.25), we obtain

ζ(θ, θ) = 0. (4.27)
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By Eqs (4.18), (4.19) and (4.27), we have

ζ(θ, Fθ) = zθ,Fθ ≤ Rθ,Fθ = 0. (4.28)

Since ζ(θ, Fθ) ≥ 0, this implies
ζ(θ, Fθ) = 0. (4.29)

Similarly, we may prove
ζ(Fθ, θ) = 0.

The Eqs (4.21), (4.27) and (4.29) imply

ζ(θ, θ) = ζ(Fθ, Fθ) = ζ(θ, Fθ) = ζ(θ, Fθ) = 0, (4.30)

which further implies θ = Fθ so that θ is a fixed point of F.
Next, we show the uniqueness of the fixed point. Suppose that F has two distinct fixed points θ

and δ, such that Fθ = θ and Fδ = δ. Thus, ζ(θ, δ) = ζ(Fθ, Fδ) ≤ kζ(θ, δ) < ζ(θ, δ). This implies,
ζ(θ, δ) = 0. Also, ζ(θ, θ) = ζ(Fθ, Fθ) ≤ kζ(θ, θ) < ζ(θ, θ), which implies ζ(θ, θ) = 0. Similarly,
ζ(δ, δ) = 0. Thus we have

ζ(θ, δ) = ζ(θ, θ) = ζ(δ, δ) = 0,

which by the Definition 2.3 implies δ = θ. □

Analogous to Shukla fixed point theorem [28], we have the following fixed point theorem in quasi
M-metric space.

Theorem 4.2. Let (X, ζ) be a complete quasi M-metric space with r > 2 and F : X → X be a self
ζ-continuous mapping on X satisfying

ζ(Fg, Fh) ≤ k
[
ζ(g, Fg) + ζ(h, Fh)

]
(4.31)

for all g, h ∈ X, where k ∈ [0, 1
r ]. Then F has a unique fixed point θ in X such that ζ(θ, θ) = 0.

Proof. Let θ0 ∈ X and define a sequence {θn} in X inductively by taking θn = Fθn−1, n ≥ 0. Set
dn = ζ(θn, θn+1) and Dn = ζ(θn+1, θn). Then we have

dn = ζ (θn, θn+1) = ζ (Fθn−1, Fθn)

≤ k
[
ζ(θn−1, Fθn−1) + ζ(θn, Fθn)

]
= k
[
ζ(θn−1, θn) + ζ(θn, θn+1)

]
≤ k
[
dn−1 + dn)

]
,

(4.32)

which implies
dn ≤ βdn−1, (4.33)

where β = k
1−k < 1 as k ∈ [0, 1

r ], r > 2. Thus we have

dn ≤ βdn−1 ≤ β
2dn−2 ≤ ... ≤ β

nζ (θ0, θ1) . (4.34)

Similarly we have
Dn ≤ β

nζ (θ1, θ0) . (4.35)
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Now, consider n,m ∈ N where n > m. Then using the triangular inequality repeatedly, we have

ζ(θn, θm) − zθn,θm ≤

n−1∑
i=m

(
ζ(θi, θi+1) − zθi,θi+1

)
≤

n−1∑
i=m

ζ(θi, θi+1)

=

n−1∑
i=m

di ≤

n−1∑
i=m

βiζ(θ0, g1) ≤
βn − βm

β − 1
ζ(θ0, g1).

(4.36)

Since β ∈ [0, 1), letting n,m→ ∞, we conclude that

lim
n,m→+∞

(
ζ(θn, θm) − zθn,θm

)
= 0. (4.37)

Similarly using (4.35), we can prove that

lim
n,m→+∞

(
ζ(θm, θn) − zθm,θn

)
= 0. (4.38)

Without loss of generality, we may assume that

Rθn,θm = max{ζ(θn, θn), ζ(θm, θm)} = ζ(θn, θn).

Hence, we get
Rθn,θm − zθn,θm ≤ Rθn,θm = ζ(θn, θn) = ζ(Fθn−1, Fθn−1)

≤ k
[
ζ(θn−1, Fθn−1) + ζ(θn−1, Fθn−1)

]
≤ k
[
ζ(θn−1, θn) + ζ(θn−1, θn)

]
= 2k
[
ζ(θn−1, θn)

]
= 2kdn−1.

(4.39)

By the inequality (4.34), limn→+∞ dn = 0.
Letting n→ ∞ in the above inequality, we deduce that

lim
n,m→+∞

(
Rθn,θm − zθn,θm

)
= 0. (4.40)

Similarly,we can establish that

lim
n,m→+∞

(
Rθm,θn − zθm,θn

)
= 0. (4.41)

By (4.37), (4.38), (4.40) and (4.41), we conclude that {θn} is ζ-Cauchy in X. Since X is ζ-complete,
{θn} converges to a point θ ∈ X so that we have

lim
n→+∞

ζ(θn, θ) − zθn,θ = 0 (4.42)

and
lim

n→+∞
ζ(θ, θn) − zθ,θn = 0. (4.43)

Now, we prove that θ is a fixed point of F.
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Since F is ζ-continuous, the Definition 3.7 and the Eq (4.42) implies

lim
n→+∞

(
ζ(θn−1, Fθ) − zθn−1,Fθ

)
= lim

n→+∞

(
ζ(Fθn, Fθ) − zFθn,Fθ

)
= 0. (4.44)

By the triangular inequality, we have

ζ(θ, Fθ) − zθ,Fθ ≤
(
ζ(θ, θn) − zθ,θn

)
+
(
ζ(θn, Fθ) − zθn,Fθ

)
. (4.45)

Taking the limit in the above inequality, and using (4.43) and (4.44), we obtain

ζ(θ, Fθ) − zθ,Fθ ≤ 0. (4.46)

By the definition of quasi M-metric space, we have

zθ,Fθ − ζ(θ, Fθ) ≤ 0. (4.47)

The inequalities (4.46) and (4.47) imply

ζ(θ, Fθ) = zθ,Fθ. (4.48)

Now,
ζ(θn, θn) = ζ(Fθn−1, Fθn−1)

≤ k
[
ζ(θn−1, Fθn−1) + ζ(θn−1, Fθn−1)

]
≤ k
[
ζ(θn−1, θn) + ζ(θn−1, θn)

]
= 2k
[
ζ(θn−1, θn)

]
= 2kdn−1.

(4.49)

This implies
lim

n→+∞
ζ(θn, θn) = 0. (4.50)

By Eq (4.50), we get
lim

n→+∞
zθn,θ = lim

n→+∞
min{ζ(θn, θn), ζ(θ, θ)}

= min{0, ζ(θ, θ)}
= 0.

(4.51)

By Proposition 2.1, we have

ζ(θn, θn) + ζ(θ, θ) = Rθn,θ + zθn,θ

or
ζ(θ, θ) = Rθn,θ + zθn,θ − ζ(θn, θn)

= (Rθn,θ − zθn,θ) + 2zθn,θ − ζ(θn, θn).
(4.52)

Since (X, ζ) is ζ-Complete, by Definition 3.6,

lim
n→+∞

(Rθn,θ − zθn,θ) = 0. (4.53)
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Using (4.50), (4.51) and (4.53) in (4.52), we obtain

ζ(θ, θ) = 0. (4.54)

By Eqs (4.48) and (4.54), we have

ζ(θ, Fθ) = zθ,Fθ
= min{ζ(θ, θ), ζ(Fθ, Fθ)}
= min{0, ζ(Fθ, Fθ)}
= 0.

(4.55)

Similarly, we may prove
ζ(Fθ, θ) = 0.

Using (3.55), we obtain
ζ(Fθ, Fθ) ≤ k

[
ζ(θ, Fθ) + ζ(θ, Fθ)

]
≤ 2k
[
ζ(θ, Fθ)

]
= 0.

(4.56)

This implies
ζ(Fθ, Fθ) = 0. (4.57)

Therefore, by Eqs (4.54), (4.55) and (4.57), we obtain

ζ(θ, θ) = ζ(θ, Fθ) = ζ(Fθ, θ) = ζ(Fθ, Fθ) = 0,

which implies that Fθ = θ.
Finally, we establish the uniqueness of the fixed point. Suppose that F has two distinct fixed points θ

and δ, that Fθ = θ and Fδ = δ. We have

ζ(θ, δ) = ζ(Fθ, Fδ) ≤ k
[
ζ(θ, Fθ) + ζ(δ, Fδ)

]
= k
[
ζ(θ, θ) + ζ(δ, δ)

]
= 0,

which implies that ζ(θ, δ) = 0. Since θ and δ are fixed points, by Eq (4.56), we have ζ(θ, θ) = 0 and
ζ(δ, δ) = 0. Therefore,

ζ(θ, δ) = ζ(θ, θ) = ζ(δ, δ) = 0,

which implies that θ = δ. □

The authors are intending to prove a Banach type result for Riech contraction mapping along with
the applications in their future work.

5. Examples and applications

In this section, we illustrate our results with examples and applications. In Example 2.4, we showed
that (X, ζ) with X = [0, 1] and ζ(µ, ω) = 2µ + ω is a quasi M-metric space. We have the following
result.

Example 5.1. Let X = [0, 1] and ζ(µ, ω) = 2µ + ω, then (X, ζ) is a complete quasi M-metric space.
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Proof. Without loss of generality, assume that µ < ω, µ, ω ∈ X. Consider the metric K(µ, ω) given in
Proposition 2.2, we have

K(µ, ω) = ζ(µ, ω) + ζ(ω, µ) − 2zµ,ω
= 2µ + ω + 2ω + µ − 2 min{ζ(µ, µ), ζ(ω,ω)}
= 2µ + ω + 2ω + µ − 2 min{3µ, 3ω)}
= 2µ + ω + 2ω + µ − 6µ
= 3(ω − µ)
= 3|µ − ω|.

Since X is complete with respect to the metric K(µ, ω) = 3|µ−ω|, by Proposition 3.1 we conclude that
(X, ζ) is a ζ-complete quasi M-metric space. □

Example 5.2. Let (X, ζ) be a complete quasi M-metric space with X = [2, 3] and ζ(µ, ω) = 2µ + ω.
Define a self-map F : [2, 3] −→ [2, 3] defined by F(µ) = 3 − µ. Then F has a unique fixed point given
by µ = 3

2 .

Proof. Let X = [2, 3], ζ(µ, ω) = 2µ + ω and F(µ) = 3 − µ. Then, for all µ, ω ∈ [2, 3], we have
µ ≥ 2, ω ≥ 2. This implies that 22 ≤ 7µ + 4ω, which further implies

21 ≤ 7µ + 4ω.

The above inequality can be further rearranged as

2(3 − µ) + (3 − ω) ≤
1
3

[2µ + (3 − µ) + 2ω + (3 − ω)],

ζ(Fµ, Fω) ≤
1
3

[ζ(µ, Fµ) + ζ(ω, Fω)].

Since F satisfies the conditions of Theorem 4.2 with k = 1
3 , we conclude that F has a unique

fixed point. □

Example 5.3. Consider the space of continuous real valued functions X = C[0, 1], and ζ(r(µ), h(µ)) :
X × X −→ [0,∞) be defined as

ζ(r(µ), h(µ)) = sup
µ∈[0,1]

|r(µ) − h(µ)| + sup
µ∈[0,1]

|r(µ)|.

It is not difficult to see that (X, ζ) is a complete quasi M-metric space.

Proof. We prove the triangular inequality of Definition 2.4. Other two conditions follow easily.
Let r(µ), h(µ),w(µ) ∈ C[0, 1], and assume that sup

µ∈[0,1]
|r(µ)| ≤ sup

µ∈[0,1]
|w(µ)| ≤ sup

µ∈[0,1]
|h(µ)|. The other

cases may be treated similarly.
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We have

ζ(r(µ), h(µ)) − zr(µ),h(µ)

= sup
µ∈[0,1]

|r(µ) − h(µ)| + sup
µ∈[0,1]

|r(µ)| − zr(µ),h(µ)

= sup
µ∈[0,1]

|r(µ) − h(µ)| + sup
µ∈[0,1]

|r(µ)|

−min{ sup
µ∈[0,1]

|r(µ) − r(µ)| + sup
µ∈[0,1]

|r(µ)|, sup
µ∈[0,1]

|h(µ) − h(µ)| + sup
µ∈[0,1]

|h(µ)|}

= sup
µ∈[0,1]

|r(µ) − h(µ)| + sup
µ∈[0,1]

|r(µ)| −min{ sup
µ∈[0,1]

|r(µ)|, sup
µ∈[0,1]

|h(µ)|}

= sup
µ∈[0,1]

|r(µ) − h(µ)| + sup
µ∈[0,1]

|r(µ)| − sup
µ∈[0,1]

|r(µ)|

= sup
µ∈[0,1]

|r(µ) − h(µ)|

= sup
µ∈[0,1]

|r(µ) − w(µ) + w(µ) − h(µ)|

≤ sup
µ∈[0,1]

|r(µ) − w(µ)| + sup
µ∈[0,1]

|w(µ) − h(µ)|

≤ sup
µ∈[0,1]

|r(µ) − w(µ)| + sup
µ∈[0,1]

|r(µ)| − sup
µ∈[0,1]

|r(µ)| + sup
µ∈[0,1]

|w(µ) − h(µ)|

+ sup
µ∈[0,1]

|w(µ)| − sup
µ∈[0,1]

|w(µ)|

≤ sup
µ∈[0,1]

|r(µ) − w(µ)| + sup
µ∈[0,1]

|r(µ)| − sup
µ∈[0,1]

|r(µ)|

+ sup
µ∈[0,1]

|w(µ) − h(µ)| + sup
µ∈[0,1]

|w(µ)| − sup
µ∈[0,1]

|w(µ)|

≤ζ(r(µ),w(µ)) − sup
µ∈[0,1]

|r(µ)| + ζ(w(µ), h(µ)) − sup
µ∈[0,1]

|w(µ)|

≤ζ(r(µ),w(µ)) −min{ sup
µ∈[0,1]

|r(µ)|, sup
µ∈[0,1]

|w(µ)|}

+ ζ(w(µ), h(µ)) −min{ sup
µ∈[0,1]

|w(µ)|, sup
µ∈[0,1]

|h(µ)|}

≤ζ(r(µ),w(µ)) − zr(µ),w(µ) + ζ(w(µ), h(µ)) − zw(µ),h(µ).

(5.1)

Using Proposition 2.2, we can easily prove that (X, ζ) is a ζ-complete quasi M-metric space. □

Theorem 5.1. Let X = C[0, 1] be the complete quasi M-metric space given in Example 5.3. Consider
the following integral equation with parameter λ:

r(µ) = λ
∫ 1

0
l(µ, ω)r(ω)dω, (5.2)

where l(u, ω) : [0, 1] × [0, 1] −→ R is a given continuous function with |l(µ, ω)| ≤ c for all (µ, ω) ∈
[0, 1] × [0, 1]. If c|λ| < 1, then the integral equation (4.2) has a unique solution.
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Proof. Let F : C[0, 1] −→ C[0, 1] be defined by F(r(µ)) = λ
∫ 1

0
l(µ, ω)r(ω)dω, then

ζ(Fr(µ), Fh(µ)) = sup
µ∈[0,1]

|Fr(µ) − Fh(µ)| + sup
µ∈[0,1]

|Fr(µ)|

= sup
µ∈[0,1]

|λ

∫ 1

0
l(µ, ω)r(ω)dω − λ

∫ 1

0
l(µ, ω)h(ω)dω|

+ sup
µ∈[0,1]

|λ

∫ 1

0
l(µ, ω)r(ω)dω|

≤ sup
µ∈[0,1]

|

∫ 1

0
|λ||l(µ, ω)||r(ω) − h(ω)|dω + sup

µ∈[0,1]

∫ 1

0
|λ||l(µ, ω)||r(ω)|dω

≤c|λ|( sup
µ∈[0,1]

∫ 1

0
|r(ω) − h(ω)|dω + sup

µ∈[0,1]

∫ 1

0
|r(ω)|dω)

≤c|λ|( sup
µ∈[0,1]

∫ 1

0
|r(ω) − h(ω)|dω + sup

µ∈[0,1]

∫ 1

0
|r(ω)|dω)

≤c|λ|( sup
µ∈[0,1]

|r(µ) − h(µ)|
∫ 1

0
dω + sup

µ∈[0,1]
|r(µ)|

∫ 1

0
dω)

≤c|λ|( sup
µ∈[0,1]

|r(µ) − h(µ)| + sup
µ∈[0,1]

|r(µ)|)

=c|λ|ζ(r(µ), h(µ)).

(5.3)

If c|λ| < 1, we see that F is a contraction. Therefore, by Theorem 4.1, there is a unique function
r ∈ C[0, 1] such that Fr = r. This implies that the integral equation (5.2) has a unique solution. □

Example 5.4. Consider the set X = R of all ordered n-tuples of real numbers. Let x =
(x1, x2, ..., xn), y = (y1, y2, ..., yn), and ζ(x, y) : X × X −→ [0,∞) be defined as

ζ(x, y) = max
1≤i≤n
|xi − yi| +max

1≤i≤n
|yi|.

It is easy to verify that (X, ζ) is a complete quasi M-metric space.

Theorem 5.2. Let X = R be the complete quasi M-metric space given in Example 5.4. Let x =
(x1, x2, ..., xn), and consider the following linear system of equations in equivalent matrix form:

Cx = r, (5.4)

where C = (ci j) is a fixed n × n real matrix, and r = (r1, r2, ..., rn) ∈ X a fixed vector. If

λ = max
1≤i≤n

 n∑
j=1, j,i

∣∣∣ci j

∣∣∣ + |1 + cii|

 < 1, (5.5)

then the matrix system given by (5.4) has a unique solution.

Proof. The matrix system (5.4) can be equivalently written in the form (C + In)x − r = x, where In is
the n × n identity matrix.
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Define a map T : X −→ X by T x = (C + In)x − r. We shall prove that T has a unique fixed point,
thereby establishing the unique solution of the matrix system (5.4).

We define
C̃ = C + In =

(
c̃i j

)
, i, j = 1, . . . , n,

with c̃i j =

{
ci j, j , i,
1 + cii, j = i

. Hence,

max
1≤i≤n

n∑
j=1

∣∣∣c̃i j

∣∣∣ = max
1≤i≤n

 n∑
j=1, j,i

∣∣∣ci j

∣∣∣ + |1 + cii|

 = λ < 1.

Let y = (y1, y2, ..., yn) ∈ X. We can write T x and Ty in the component form as

T x =
n∑

j=1

c̃i jx j − r j, Ty =
n∑

j=1

c̃i jy j − r j.

Using the definition quasi M-metric on X defined in the Example 5.4, we obtain

ζ(T x,Ty) = max
1≤i≤n
|

n∑
j=1

c̃i jx j − r j −

 n∑
j=1

c̃i jy j − r j

 | +max
1≤i≤n
|

n∑
j=1

c̃i jy j − r j|

= max
1≤i≤n
|

n∑
j=1

c̃i j(x j − y j)| +max
1≤i≤n
|

n∑
j=1

c̃i jy j − r j|

≤ max
1≤i≤n

n∑
j=1

|c̃i j|max
1≤k≤n
|(xk − yk)| +max

1≤i≤n

n∑
j=1

|c̃i j|max
1≤k≤n
|yk − rk|

≤ max
1≤i≤n

n∑
j=1

|c̃i j|max
1≤k≤n
|(xk − yk)| +max

1≤i≤n

n∑
j=1

|c̃i j(|max
1≤k≤n
|yk| + max

1≤k≤n
|rk|)

≤ max
1≤i≤n

n∑
j=1

|c̃i j|max
1≤k≤n
|(xk − yk)| +max

1≤i≤n

n∑
j=1

|c̃i j|max
1≤k≤n
|yk|

≤ max
1≤i≤n

n∑
j=1

|c̃i j|

(
max
1≤k≤n
|(xk − yk)| + max

1≤k≤n
|yk|

)
= λζ(x, y),

(5.6)

where λ = max1≤i≤n
∑n

j=1 |c̃i j| < 1. Therefore, all the conditions of Theorem 4.1 are satisfied. This
implies that T has a unique fixed point. □

6. Conclusions and open problems

We developed the idea of quasi M-metric space and established fixed point results of the Shukla
and Banach types. Many well-known theorems in the literature related to partial metric spaces and M-
metric spaces are generalized by our results.
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It is an problem to establish the Banach type fixed point results in quasi M-metric space (X, ζ)
for other types of contraction mappings like Ciric contraction mapping, Riech contraction mapping,
Hardy-Roger contraction mapping and Caristi contraction mapping. The applications of the established
fixed point results are always of significant interest. As a future work, our results can be applied
to shape-memory alloys [12] and questions about the existence and uniqueness of Hamilton-Jacobi
equations [13]. Future studies in this direction is highly suggested.
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11. N. Y. Özgür, N. Mlaiki, N. Tas, N. Souayah, A new generalization of metric spaces: rectangular
M-metric spaces, Math. Sci., 12 (2018), 223–233. https://doi.org/10.1007/s40096-018-0262-4

AIMS Mathematics Volume 8, Issue 5, 10228–10248.

http://dx.doi.org/https://doi.org/10.1111/j.1749-6632.1994.tb44144.x
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2014-18
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2014-18
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-210
http://dx.doi.org/https://doi.org/10.1016/j.jmaa.2005.03.087
http://dx.doi.org/https://doi.org/10.3390/axioms8010013
http://dx.doi.org/https://doi.org/10.1007/s40096-018-0262-4


10247

12. A. Mielke, T. Roubcek, A rate-independent model for inelastic behavior of shape-memory alloys,
Multiscale Model. Simul., 1 (2003), 571–597. https://doi.org/10.1137/S1540345903422860

13. A. C. G. Mennucci, On asymmetric distances, Anal. Geom. Metr. Space., 1 (2013), 200–231.

14. W. L. Woon, S. Madnick, Asymmetric information distances for automated taxonomy construction,
Knowl. Inform. Syst., 21 (2009), 91–111. https://doi.org/10.1007/s10115-009-0203-5

15. M. O. Rieger, J. Zimmer, Young measure flow as a model for damage, Z. Angew. Math. Phys., 60
(2009), 1–32. https://doi.org/10.1007/s00033-008-7016-3

16. S. J. O’Neill, Partial metrics, valuations and domain theory, Ann. New York Acad. Sci., 806 (1996),
304–315. https://doi.org/10.1111/j.1749-6632.1996.tb49177.x

17. M. A. Bukatin, J. S. Scott, Towards computing distances between programs via Scott domains,
In: Logical foundations of computer sicence, Berlin, Heidelberg: Springer, 1997, 33–43.
https://doi.org/10.1007/3-540-63045-7 4

18. M. A. Bukatin, S. Y. Shorina, Partial metrics and co-continuous valuations, In: Foundations of
software science and computation structures, 1998, 125–139. https://doi.org/10.1007/BFb0053546

19. M. H. Escardo, PCF extended with real numbers, Theor. Comput. Sci., 162 (1996), 79–115.
https://doi.org/10.1016/0304-3975(95)00250-2

20. M. P. Schellekens, A characterization of partial metrizability: domains are quantifiable, Theor.
Comput. Sci., 305 (2003), 409–432. https://doi.org/10.1016/S0304-3975(02)00705-3

21. M. P. Schellekens, The correpondence between partial metrics and semivaluations, Theor. Comput.
Sci., 315 (2004), 135–149. https://doi.org/10.1016/j.tcs.2003.11.016

22. P. Waszkierwicz, Quantitative continuous domains, Appl. Categor. Struct., 11 (2003), 41–67.
https://doi.org/10.1023/A:1023012924892

23. P. Waszkierwicz, The local triangle axiom in topology and domain theory, Appl. Gen. Topol., 4
(2003), 47–70. https://doi.org/10.4995/agt.2003.2009

24. M. Asadi, Fixed point theorems for Meir-Keeler type mappings in M-metric space with
applications, Fixed Point Theory Appl., 2015 (2015), 1–10. https://doi.org/10.1186/s13663-015-
0460-9

25. M. Asadi, E. Karapınar, P. Salimi, New extension of p-metric spaces with some fixed-point
results on M-metric spaces, J. Inequal. Appl., 2014 (2014), 1–9. https://doi.org/10.1186/1029-
242X-2014-18

26. H. Monfared, M. Asadi, M. Azhini, Coupled fixed point theorems for generalized contractions in
ordered M-metric spaces, Results Fixed Point Theory Appl., 341 (2018), 1241–1252.

27. H. Monfared, M. Azhini, M. Asadi, Fixed point results on M-metric spaces, J. Math. Anal., 7
(2016), 85–101.

28. S. Shukla, Partial b-metric spaces and fixed point theorems, Mediterr. J. Math., 11 (2014), 703–711.
https://doi.org/10.1007/s00009-013-0327-4

29. W. Shatanawi, On w-compatible mappings and common coupled coincidence point in cone metric
spaces, Appl. Math. Lett., 25 (2012), 925–931, https://doi.org/10.1016/j.aml.2011.10.037

AIMS Mathematics Volume 8, Issue 5, 10228–10248.

http://dx.doi.org/https://doi.org/10.1137/S1540345903422860
http://dx.doi.org/https://doi.org/10.1007/s10115-009-0203-5
http://dx.doi.org/https://doi.org/10.1007/s00033-008-7016-3
http://dx.doi.org/https://doi.org/10.1111/j.1749-6632.1996.tb49177.x
http://dx.doi.org/https://doi.org/10.1007/3-540-63045-7_4
http://dx.doi.org/https://doi.org/10.1007/BFb0053546
http://dx.doi.org/https://doi.org/10.1016/0304-3975(95)00250-2
http://dx.doi.org/https://doi.org/10.1016/S0304-3975(02)00705-3
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2003.11.016
http://dx.doi.org/https://doi.org/10.1023/A:1023012924892
http://dx.doi.org/https://doi.org/10.4995/agt.2003.2009
http://dx.doi.org/https://doi.org/10.1186/s13663-015-0460-9
http://dx.doi.org/https://doi.org/10.1186/s13663-015-0460-9
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2014-18
http://dx.doi.org/https://doi.org/10.1186/1029-242X-2014-18
http://dx.doi.org/https://doi.org/10.1007/s00009-013-0327-4
http://dx.doi.org/https://doi.org/10.1016/j.aml.2011.10.037


10248

30. W. Shatanawi, V. C. Rajic, S. Radenovic, A. Al-Rawashhdeh, Mizoguchi-Takahashi-
type theorems in tvs-cone metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–7.
https://doi.org/10.1186/1687-1812-2012-106

31. A. Al-Rawashdeh, H. Aydi, A. Felhi, S. Sehmim, W. Shatanawi, On common fixed points
for α − F-contractions and applications, J. Nonlinear Sci. Appl., 9 (2016), 3445–3458.
http://dx.doi.org/10.22436/jnsa.009.05.128

32. W. Shatanawi, Z. Mustafa, N. Tahat, Some coincidence point theorems for nonlinear contraction in
ordered metric spaces, Fixed Point Theory Appl., 2011 (2011), 1–15. https://doi.org/10.1186/1687-
1812-2011-68

33. W. Shatanawi, Some fixed point results for a generalized ψ-weak contraction
mappings in orbitally metric spaces, Chaos Solitons Fract., 45 (2012), 520–526.
https://doi.org/10.1016/j.chaos.2012.01.015

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 5, 10228–10248.

http://dx.doi.org/https://doi.org/10.1186/1687-1812-2012-106
http://dx.doi.org/http://dx.doi.org/10.22436/jnsa.009.05.128
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2011-68
http://dx.doi.org/https://doi.org/10.1186/1687-1812-2011-68
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2012.01.015
http://creativecommons.org/licenses/by/4.0

	Introduction
	Preliminaries
	Topology of quasi M-metric space
	Main result
	Examples and applications
	Conclusions and open problems

