Research article

A tripled coincidence point technique for solving integral equations via an upper class of type II

  • Received: 28 December 2022 Revised: 11 February 2023 Accepted: 16 February 2023 Published: 22 February 2023
  • MSC : 54H25, 47H10, 46T99

  • The goal of this paper is to obtain some tripled coincidence point results for generalized contraction mappings in the setting of $ JS $-metric spaces endowed with a partial order. Furthermore, illustrative examples to support the theoretical results and the application are obtained. Finally, some theoretical results are applied to discuss the existence of a solution for a system of non-homogeneous and homogeneous integral equations as applications.

    Citation: Hasanen A. Hammad, Hassen Aydi, Aiman Mukheimer. A tripled coincidence point technique for solving integral equations via an upper class of type II[J]. AIMS Mathematics, 2023, 8(4): 9795-9819. doi: 10.3934/math.2023494

    Related Papers:

  • The goal of this paper is to obtain some tripled coincidence point results for generalized contraction mappings in the setting of $ JS $-metric spaces endowed with a partial order. Furthermore, illustrative examples to support the theoretical results and the application are obtained. Finally, some theoretical results are applied to discuss the existence of a solution for a system of non-homogeneous and homogeneous integral equations as applications.



    加载中


    [1] J. Liouville, Extrait d'un mémoire sur le développement des fonctions en séries dont les différents termes sont assujétis satisfaire une meme équation différentielle lináire, contenant un paramètre variable, J. Math. Pures Appli., 2 (1837), 16–35.
    [2] E. Picard, Mémoire sur la thórie des équations aux derivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210.
    [3] S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 138–181.
    [4] M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7 doi: 10.1186/s13663-015-0312-7
    [5] H. A. Hammad, M. De la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via $F_{\varpi _{e}}$-Suzuki contractions in modified $\varpi _{e}$-metric-like spaces, J. Funct. Spaces, 2021 (2021), 6128586. https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586
    [6] E. Karapinar, B. Samet, D. Zhang, Meir-Keeler type contractions on $JS$-metric spaces and related fixed point theorems, J. Fixed Point Theory Appl., 20 (2018), 60. https://doi.org/10.1007/s11784-018-0544-3 doi: 10.1007/s11784-018-0544-3
    [7] N. Phudolsitthiphat, A. Wiriyapongsanon, Coupled coincidence point results in partially ordered $JS$-metric spaces, Novi Sad J. Math., 47 (2017), 173–185. https://doi.org/10.30755/NSJOM.06094 doi: 10.30755/NSJOM.06094
    [8] D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with application, Nonlinear Anal.: Theory Methods Appl., 11 (1987), 623–632. https://doi.org/10.1016/0362-546X(87)90077-0 doi: 10.1016/0362-546X(87)90077-0
    [9] T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric space and applications, Nonlinear Anal.: Theory Methods Appl., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
    [10] M. Abbas, M. A. Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for $w$-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042 doi: 10.1016/j.amc.2010.05.042
    [11] H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for $(\psi, \phi)$-weakly contractive mappings in ordered $G$- metric spaces, Comput. Math. Appl., 63 (2012), 298–309. https://doi.org/10.1016/j.camwa.2011.11.022 doi: 10.1016/j.camwa.2011.11.022
    [12] H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. https://doi.org/10.3390/math7070634 doi: 10.3390/math7070634
    [13] N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 983–992. https://doi.org/10.1016/j.na.2010.09.055 doi: 10.1016/j.na.2010.09.055
    [14] H. A. Hammad, D. M. Albaqeri, R. A. Rashwan, Coupled coincidence point technique and its application for solving nonlinear integral equations in RPOCbML spaces, J. Egypt. Math. Soc., 28 (2020), 1–17.
    [15] V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4889–4897. https://doi.org/10.1016/j.na.2011.03.032 doi: 10.1016/j.na.2011.03.032
    [16] M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 7339–7346. https://doi.org/10.1016/j.amc.2012.01.030 doi: 10.1016/j.amc.2012.01.030
    [17] M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 5929–5936. https://doi.org/10.1016/j.amc.2011.11.049 doi: 10.1016/j.amc.2011.11.049
    [18] H. Aydi, M. Abbas, W. Sintunavarat, P. Kumam, Tripled fixed point of $W$-compatible mappings in abstract metric spaces, Fixed Point Theory Appl., 2012 (2012), 134. https://doi.org/10.1186/1687-1812-2012-134 doi: 10.1186/1687-1812-2012-134
    [19] H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled-fractional differential equations, AIMS Math., 6 (2021), 2330–2343. https://doi.org/10.3934/math.2021141 doi: 10.3934/math.2021141
    [20] H. A. Hammad, M. De la Sen, A tripled fixed point technique for solving a tripled-system of integral equations and Markov process in CCbMS, Adv. Differ. Equ., 2020 (2020), 567. https://doi.org/10.1186/s13662-020-03023-y doi: 10.1186/s13662-020-03023-y
    [21] H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2020), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
    [22] A. H. Ansari, Note on $\alpha$-admissible mappings and related fixed point theorems, The $2^{nd}$ Regional Conference on Mathematics and Applications, Payame Noor University, 2014,373–376.
    [23] Z. Kadelburg, P. Kumam, S. Radenović, W. Sintunavarat, Common coupled fixed point theorems for Geraghty-type contraction mappings using monotone property, Fixed Point Theory Appl., 2015 (2015), 27. https://doi.org/10.1186/s13663-015-0278-5 doi: 10.1186/s13663-015-0278-5
    [24] B. Zlatanov, A variational principle and coupled fixed points, J. Fixed Point Theory Appl., 21 (2019), 69. https://doi.org/10.1007/s11784-019-0706-y doi: 10.1007/s11784-019-0706-y
    [25] S. Kabaivanov, B. Zlatanov, A variational principle, coupled fixed points and market equilibrium, Nonlinear Anal.: Model. Control, 26 (2021), 169–185. https://doi.org/10.15388/namc.2021.26.21413 doi: 10.15388/namc.2021.26.21413
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1026) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog