The goal of this paper is to obtain some tripled coincidence point results for generalized contraction mappings in the setting of JS-metric spaces endowed with a partial order. Furthermore, illustrative examples to support the theoretical results and the application are obtained. Finally, some theoretical results are applied to discuss the existence of a solution for a system of non-homogeneous and homogeneous integral equations as applications.
Citation: Hasanen A. Hammad, Hassen Aydi, Aiman Mukheimer. A tripled coincidence point technique for solving integral equations via an upper class of type II[J]. AIMS Mathematics, 2023, 8(4): 9795-9819. doi: 10.3934/math.2023494
[1] | Hasanen A. Hammad, Doha A. Kattan . Strong tripled fixed points under a new class of F-contractive mappings with supportive applications. AIMS Mathematics, 2025, 10(3): 5785-5805. doi: 10.3934/math.2025266 |
[2] | Yiquan Li, Chuanxi Zhu, Yingying Xiao, Li Zhou . A note on three different contractions in partially ordered complex valued $ G_b $-metric spaces. AIMS Mathematics, 2022, 7(7): 12322-12341. doi: 10.3934/math.2022684 |
[3] | Chen Lang, Hongyan Guan . Common fixed point and coincidence point results for generalized $ \alpha $-$ \varphi_{E} $-Geraghty contraction mappings in $ b $-metric spaces. AIMS Mathematics, 2022, 7(8): 14513-14531. doi: 10.3934/math.2022800 |
[4] | Nashat Faried, Sahar Mohamed Ali Abou Bakr, H. Abd El-Ghaffar, S. S. Solieman Almassri . Towards coupled coincidence theorems of generalized admissible types of mappings on partial satisfactory cone metric spaces and some applications. AIMS Mathematics, 2023, 8(4): 8431-8459. doi: 10.3934/math.2023425 |
[5] | Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630 |
[6] | Kumara Swamy Kalla, Sumati Kumari Panda, Thabet Abdeljawad, Aiman Mukheimer . Solving the system of nonlinear integral equations via rational contractions. AIMS Mathematics, 2021, 6(4): 3562-3582. doi: 10.3934/math.2021212 |
[7] | S. S. Razavi, H. P. Masiha, Hüseyin Işık, Hassen Aydi, Choonkil Park . On Geraghty $ \perp $-contractions in $ O $-metric spaces and an application to an ordinary type differential equation. AIMS Mathematics, 2022, 7(9): 17393-17402. doi: 10.3934/math.2022958 |
[8] | Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080 |
[9] | Muhammad Rafique, Talat Nazir, Mujahid Abbas . Common fixed points of fuzzy set-valued contractive mappings on metric spaces with a directed graph. AIMS Mathematics, 2022, 7(2): 2195-2219. doi: 10.3934/math.2022125 |
[10] | Abdellah Taqbibt, M'hamed Elomari, Milica Savatović, Said Melliani, Stojan Radenović . Fixed point results for a new $ \alpha $-$ \theta $-Geraghty type contraction mapping in metric-like space via $ \mathcal{C}_\mathcal{G} $-simulation functions. AIMS Mathematics, 2023, 8(12): 30313-30334. doi: 10.3934/math.20231548 |
The goal of this paper is to obtain some tripled coincidence point results for generalized contraction mappings in the setting of JS-metric spaces endowed with a partial order. Furthermore, illustrative examples to support the theoretical results and the application are obtained. Finally, some theoretical results are applied to discuss the existence of a solution for a system of non-homogeneous and homogeneous integral equations as applications.
The fixed point theory is one of the most powerful and productive tools from the nonlinear analysis and it can be considered to be the kernel of the nonlinear analysis since 1960. It has been classified into two major areas: metric fixed point theory and topological fixed point theory. The fixed point theory finds its roots with the method of successive approximations to prove the existence of solutions of differential equations introduced independently by Liouville [1] in 1837 and Picard [2] in 1890. While, officially, it was launched at the start of the 20th century as an important part of functional analysis. The best known result from the fixed point theory is Banach Contraction Principle [3] (1922), which can be considered to be the beginning of this theory. In a metric space, setting it can be briefly stated as follows: Every contraction on a complete metric space admits a unique fixed point. Furthermore, it provides a fixed point approximation algorithm as the limit of an iterated sequence. This result has been extended and generalized last years in various directions. Among these extensions, we cite the main result of Jleli and Samet [4], where they initiated a new generalized metric, called as JS-metric. It is given as follows:
Definition 1.1. [4] Let ξ:℧×℧→[0,+∞) be a mapping justifying, for each ϑ,ϖ∈℧,
(i) if ξ(ϑ,ϖ)=0, then ϑ=ϖ;
(ii) ξ(ϑ,ϖ)=ξ(ϖ,ϑ);
(iii) there is Z>0 so that
limi→∞ξ(ϑi,ϑ)⇒ξ(ϑ,ϖ)≤Zlim supi→∞ξ(ϑi,ϖ). |
Then ξ is a JS-metric on ℧ and the pair (℧,ξ) is called a JS-metric space.
Definition 1.2. Let (℧,ξ) be a JS-metric space and {xn} be a sequence in (℧,ξ).
(i) {xn} is said to be ξ-convergent to x in ℧ if limn→∞ξ(xn,x)=0.
(ii) {xn} is said to be ξ-Cauchy sequence if limn,m→∞ξ(xn,xm)=0.
(iii) (℧,ξ) is said to be ξ-complete if every ξ-Cauchy sequence in ℧ is ξ-convergent to some point x∈℧.
After the work of Jleli and Samet [4], there is an immense literature in fixed point theory and its applications in this setting. For more details, see [5,6,7].
In paper [8], the notions of mixed-monotone functions and coupled fixed points were initiated and studied. Under partially ordered metric spaces (POMSs) and abstract spaces, some main results in this direction have been driven, for broadening, see [4,8,11,12,13,14].
In 2011, Berinde and Borcut [15], introduced the definition of mixed monotone property and the definition of tripled fixed point for a mapping T:℧3=:℧×℧×℧→℧ and established tripled fixed point theorems for contractive type mappings having that property in partially ordered metric spaces. Later, Borcut [16] and Berinde and Borcut [17] have introduced the notion of a tripled coincidence point for a pair of nonlinear contractive mappings T:℧3→℧ and f:℧→℧. Subsequently, Aydi et al. [18] have proved some new tripled fixed point theorems in abstract metric spaces. Further works dealing in this direction have been appeared, see [19,20,21].
Combining the notion of triangular α−admissible property and the concept of upper class of type II, the aim of this paper is to establish some tripled coincidence point results for a pair of generalized contraction type mappings Ξ:℧3→℧ and r:℧→℧ in the context of JS-metric spaces equipped with a partial order. The obtained results are supported by some concrete examples. At the end, we ensure the existence of a solution for a system of non-homogeneous and homogeneous integral equations.
We start this section with the following concepts.
Consider a nonempty set ℧. Assume that Ξ:℧3→℧ and r:℧→℧ are two mappings. We say that r commutes with Ξ if
rΞ(ϑ,ϖ,ϰ)=Ξ(rϑ,rϖ,rϰ), ∀ϑ,ϖ,ϰ∈℧. |
According to [4], for a partial order ⪯, define ∇⪯={(ϑ,ϖ)∈℧2:ϑ⪯ϖ}. Then Ξ has the ⪯−r monotone property, if for each ϑ,ϖ,ϰ∈℧,
ϑ1,ϑ2∈℧, (rϑ1,rϑ2)∈∇⪯ implies (Ξ(ϑ1,ϖ,ϰ),Ξ(ϑ2,ϖ,ϰ))∈∇⪯,ϖ1,ϖ2∈℧, (rϖ1,rϖ2)∈∇⪯ implies (Ξ(ϑ,ϖ1,ϰ),Ξ(ϑ,ϖ2,ϰ))∈∇⪯ |
and
ϰ1,ϰ2∈℧, (rϰ1,rϰ2)∈∇⪯ implies (Ξ(ϑ,ϖ,ϰ1),Ξ(ϑ,ϖ,ϰ2))∈∇⪯. |
After that, we generalize the notion of triangular α−admissible property as follows:
Definition 2.1. Assume that Ξ:℧3→℧, r:℧→℧ and α:℧3×℧3→[0,+∞] so that the postulates below hold:
(i) If α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))≥1, then
α((Ξ(ϑ,ϖ,ϰ),Ξ(ϖ,ϰ,ϑ),Ξ(ϰ,ϑ,ϖ)),(Ξ(˜ϑ,˜ϖ,˜ϰ),Ξ(˜ϖ,˜ϰ,˜ϑ),Ξ(˜ϰ,˜ϑ,˜ϖ)))≥1. |
(ii) If α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))≥1 and
α((r˜ϑ,r˜ϖ,r˜ϰ),(Ξ(˜ϑ,˜ϖ,˜ϰ),Ξ(˜ϖ,˜ϰ,˜ϑ),Ξ(˜ϰ,˜ϑ,˜ϖ)))≥1, |
then
α((rϑ,rϖ,rϰ),(Ξ(˜ϑ,˜ϖ,˜ϰ),Ξ(˜ϖ,˜ϰ,˜ϑ),Ξ(˜ϰ,˜ϑ,˜ϖ)))≥1. |
Here, we say that Ξ and r is a generalized triangular α− admissible (αGTA, for short).
Next, we extend the concept of upper class of type II [11] as follows.
Definition 2.2. Let ℘:[0,+∞]3→R∪{+∞} and ℓ:[0,+∞]2→R∪{+∞} be two given mappings. We say that the pair (℘,ℓ) is an upper class of type II (ΩII, for short) if for all ϑ,ϖ,ϰ,˜ϑ,˜ϖ,˜ϰ∈[0,+∞], the postulates below hold:
(i) ℘(1,1,ϖ)≤℘(ϑ,ϖ,ϰ), whenever 1≤ϖ,ϰ;
(ii) ℓ(˜ϑ,˜ϖ)≤ℓ(1,˜ϖ), whenever ˜ϑ≤1;
(iii) ϰ≤˜ϑ˜ϖ, whenever ℘(1,1,ϰ)≤ℓ(˜ϑ,˜ϖ).
Example 2.3. Let ℘,ℓ:[0,+∞]2→R∪{+∞} be a function described as follows:
(1) ℘(ϑ,ϖ,ϰ)={(ϰ+z)ϑϖ,if ϑ,ϖ,ϰ∈[0,+∞),+∞,otherwise, ℓ(˜ϑ,˜ϖ)={˜ϑ˜ϖ+z,if ˜ϑ,˜ϖ∈[0,+∞),+∞,otherwise.
(2) ℘(ϑ,ϖ,ϰ)={(ϑ+z)ϰϖ,if ϑ,ϖ,ϰ∈[0,+∞),+∞,otherwise, ℓ(˜ϑ,˜ϖ)={(1+z)˜ϑ˜ϖ,if ˜ϑ,˜ϖ∈[0,+∞),+∞,otherwise.
(3) ℘(ϑ,ϖ,ϰ)={ϰ,if ϑ,ϖ,ϰ∈[0,+∞),+∞,otherwise, ℓ(˜ϑ,˜ϖ)={˜ϑ˜ϖ,if ˜ϑ,˜ϖ,˜ϰ∈[0,+∞),+∞,otherwise.
(4) ℘(ϑ,ϖ,ϰ)={ϑiϖjϰkif ϑ,ϖ,ϰ∈[0,+∞),+∞,otherwise, ℓ(˜ϑ,˜ϖ)={(˜ϑ˜ϖ)k,if ˜ϑ,˜ϖ∈[0,+∞),+∞,otherwise,
for z>1 and i,j,k∈N. Then the pair (℘,ℓ) is ΩII.
Here, the triplet (℧,ξ,⪯) is a complete POJSM-space and ˜Φ consists of all ϕ:[0,+∞]3→[0,1) satisfying:
(ϕ1) For any ϑ,ϖ∈[0,+∞], ϕ(ϑ,ϖ)=ϕ(ϖ,ϑ).
(ϕ2) For {ϑi}, {ϖi}⊆[0,+∞], limi→∞ϕ(ϑi,ϖi,ϰi)=1⟹limi→∞ϑi=limi→∞ϖi=limi→∞ϰi=0.
Also, we define the mappings Ξ:℧3→℧ and r:℧→℧ so that the following properties hold:
(a) Ξ(℧3)⊆r(℧);
(b) Ξ is ⪯−r monotone;
(c) r commutes with Ξ and is ξ−continuous.
Now, our first theorem becomes valid for presentation, which generalizes the results of [7].
Theorem 2.4. Assume that the postulates below are fulfilled:
(△i) For any ΩII of the pair (℘,ℓ), there exist α:℧3×℧3→[0,+∞] and ϕ∈Φ fulfilling, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the below inequality is verified:
℘(1,α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ)),ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ)))≤ℓ(ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)),ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))), |
where
ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))=max{ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ),ξ(rϑ,Ξ(ϑ,ϖ,ϰ)),ξ(rϖ,Ξ(ϖ,ϰ,ϑ)),ξ(rϰ,Ξ(ϰ,ϑ,ϖ)),ξ(r˜ϑ,Ξ(r˜ϑ,r˜ϖ,r˜ϰ)),ξ(r˜ϖ,Ξ(r˜ϖ,r˜ϰ,r˜ϑ)),ξ(rϰ,Ξ(r˜ϰ,r˜ϑ,r˜ϖ))}; |
(△ii) Ξ and r is αGTA, and there exist ϑ0,ϖ0,ϰ0∈℧,
(rϑ0,Ξ(ϑ0,ϖ0,ϰ0)),(rϖ0,Ξ(ϖ0,ϰ0,ϑ0)),(rϰ0,Ξ(ϰ0,ϑ0,ϖ0))∈∇⪯ |
so that
α((rϑ0,rϖ0,rϰ0),(Ξ(ϑ0,ϖ0,ϰ0),Ξ(ϖ0,ϰ0,ϑ0),Ξ(ϑ0,ϖ0,ϰ0)))≥1,α((rϖ0,rϰ0,rϑ0),(Ξ(ϖ0,ϰ0,ϑ0),Ξ(ϰ0,ϑ0,ϖ0),Ξ(ϖ0,ϰ0,ϑ0)))≥1 |
and
α((rϰ0,rϑ0,rϖ0),(Ξ(ϰ0,ϑ0,ϖ0),Ξ(ϑ0,ϖ0,ϰ0),Ξ(ϰ0,ϑ0,ϖ0)))≥1; |
(△iii) If limi→∞ξ(rϑi,rϑi+1)=0, limi→∞ξ(rϖi,rϖi+1)=0 and limi→∞ξ(rϰi,rϰi+1)=0, then
sup{ξ(rϑ0,rϑi),ξ(rϖ0,rϖi),ξ(rϰ0,rϰi)}<∞, |
where {ϑi}, {ϖi} and {ϰi} are sequences in ℧; (△iv) Ξ is ξ−continuous.
Then Ξ and r have a tripled coincidence point (TCP) in ℧.
Proof. Assume that ϑ0,ϖ0,ϰ0∈℧ justifying assertion (△ii). Because Ξ(℧3)⊆r(℧), we can select ϑ1,ϖ1,ϰ1∈℧ so that rϑ1=Ξ(ϑ0,ϖ0,ϰ0), rϖ1=Ξ(ϖ0,ϰ0,ϑ0) and rϰ1=Ξ(ϰ0,ϑ0,ϖ0). Analogously, rϑ2=Ξ(ϑ1,ϖ1,ϰ1), rϖ2=Ξ(ϖ1,ϰ1,ϑ1) and rϰ2=Ξ(ϰ1,ϑ1,ϖ1). In the same scenario, {ϑi}, {ϖi} and {ϰi} are obtained with
rϑi+1=Ξ(ϑi,ϖi,ϰi), rϖi+1=Ξ(ϖi,ϰi,ϑi) and rϰi+1=Ξ(ϰi,ϑi,ϖi). |
For some natural number i0, if rϑi0+1=rϑi0, rϖi0+1=rϖi0 and rϰi0+1=rϰi0, then Ξ and r have a TCP. So, for some positive integer i, assume that
rϑi+1≠rϑi, rϖi+1≠rϖi and rϰi+1≠rϰi. |
Based on assumption (△ii), we have
(rϑ0,rϑ1)∈∇⪯,(rϖ0,rϖ1)∈∇⪯ and (rϰ0,rϰ1)∈∇⪯. |
Because Ξ is ⪯−r monotone,
(Ξ(ϑ0,ϖ0,ϰ0),Ξ(ϑ1,ϖ1,ϰ1))∈∇⪯, (Ξ(ϖ0,ϰ0,ϑ0),Ξ(ϖ1,ϰ1,ϑ1))∈∇⪯,(Ξ(ϰ0,ϑ0,ϖ0),Ξ(ϰ1,ϑ1,ϖ1))∈∇⪯, |
that is,
(rϑ1,rϑ2)∈∇⪯,(rϖ1,rϖ2)∈∇⪯ and (rϰ1,rϰ2)∈∇⪯. |
Repeating the same approach, we get
(rϑi,rϑi+1)∈∇⪯,(rϖi,rϖi+1)∈∇⪯ and (rϰi,rϰi+1)∈∇⪯, ∀i∈N. |
From the transitivity of ⪯, one can obtain
(rϑi,rϑi+m)∈∇⪯,(rϖi,rϖi+m)∈∇⪯ and (rϰi,rϰi+m)∈∇⪯, ∀i,m∈N. |
Again, applying the postulate (△ii), we have
α((rϑ0,rϖ0,rϰ0),(rϑ1,rϖ1,rϰ1))=α((rϑ0,rϖ0,rϰ0),(Ξ(ϑ0,ϖ0,ϰ0),Ξ(ϖ0,ϰ0,ϑ0),Ξ(ϰ0,ϑ0,ϖ0)))≥1. |
Since Ξ and r are αGTA,
α((rϑ1,rϖ1,rϰ1),(rϑ2,rϖ2,rϰ2))=α((Ξ(ϑ0,ϖ0,ϰ0),Ξ(ϖ0,ϰ0,ϑ0),Ξ(ϰ0,ϑ0,ϖ0)),(Ξ(ϑ1,ϖ1,ϰ1),Ξ(ϖ1,ϰ1,ϑ1),Ξ(ϰ1,ϑ1,ϖ1))). |
By induction, one can deduce that
α((rϑi,rϖi,rϰi),(rϑi+1,rϖi+1,rϰi+1))≥1, ∀i∈N. |
Analogously, we can obtain
α((rϖi,rϰi,rϑi),(rϖi+1,rϰi+1,rϑi+1))≥1, ∀i∈N, |
and
α((rϰi,rϑi,rϖi),(rϰi+1,rϑi+1,rϖi+1))≥1, ∀i∈N. |
Since Ξ and r are αGTA,
α((rϑi,rϖi,rϰi),(rϑi+m,rϖi+m,rϰi+m))≥1,α((rϖi,rϰi,rϑi),(rϖi+m,rϰi+m,rϑi+m))≥1,α((rϰi,rϑi,rϖi),(rϰi+m,rϑi+m,rϖi+m))≥1, ∀i,m∈N. |
Next, we want to prove limi→∞ξ(rϑi,rϑi+1)=0, limi→∞ξ(rϖi,rϖi+1)=0 and limi→∞ξ(rϰi,rϰi+1)=0. For this, we use the opposite technique, suppose that either limi→∞ξ(rϑi,rϑi+1)≠0, or limi→∞ξ(rϖi,rϖi+1)≠0 or limi→∞ξ(rϰi,rϰi+1)≠0. Then there is ϵ>0 for which we have a subsequence {is} so that s≤is and
max{ξ(rϑis,rϑis+1),ξ(rϖis,rϖis+1),ξ(rϰis,rϰis+1),ξ(rϰis,rϰis+1)}≥ϵ. |
Consider
℘(1,1,ξ(rϑis,rϑis+1))=℘(1,1,ξ(Ξ(ϑis−1,ϖis−1,ϰis−1),Ξ(ϑis,ϖis,ϰis)))≤℘(1,α((ϑis−1,ϖis−1,ϰis−1),(ϑis,ϖis,ϰis)),ξ(Ξ(ϑis−1,ϖis−1,ϰis−1),Ξ(ϑis,ϖis,ϰis)))≤ℓ(ϕ(ξ(rϑis−1,rϑis),ξ(rϖis−1,rϖis−1),ξ(rϰis−1,rϰis)),ℵ((rϑis−1,rϑis),(rϖis−1,rϖis−1),(rϰis−1,rϰis))). | (2.1) |
Again,
℘(1,1,ξ(rϖis,rϖis+1))=℘(1,1,ξ(Ξ(ϖis−1,ϰis−1,ϑis−1),Ξ(ϖis,ϰis,ϑis)))≤℘(1,α((ϖis−1,ϰis−1,ϑis−1),(ϖis,ϰis,ϑis)),ξ(Ξ(ϖis−1,ϰis−1,ϑis−1),Ξ(ϖis,ϰis,ϑis)))≤ℓ(ϕ(ξ(rϖis−1,rϖis−1),ξ(rϰis−1,rϰis),ξ(rϑis−1,rϑis)),ℵ((rϖis−1,rϖis−1),(rϰis−1,rϰis),(rϑis−1,rϑis))), | (2.2) |
and
℘(1,1,ξ(rϰis,rϰis+1))=℘(1,1,ξ(Ξ(ϰis−1,ϑis−1,ϖis−1),Ξ(ϰis,ϑis,ϖis)))≤℘(1,α((ϰis−1,ϑis−1,ϖis−1),(ϰis,ϑis,ϖis)),ξ(Ξ(ϰis−1,ϑis−1,ϖis−1),Ξ(ϰis,ϑis,ϖis)))≤ℓ(ϕ(ξ(rϰis−1,rϰis),ξ(rϑis−1,rϑis),ξ(rϖis−1,rϖis−1)),ℵ((rϰis−1,rϰis),(rϑis−1,rϑis),(rϖis−1,rϖis−1))). | (2.3) |
The inequalities (2.1)–(2.3) lead to
ξ(rϑis,rϑis+1)≤ϕ(ξ(rϑis−1,rϑis),ξ(rϖis−1,rϖis−1),ξ(rϰis−1,rϰis))×ℵ((rϑis−1,rϑis),(rϖis−1,rϖis−1),(rϰis−1,rϰis)), | (2.4) |
ξ(rϖis,rϖis+1)≤ϕ(ξ(rϖis−1,rϖis−1),ξ(rϰis−1,rϰis),ξ(rϑis−1,rϑis))×ℵ((rϖis−1,rϖis−1),(rϰis−1,rϰis),(rϑis−1,rϑis)), | (2.5) |
and
ξ(rϰis,rϰis+1)≤ϕ(ξ(rϰis−1,rϰis),ξ(rϑis−1,rϑis),ξ(rϖis−1,rϖis−1))×ℵ((rϰis−1,rϰis),(rϑis−1,rϑis),(rϖis−1,rϖis−1)). | (2.6) |
Because ϕ(ϑ,ϖ,ϰ)∈[0,1) for any ϑ,ϖ,ϰ∈[0,+∞], we get
ℵ((rϑis−1,rϑis),(rϖis−1,rϖis−1),(rϰis−1,rϰis))=ℵ((rϖis−1,rϖis−1),(rϰis−1,rϰis),(rϑis−1,rϑis))=ℵ((rϰis−1,rϰis),(rϑis−1,rϑis),(rϖis−1,rϖis−1))=max{ξ(rϑis−1,rϑis),ξ(rϖis−1,rϖis−1),ξ(rϰis−1,rϰis)}. | (2.7) |
It follows from (2.4)–(2.7) that max{ξ(rϑis,rϑis+1),ξ(rϖis,rϖis+1),ξ(rϰis,rϰis+1)}
max{ξ(rϑis,rϑis+1),ξ(rϖis,rϖis+1),ξ(rϰis,rϰis+1)}≤ϕ(ξ(rϰis−1,rϰis),ξ(rϑis−1,rϑis),ξ(rϖis−1,rϖis−1))×max{ξ(rϰis−1,rϰis),ξ(rϑis−1,rϑis),ξ(rϖis−1,rϖis−1)}. |
Using this concept, we can write
max{ξ(rϑis,rϑis+1),ξ(rϖis,rϖis+1),ξ(rϰis,rϰis+1)}≤is∏v=1ϕ(ξ(rϰis−v,rϰis+1−v),ξ(rϑis−v,rϑis+1−v),ξ(rϖis−v,rϖis+1−v))×max{ξ(rϰ0,rϰ1),ξ(rϑ0,rϑ1),ξ(rϖ0,rϖ1)}. |
Select vs so that
ϕ(ξ(rϰis−vs,rϰis+1−vs),ξ(rϑis−vs,rϑis+1−vs),ξ(rϖis−vs,rϖis+1−vs))=max1≤v≤is{ϕ(ξ(rϰis−v,rϰis+1−v),ξ(rϑis−v,rϑis+1−v),ξ(rϖis−v,rϖis+1−v))}. |
Consider
∇=lim sups→∞(ϕ(ξ(rϰis−vs,rϰis+1−vs),ξ(rϑis−vs,rϑis+1−vs),ξ(rϖis−vs,rϖis+1−vs))). |
If ∇<1, then
lims→∞max{ξ(rϑis,rϑis+1),ξ(rϖis,rϖis+1),ξ(rϰis,rϰis+1)}=0. |
This contradicts the hypothesis. If ∇=1, for suitability, we assume that
lims→∞ϕ(ξ(rϰis−vs,rϰis+1−vs),ξ(rϑis−vs,rϑis+1−vs),ξ(rϖis−vs,rϖis+1−vs))=1. |
Because ϕ∈˜Φ,
lims→∞ξ(rϰis−vs,rϰis+1−vs)=0, lims→∞ξ(rϑis−vs,rϑis+1−vs)=0 and lims→∞ξ(rϖis−vs,rϖis+1−vs)=0. |
That is, there is an s0∈N so that
ξ(rϰis0−vs0,rϰis0+1−vs0)<ϵ3, ξ(rϑis0−vs0,rϑis0+1−vs0)<ϵ3and ξ(rϖis0−vs0,rϖis0+1−vs0)<ϵ3. |
Thus, we get
ϵ≤max{ξ(rϑis0,rϑis0+1),ξ(rϖis0,rϖis0+1),ξ(rϰis0,rϰis0+1)}≤vs0∏j=1ϕ(ξ(rϰis0−j,rϰis0+1−j),ξ(rϑis0−j,rϑis0+1−j),ξ(rϖis0−j,rϖis0+1−j))×max{ξ(rϰis0−vs0,rϰis0+1−vs0),ξ(rϑis0−vs0,rϑis0+1−vs0),ξ(rϖis0−vs0,rϖis0+1−vs0)}<ϵ3, |
a contradiction, hence, we have
limi→∞ξ(rϑi,rϑi+1)=0, limi→∞ξ(rϖi,rϖi+1)=0 and limi→∞ξ(rϰi,rϰi+1)=0. | (2.8) |
Now, we claim that {rϑi}, {rϖi} and {rϰi} are ξ−Cauchy sequences. Suppose that {rϑi}, {rϖi} and {rϰi} are not ξ−Cauchy sequences, so for each s∈N with subsequences is,js≥s such that
max{ξ(rϑis,rϑis+js),ξ(rϖis,rϖis+js),ξ(rϰis,rϰis+js)}≥ϵ′ for some ϵ′>0. |
Consider
℘(1,1,ξ(rϑis,rϑis+js))=℘(1,1,ξ(Ξ(ϑis−1,ϖis−1,ϰis−1),Ξ(ϑis+js−1,ϖis+js−1,ϰis+js)))≤℘(1,α((ϑis−1,ϖis−1,ϰis−1),(ϑis+js−1,ϖis+js−1,ϰis+js−1)),ξ(Ξ(ϑis−1,ϖis−1,ϰis−1),Ξ(ϑis+js−1,ϖis+js−1,ϰis+js−1)))≤ℓ(ϕ(ξ(rϑis−1,rϑis+js−1),ξ(rϖis−1,rϖis+js−1),ξ(rϰis−1,rϰis+js−1)),ℵ((rϑis−1,rϑis+js−1),(rϖis−1,rϖis+js−1),(rϰis−1,rϰis+js−1))), | (2.9) |
℘(1,1,ξ(rϖis,rϖis+js))=℘(1,1,ξ(Ξ(ϖis−1,ϰis−1,ϑis−1),Ξ(ϖis+js−1,ϰis+js,ϑis+js−1)))≤℘(1,α((ϖis−1,ϰis−1,ϑis−1),(ϖis+js−1,ϰis+js−1,ϑis+js−1)),ξ(Ξ(ϖis−1,ϰis−1,ϑis−1),Ξ(ϖis+js−1,ϰis+js−1,ϑis+js−1)))≤ℓ(ϕ(ξ(rϖis+js−1,rϖis−1),ξ(rϰis+js−1,rϰis−1),ξ(rϑis−1,rϑis+js−1)),ℵ((rϖis−1,rϖis+js−1),(rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1))), | (2.10) |
and
℘(1,1,ξ(rϰis,rϰis+js))=℘(1,1,ξ(Ξ(ϰis−1,ϑis−1,ϖis−1),Ξ(ϰis+js,ϑis+js−1),ϖis+js−1))≤℘(1,α((ϰis−1,ϑis−1,ϖis−1),(ϰis+js−1,ϑis+js−1,ϖis+js−1)),ξ(Ξ(ϰis−1,ϑis−1,ϖis−1),Ξ(ϰis+js−1,ϑis+js−1,ϖis+js−1)))≤ℓ(ϕ(ξ(rϰis+js−1,rϰis−1),ξ(rϑis−1,rϑis+js−1),ξ(rϖis+js−1,rϖis−1)),ℵ((rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1),(rϖis−1,rϖis+js−1))). | (2.11) |
Based on (2.9)–(2.11) and the above properties, one can obtain
ξ(rϑis,rϑis+js)≤ϕ(ξ(rϰis+js−1,rϰis−1),ξ(rϑis−1,rϑis+js−1),ξ(rϖis+js−1,rϖis−1))×ℵ((rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1),(rϖis−1,rϖis+js−1)), | (2.12) |
ξ(rϖis,rϖis+js)≤ϕ(ξ(rϖis+js−1,rϖis−1),ξ(rϰis+js−1,rϰis−1),ξ(rϑis−1,rϑis+js−1))×ℵ((rϖis−1,rϖis+js−1),(rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1)), | (2.13) |
and
ξ(rϰis,rϰis+js)≤ϕ(ξ(rϰis+js−1,rϰis−1),ξ(rϑis−1,rϑis+js−1),ξ(rϖis+js−1,rϖis−1))×ℵ((rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1),(rϖis−1,rϖis+js−1)), | (2.14) |
respectively. Using (2.8), we get
ℵ((rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1),(rϖis−1,rϖis+js−1))=ℵ((rϖis−1,rϖis+js−1),(rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1))=ℵ((rϰis−1,rϰis+js−1),(rϑis−1,rϑis+js−1),(rϖis−1,rϖis+js−1))=max{ξ(rϰis−1,rϰis+js−1),ξ(rϑis−1,rϑis+js−1),ξ(rϖis−1,rϖis+js−1). | (2.15) |
From (2.12)–(2.15), we have
max{ξ(rϑis,rϑis+js),ξ(rϖis,rϖis+js),ξ(rϰis,rϰis+js)}≤ϕ(ξ(rϰis+js−1,rϰis−1),ξ(rϑis−1,rϑis+js−1),ξ(rϖis+js−1,rϖis−1))×max{ξ(rϰis−1,rϰis+js−1),ξ(rϑis−1,rϑis+js−1),ξ(rϖis−1,rϖis+js−1). |
Thus,
max{ξ(rϑis,rϑis+js),ξ(rϖis,rϖis+js),ξ(rϰis,rϰis+js)}≤is∏v=1ϕ(ξ(rϰis−v,rϰis+js−v),ξ(rϑis−v,rϑis+js−v),ξ(rϖis−v,rϖis+js−v))×max{ξ(rϰ0,rϰjs),ξ(rϑ0,rϑjs),ξ(rϖ0,rϖjs)}. |
Select vs so that
ϕ(ξ(rϰis−vs,rϰis+js−vs),ξ(rϑis−vs,rϑis+js−vs),ξ(rϖis−vs,rϖis+js−vs))=max1≤v≤is{ϕ(ξ(rϰis−v,rϰis+js−v),ξ(rϑis−v,rϑis+js−v),ξ(rϖis−v,rϖis+js−v))}. |
Define
∇∗=lim sups→∞(ϕ(ξ(rϰis−vs,rϰis+js−vs),ξ(rϑis−vs,rϑis+js−vs),ξ(rϖis−vs,rϖis+js−vs))). |
If ∇∗<1, then
lims→∞max{ξ(rϑis,rϑis+js),ξ(rϖis,rϖis+js),ξ(rϰis,rϰis+js)}=0. |
This is impossible to happen because of our hypothesis.
If ∇∗=1, for convenience, consider
lims→∞ϕ(ξ(rϰis−vs,rϰis+js−vs),ξ(rϑis−vs,rϑis+js−vs),ξ(rϖis−vs,rϖis+js−vs))=1. |
Because ϕ∈˜Φ,
lims→∞ξ(rϰis−vs,rϰis+js−vs)=0, lims→∞ξ(rϑis−vs,rϑis+js−vs)=0 and lims→∞ξ(rϖis−vs,rϖis+js−vs)=0. |
That is, there is an s0∈N so that
ξ(rϰis0−vs0,rϰis0+js0−vs0)<ϵ3, ξ(rϑis0−vs0,rϑis0+js0−vs0)<ϵ3and ξ(rϖis0−vs0,rϖis0+js0−vs0)<ϵ3. |
Thus, we get
ϵ′≤max{ξ(rϑis0,rϑis0+js0),ξ(rϖis0,rϖis0+js0),ξ(rϰis0,rϰis0+js0)}≤vs0∏j=1ϕ(ξ(rϰis0−j,rϰis0+js0−j),ξ(rϑis0−j,rϑis0+js0−j),ξ(rϖis0−j,rϖis0+js0−j))×max{ξ(rϰis0−vs0,rϰis0+js0−vs0),ξ(rϑis0−vs0,rϑis0+js0−vs0),ξ(rϖis0−vs0,rϖis0+js0−vs0)}<ϵ′3. |
This is a contradiction, therefore, {rϑi}, {rϖi} and {rϰi} are ξ−Cauchy sequences. The completeness of (℧,ξ) implies that for some u,u′,u′′∈℧,
limi→∞ξ(Ξ(ϑi,ϖi,ϰi),u)=limi→∞ξ(rϑi,u)=0,limi→∞ξ(Ξ(ϖi,ϰi,ϑi),u′)=limi→∞ξ(rϖi,u′)=0and limi→∞ξ(Ξ(ϰi,ϑi,ϖi),u′′)=limi→∞ξ(rϰi,u′′)=0. |
Since r is continuous, we have
limi→∞ξ(r(Ξ(ϑi,ϖi,ϰi)),ru)=0,limi→∞ξ(r(Ξ(ϖi,ϰi,ϑi)),ru′)=0and limi→∞ξ(r(Ξ(ϰi,ϑi,ϖi)),ru′′)=0. |
Also, the continuity of Ξ leads to
limi→∞ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′))=0,limi→∞ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u))=0and limi→∞ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′))=0. |
By alteration between Ξ and r, we have that Ξ(u,u′,u′′)=ru, Ξ(u′,u′′,u)=ru′ and Ξ(u′′,u,u′)=ru′′, therefore Ξ and r have a TCP.
Corollary 2.5. The results of Theorem 2.4 are still true if we replace the stipulation (△i) with one of the hypotheses below: (note ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)) is defined in the above theorem):
(†1) There exist ϕ∈Φ and z>1, fulfilling, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the following inequality is satisfied:
(ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))+z)α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))≤ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ))ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))+z. |
(†2) There exist ϕ∈Φ and z>1, fulfilling, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the following inequality is satisfied:
(α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))+z)ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))≤(1+z)ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ))ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)). |
(†3) There exists ϕ∈Φ, justifying, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the following inequality holds:
ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))≤ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ))ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)). |
(†4) There exists ϕ∈Φ, satisfying, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the inequality below is obtained:
{α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))}j{ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))}k≤{ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ))}k{ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))}k, |
for all positive integers j and k.
Proof. The proof follows immediately from Example 2.3 by applying the following in Theorem 2.4.
(†1) Use the value of ℘ and ℓ from Example 2.3(1).
(†2) Use the value of ℘ and ℓ from Example 2.3(2).
(†3) Use the value of ℘ and ℓ from Example 2.3(3).
(†4) Use the value of ℘ and ℓ from Example 2.3(4).
Remark 2.6 ● In a b−metric and a b−metric-like space, Corollary 2.5 holds.
● The stipulation (†3) of Corollary 2.5 generalizes Theorem 3.2 of [13].
● The stipulation (†4) of Corollary 2.5 extends and unifies Theorem 3.1 of [7] when j=k=1.
Example 2.7. Consider ℧=[0,+∞]. Define ξ(ϑ,ϖ)=max{ϑ,ϖ}, ϑ,ϖ∈℧. Describe the mappings Ξ:℧3→℧, r:℧→℧ and α:℧3×℧3→[0,+∞] by
Ξ(ϑ,ϖ,ϰ)={ϑ+ϖ+ϰ3,if ϑ,ϖ,ϰ∈[0,+∞),+∞,otherwise, rϑ={2ϑ,if ϑ∈[0,+∞),+∞,otherwise, |
and
α((ϑ,ϖ,ϰ),(˜ϑ,˜ϖ,˜ϰ))={6,if ϑ≤ϖ≤ϰ and ˜ϑ≤˜ϖ≤˜ϰ,0,otherwise, |
respectively. Assume that ϑ≤˜ϑ, ϖ≤˜ϖ and ϰ≤˜ϰ. Then
ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))=max{ϑ+ϖ+ϰ3,˜ϑ+˜ϖ+˜ϰ3}≤13max{2˜ϑ,2˜ϖ,2˜ϰ}=ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ))ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)). |
Hence, Stipulation (†3) of Corollary 2.5 holds for ϕ(m,z)=13, where m,z∈[0,+∞]. In an easy way, it can be shown that all the hypotheses of Theorem 2.4 are fulfilled, and then there is a TCP for the mappings Ξ and r. Notice that, here ξ is not a metric on ℧ because, if we take ϑ≤ϖ≤ϰ≤˜ϰ, and ϑ≤˜ϖ≤˜ϑ≤˜ϰ, we have
α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))=6max{ϑ+ϖ+ϰ3,˜ϑ+˜ϖ+˜ϰ3}≤6(˜ϑ+˜ϖ+˜ϰ3)=2˜ϑ+2˜ϖ+2˜ϰ>ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)).2˜ϰ=ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ))ℵ((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)). |
Therefore, in the sense of TCPs, Theorem 3.1 in [13] and one of the hypotheses of Theorems 3.1 and 3.2 in [7] fails in studying the existence of a TCP for r and Ξ.
Let Φ∗ represent the class of mappings ϕ∗:[0,+∞]→[0,1) so that
ϕ∗(ϑi)→1 implies ϑi→0 for all ϑi∈[0,+∞]. |
The second part of this section is neglected the continuity condition for the mapping Ξ as follows:
Theorem 2.8. Let the following postulates be satisfied:
(hi) For any ΩII of the pair (℘,ℓ), there exist α:℧3×℧3→[0,+∞] and ϕ∗∈Φ∗ fulfilling, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the below inequality is justified:
℘(1,α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ)),ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ)))≤ℓ(ϕ∗(Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))),Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))), |
where
Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))=max{ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ),ξ(rϑ,Ξ(ϑ,ϖ,ϰ)),ξ(rϖ,Ξ(ϖ,ϰ,ϑ)),ξ(rϰ,Ξ(ϰ,ϑ,ϖ)),ξ(r˜ϑ,Ξ(r˜ϑ,r˜ϖ,r˜ϰ)),ξ(r˜ϖ,Ξ(r˜ϖ,r˜ϰ,r˜ϑ)),ξ(rϰ,Ξ(r˜ϰ,r˜ϑ,r˜ϖ))}; |
(hii) Ξ and r is αGTA and there exist ϑ0,ϖ0,ϰ0∈℧,
(rϑ0,Ξ(ϑ0,ϖ0,ϰ0)),(rϖ0,Ξ(ϖ0,ϰ0,ϑ0)),(rϰ0,Ξ(ϰ0,ϑ0,ϖ0))∈∇⪯ |
so that
α((rϑ0,rϖ0,rϰ0),(Ξ(ϑ0,ϖ0,ϰ0),Ξ(ϖ0,ϰ0,ϑ0),Ξ(ϑ0,ϖ0,ϰ0)))≥1,α((rϖ0,rϰ0,rϑ0),(Ξ(ϖ0,ϰ0,ϑ0),Ξ(ϰ0,ϑ0,ϖ0),Ξ(ϖ0,ϰ0,ϑ0)))≥1 |
and
α((rϰ0,rϑ0,rϖ0),(Ξ(ϰ0,ϑ0,ϖ0),Ξ(ϑ0,ϖ0,ϰ0),Ξ(ϰ0,ϑ0,ϖ0)))≥1; |
(hiii) If limi→∞ξ(rϑi,rϑi+1)=0, limi→∞ξ(rϖi,rϖi+1)=0 and limi→∞ξ(rϰi,rϰi+1)=0, then
sup{ξ(rϑ0,rϑi),ξ(rϖ0,rϖi),ξ(rϰ0,rϰi)}<∞, |
where {ϑi}, {ϖi} and {ϰi} are sequences in ℧; (hiv) If {ϑi}, {ϖi} and {ϰi} are sequences in ℧ with (rϑi,rϑi+1), (rϖi,rϖi+1), (rϰi,rϰi+1)∈∇⪯,
α((rϑi,rϖi,rϰi),(rϑi+1,rϖi+1,rϰi+1))≥1,α((rϖi,rϰi,rϑi),(rϖi+1,rϰi+1,rϑi+1))≥1,α((rϰi,rϑi,rϖi),(rϰi+1,rϑi+1,rϖi+1))≥1,∀i∈N, |
and limi→∞ξ(rϑi,u)=0, limi→∞ξ(rϖi,u′)=0, limi→∞ξ(rϰi,u′′)=0, for each u,u′,u′′∈℧, then (rϑi,ru), (rϖi,ru′), (rϰi,u′′)∈∇⪯,
α((rϑi,rϖi,rϰi),(ru,ru′,ru′′))≥1,α((rϖi,rϰi,rϑi),(ru′,ru′′,ru))≥1,α((rϰi,rϑi,rϖi),(ru′′,ru,ru′))≥1,∀i∈N; |
(hv) There is ℜ∈(0,1] so that
ξ(ru,Ξ(u,u′,u′′))≤ℜlim supi→∞ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′)),ξ(ru′,Ξ(u′,u′′,u))≤ℜlim supi→∞ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u))andξ(ru′′,Ξ(u′′,u,u′))≤ℜlim supi→∞ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′)). |
Then Ξ and r have a TCP.
Proof. Based on Theorem 2.4, the sequences {rϑi}, {rϖi} and {rϰi} are obtained. Furthermore, replacing ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)) with ϕ∗(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)) in Theorem 2.4, where ϑ,˜ϑ,ϖ,˜ϖ,ϰ,˜ϰ∈℧, we conclude that the three sequences are Cauchy in (℧,ξ). The completness of this space leads to for some u,u′,u′′∈℧,
limi→∞ξ(Ξ(rϑi,rϖi,rϰi),u)=limi→∞ξ(rϑi,u)=0,limi→∞ξ(Ξ(rϖi,rϰi,rϑi),u)=limi→∞ξ(rϖi,u)=0and limi→∞ξ(Ξ(rϰi,rϑi,rϖi),u)=limi→∞ξ(rϰi,u)=0. |
Since r is continuous,
limi→∞ξ(rΞ(rϑi,rϖi,rϰi),ru)=limi→∞ξ(rrϑi,ru)=0,limi→∞ξ(rΞ(rϖi,rϰi,rϑi),ru)=limi→∞ξ(rϖi,ru)=0and limi→∞ξ(rΞ(rϰi,rϑi,rϖi),ru)=limi→∞ξ(rϰi,ru)=0. |
By postulates (△i) and (△ii), we get
℘(1,1,ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′)))≤℘(1,α((rrϑi,rrϖi,rrϰi),(ru,ru′,ru′′)),ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′)))≤ℓ(ϕ∗(Q((rrϑi,ru),(rrϖi,ru′),(rrϰi,ru′′))),Q((rrϑi,ru),(rrϖi,ru′),(rrϰi,ru′′))), |
℘(1,1,ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u)))≤℘(1,α((rrϖi,rrϰi,rrϑi),(ru′,ru′′,ru)),ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u)))≤ℓ(ϕ∗(Q((rrϖi,ru′),(rrϰi,ru′′),(rrϑi,ru))),Q((rrϖi,ru′),(rrϰi,ru′′),(rrϑi,ru))) |
and
℘(1,1,ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′)))≤℘(1,α((rrϰi,rrϑi,rrϖi),(ru′′,ru,ru′)),ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′)))≤ℓ(ϕ∗(Q((rrϰi,ru′′),(rrϑi,ru),(rrϖi,ru′)))Q((rrϰi,ru′′),(rrϑi,ru),(rrϖi,ru′))), |
where
Q((rrϑi,ru),(rrϖi,ru′),(rrϰi,ru′′))=Q((rrϖi,ru′),(rrϰi,ru′′),(rrϑi,ru))=Q((rrϰi,ru′′),(rrϑi,ru),(rrϖi,ru′))=max{ξ(rrϑi,ru),ξ(rrϖi,ru′),ξ(rrϰi,ru′′),ξ(rrϑi,Ξ(rϑi,rϖi,rϰi)),ξ(rrϖi,Ξ(rϖi,rϰi,rϑi)),ξ(rrϰi,Ξ(rϰi,rϑi,rϖi)),ξ(ru,Ξ(u,u′,u′′)),ξ(ru′,Ξ(u′,u′′,u)),ξ(ru′′,Ξ(u′′,u′,u))}. | (2.16) |
Accordingly,
ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u))≤ϕ∗(Q((rrϖi,ru′),(rrϰi,ru′′),(rrϑi,ru)))Q((rrϖi,ru′),(rrϰi,ru′′),(rrϑi,ru)), | (2.17) |
ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′))≤ϕ∗(Q((rrϰi,ru′′),(rrϑi,ru),(rrϖi,ru′)))Q((rrϰi,ru′′),(rrϑi,ru),(rrϖi,ru′)) | (2.18) |
and
ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′))≤ϕ∗(Q((rrϑi,ru),(rrϖi,ru′),(rrϰi,ru′′)))Q((rrϑi,ru),(rrϖi,ru′),(rrϰi,ru′′)). | (2.19) |
Assume that ru≠Ξ(u,u′,u′′) or ru′≠Ξ(u′,u′′,u) or ru′′≠Ξ(u′′,u,u′), that is,
W=max{ξ(ru,Ξ(u,u′,u′′)),ξ(ru′,Ξ(u′,u′′,u)),ξ(ru′′,Ξ(u′′,u,u′))}>0. |
Applying hypothesis (hv), there is ℜ∈(0,1] so that
ξ(ru,Ξ(u,u′,u′′))≤ℜlim supi→∞ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′))≤ℜW,ξ(ru′,Ξ(u′,u′′,u))≤ℜlim supi→∞ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u))≤ℜW |
and
ξ(ru′′,Ξ(u′′,u,u′))≤ℜlim supi→∞ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′))≤ℜW. |
Hence
W=max{ξ(ru,Ξ(u,u′,u′′)),ξ(ru′,Ξ(u′,u′′,u)),ξ(ru′′,Ξ(u′′,u,u′))}≤ℜlim supi→∞max{ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′)),ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u)),ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′))}≤ℜW. |
Because 1≤1ℜ, we have
W≤1ℜW≤lim supi→∞max{ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′)),ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u)),ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′))}≤W, |
this implies that
W=lim supi→∞max{ξ(Ξ(rϑi,rϖi,rϰi),Ξ(u,u′,u′′)),ξ(Ξ(rϖi,rϰi,rϑi),Ξ(u′,u′′,u)),ξ(Ξ(rϰi,rϑi,rϖi),Ξ(u′′,u,u′))}. |
Then there exists a subsequence max{ξ(Ξ(rϑis,rϖis,rϰis),Ξ(u,u′,u′′)),ξ(Ξ(rϖis,rϰis,rϑis),Ξ(u′,u′′,u)),ξ(Ξ(rϰis,rϑis,rϖis),Ξ(u′′,u,u′))} so that
lims→∞max{ξ(Ξ(rϑis,rϖis,rϰis),Ξ(u,u′,u′′)),ξ(Ξ(rϖis,rϰis,rϑis),Ξ(u′,u′′,u)),ξ(Ξ(rϰis,rϑis,rϖis),Ξ(u′′,u,u′))}=W. |
Passing i→∞ in (2.16), we obtain that
lims→∞Q((rrϑi,ru),(rrϖi,ru′),(rrϰi,ru′′))=W. | (2.20) |
Using (2.17)–(2.19), one can write
max{ξ(Ξ(rϑis,rϖis,rϰis),Ξ(u,u′,u′′)),ξ(Ξ(rϖis,rϰis,rϑis),Ξ(u′,u′′,u)),ξ(Ξ(rϰis,rϑis,rϖis),Ξ(u′′,u,u′))}Q((rrϑis,ru),(rrϖis,ru′),(rrϰis,ru′′))≤ϕ∗(Q((rrϑis,ru),(rrϖis,ru′),(rrϰis,ru′′))). |
Putting s→∞ on both sides, we get
lims→∞ϕ∗(Q((rrϑis,ru),(rrϖis,ru′),(rrϰis,ru′′)))=1. |
Thus, lims→∞Q((rrϑis,ru),(rrϖis,ru′),(rrϰis,ru′′))=0. This contradicts (2.20). Hence ru=Ξ(u,u′,u′′) and ru′=Ξ(u′,u′′,u) and ru′′=Ξ(u′′,u,u′). Therefore, the element(u,u′,u′′) is a TCP of r and Ξ.
Corollary 2.9. The statements of Theorem 2.8 are still valid if we replace the stipulation (hi) with one of the assumptions below: (note Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)) is defined in Theorem 2.8):
(1) There exist ϕ∗∈Φ∗ and z>1, fulfilling, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the following inequality is obtained:
(ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))+z)α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))≤ϕ∗(Q(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)))Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))+z. |
(2) There exist ϕ∗∈Φ∗ and z>1, fulfilling, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the following inequality is verified:
(α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))+z)ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))≤(1+z)ϕ∗(Q(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)))Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)). |
(3) There is ϕ∗∈Φ∗, fulfilling, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯ so that
ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))≤ϕ∗(Q(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)))Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)). |
(4) There is ϕ∗∈Φ∗, satisfying, for any (rϑ,r˜ϑ)∈∇⪯, (rϖ,r˜ϖ)∈∇⪯ and (rϰ,r˜ϰ)∈∇⪯, the inequality below is obtained:
{α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))}j{ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))}k≤{Q(ϕ(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)))}k{Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))}k, |
for all positive integers j and k.
Proof. The proof follows immediately from Example 2.3 by applying the following in Theorem 2.8:
(1) Use the value of ℘ and ℓ from Example 2.3(1).
(2) Use the value of ℘ and ℓ from Example 2.3(2).
(3) Use the value of ℘ and ℓ from Example 2.3(3).
(4) Use the value of ℘ and ℓ from Example 2.3(4).
Example 2.10. Consider ℧=[0,+∞]. Define ξ(ϑ,ϖ)=|ϑ|+|ϖ|, for all ϑ,ϖ∈℧. Define Ξ:℧3→℧, r:℧→℧ and α:℧3×℧3→[0,+∞] by
Ξ(ϑ,ϖ,ϰ)={|ϑ−ϖ|+|ϖ−ϰ|+|ϰ−ϑ|8,if ϑ,ϖ,ϰ∈[0,+∞),+∞,otherwise, r(ϑ)={4ϑ,if ϑ∈[0,+∞),+∞,otherwise, |
and
α((ϑ,ϖ,ϰ),(˜ϑ,˜ϖ,˜ϰ))={1,if ϑ≤ϖ≤ϰ and~ ϑ≤˜ϖ≤˜ϰ,0,otherwise, |
respectively. Suppose that ϑ≤˜ϑ, ϖ≤˜ϖ and ϰ≤˜ϰ. When z>1, we have
(α((rϑ,rϖ,rϰ),(r˜ϑ,r˜ϖ,r˜ϰ))+z)ξ(Ξ(ϑ,ϖ,ϰ),Ξ(˜ϑ,˜ϖ,˜ϰ))×1≤(1+z)(||ϑ−ϖ|+|ϖ−ϰ|+|ϰ−ϑ|6|+||˜ϑ−˜ϖ|+|˜ϖ−˜ϰ|+|˜ϰ−˜ϑ|6|)≤(1+z)14(|ϑ|+|ϖ|+|ϰ|+|˜ϑ|+|˜ϖ|+|˜ϰ|)≤(1+z)34max{|4ϑ|+|4˜ϑ|,|4ϖ|+|4˜ϖ|,|4ϰ|+|4˜ϰ|}=(1+z)ϕ∗(Q(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)))Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ))=(1+z)ϕ∗(Q(ξ(rϑ,r˜ϑ),ξ(rϖ,r˜ϖ),ξ(rϰ,r˜ϰ)))Q((rϑ,r˜ϑ),(rϖ,r˜ϖ),(rϰ,r˜ϰ)). |
So, the condition (2) of Corollary 2.9 is fulfilled for ϕ∗(m)=34, where m∈[0,+∞]. In an easy way, it can be shown that all assumptions of Theorem 2.8 are satisfied, therefore Ξ and r have a TCP.
This section serves as the basis and core of our paper in which the existence of a solution to a system of integral equations is discussed. This system takes the following form:
{ϑ(b)=Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc,ϖ(b)=Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϖ(c))dc1∫0ℑ2(b,c)⅁2(c,ϰ(c))dc1∫0ℑ3(b,c)⅁3(c,ϑ(c))dc,ϰ(b)=Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϰ(c))dc1∫0ℑ2(b,c)⅁2(c,ϑ(c))dc1∫0ℑ3(b,c)⅁3(c,ϖ(c))dc, | (3.1) |
where b∈[0,1]. Consider ℧=C[0,1] equipped with ξ(ϑ,ϖ)=supb∈[0,1]|ϑ(b)−ϖ(b)|, for each ϑ,ϖ∈℧. Clearly, (℧,ξ,⪯) is a complete POJSM-space. Based on the theoretical results presented in the upper section of the paper, we are able to present theorems related to the existence of a solution to system (3.1) as follows:
Theorem 3.1. Consider the integral equations (3.1) via the following postulates:
(♡i) The functions Λ:[0,1]→R, ℑs:[0,1]×[0,1]→R+ and ⅁s:[0,1]×R→R+ are continuous, where s=1,2,3;
(♡ii) For ϑ1,ϑ2∈℧, if ϑ1≤ϑ2, then ⅁1(b,ϑ1(b))≤⅁1(b,ϑ2(b)), ⅁2(b,ϑ1(b))≤⅁2(b,ϑ2(b)) and ⅁3(b,ϑ1(b))≤⅁3(b,ϑ2(b));
(♡iii) There exist ˆA, ˆB and ˆC in R+ so that 3ˆAˆBˆC<1, 1∫0ℑs(b,c)dc≤ˆA, 1∫0ℑs(b,c)⅁s(c,ϑ(c))dc≤ˆC and
|⅁s(b,ϑ(b)−⅁s(b,˜ϑ(b)|≤ˆB|ϑ(b)−˜ϑ(b)|, |
where ϑ,˜ϑ∈℧, b∈[0,1] and s=1,2,3;
(♡iv) There exist ϑ0,ϖ0,ϰ0∈℧ such that ϑ0≤Ξ(ϑ0,ϖ0,ϰ0), ϖ0≤Ξ(ϖ0,ϰ0,ϑ0) and ϰ0≤Ξ(ϰ0,ϑ0,ϖ0);
(♡v) If {ϑi},{ϖi},{ϰi}∈℧ so that limi→∞|ϑi−ϑi+1|=0, limi→∞|ϖi−ϖi+1|=0 and limi→∞|ϰi−ϰi+1|=0, then
sup{|ϑ0−ϑi|,|ϖ0−ϖi|,|ϰ0−ϰi|:i≥1}<∞, |
where ϑ0,ϖ0,ϰ0∈℧.
Then Problem (3.1) possesses a solution.
Proof. Define the mappings Ξ:℧3→℧ and r:℧→℧ by
Ξ(ϑ,ϖ,ϰ)(b)=Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc |
and rϑ=ϑ for ϑ,ϖ,ϰ∈℧. Clearly Ξ is ξ−continuous Ξ(℧3)⊆r(℧) and r is ξ−continuous and commutes with Ξ. After that, we claim that Ξ is ⪯−r monotone. Suppose that ϑ1,ϑ2,ϖ,ϰ∈℧, ϑ1≤ϑ2. Based on postulate (♡ii), we get
Ξ(ϑ1,ϖ,ϰ)(b)=Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϑ1(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc≤Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϑ2(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc=Ξ(ϑ2,ϖ,ϰ)(b), |
Ξ(ϖ,ϰ,ϑ1)(b)=Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϖ(c))dc1∫0ℑ2(b,c)⅁2(c,ϰ(c))dc1∫0ℑ3(b,c)⅁3(c,ϑ1(c))dc,≤Λ(b)+1∫0ℑ1(b,c)⅁1(c,ϖ(c))dc1∫0ℑ2(b,c)⅁2(c,ϰ(c))dc1∫0ℑ3(b,c)⅁3(c,ϑ2(c))dc,=Ξ(ϖ,ϰ,ϑ2)(b). |
Similarly, one can show that Ξ(ϰ,ϑ1,ϖ)(b)≤Ξ(ϰ,ϑ2,ϖ)(b). Hence, Ξ has the ⪯−r monotone property.
Now, for (ϑ,ϖ,ϰ),(˜ϑ,˜ϖ,˜ϰ)∈℧3, describe α:℧3×℧3→[0,+∞] by α((ϑ,ϖ,ϰ),(˜ϑ,˜ϖ,˜ϰ))=1. Obviously, Ξ and r is αGTA. Also, assumptions (△ii) and (△iii) of Theorem 2.4 follow immediately from postulates (♡iv) and (♡v), respectively. In order to be able to validate Theorem 2.4, it remains to fulfill condition (△i), which can be replaced by condition (†3) of Corollary 2.5. Therefore, let ϑ,ϖ,ϰ,˜ϑ,˜ϖ,˜ϰ∈℧. If ϑ⪯˜ϑ, ϖ⪯˜ϖ and ϰ⪯˜ϰ, then using postulate (♡iii), we have
|Ξ(ϑ,ϖ,ϰ)(b)−Ξ(˜ϑ,˜ϖ,˜ϰ)(b)|=|1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc−1∫0ℑ1(b,c)⅁1(c,˜ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,˜ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,˜ϰ(c))dc|≤|1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)[⅁3(c,ϰ(c))−⅁3(c,˜ϰ(c))]dc|+|1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)[⅁2(c,ϖ(c))−⅁2(c,˜ϖ(c))]dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc|+|1∫0ℑ1(b,c)[⅁1(c,ϑ(c))−⅁1(c,˜ϑ(c))]dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc|≤ˆAˆBˆCsupb∈[0,1]|ϰ(b)−˜ϰ(b)|+ˆAˆBˆCsupb∈[0,1]|ϖ(b)−˜ϖ(b)|+ˆAˆBˆCsupb∈[0,1]|ϑ(b)−˜ϑ(b)|≤3ˆAˆBˆCmax{supb∈[0,1]|ϰ(b)−˜ϰ(b)|,supb∈[0,1]|ϖ(b)−˜ϖ(b)|,supb∈[0,1]|ϑ(b)−˜ϑ(b)|}. |
Consider ϕ=3ˆAˆBˆC<1, then ϕ∈˜Φ. Hence the condition (†3) of Corollary 2.5 is fulfilled. Therefore, a tripled fixed point of Ξ exists. Thus, there is a solution to the problem (3.1).
It should be noted that in the above theorem, JS-metric ξ is a usual metric, therefore, the results seem easy to obtain, for this reason, we define JS-metric ξ:℧2→[0,∞] by
ξ(ϑ,ϖ)=supb∈[0,1](|ϑ(b)|+|ϖ(b)|). |
Clearly, under this distance, JS-metric ξ is not a metric. As a result, (℧,ξ,⪯) is complete partially ordered. Moreover, we can guarantee the existence of the solution to system (3.1) only if it is homogeneous.
Theorem 3.2. From the integral equations (3.1), let Ξ:℧3→℧ be described as
Ξ(ϑ,ϖ,ϰ)(b)=1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc, |
where b∈[0,1]. Assume also,
(♣1) the functions ℑs:[0,1]×[0,1]→R+ and ⅁s:[0,1]×R→R+ are continuous, where s=1,2,3;
(♣2) for ϑ1,ϑ2∈℧, if ϑ1≤ϑ2, then ⅁1(b,ϑ1(b))≤⅁1(b,ϑ2(b)), ⅁2(b,ϑ1(b))≤⅁2(b,ϑ2(b)) and ⅁3(b,ϑ1(b))≤⅁3(b,ϑ2(b));
(♣3) there exist ˆA, ˆB and ˆC in R+ so that 3ˆAˆBˆC<1, 1∫0ℑs(b,c)dc≤ˆA, 1∫0ℑs(b,c)⅁s(c,ϑ(c))dc≤ˆC and
|⅁s(b,ϑ(b)|+|⅁s(b,˜ϑ(b)|≤ˆB(|ϑ(b)|+|˜ϑ(b)|), |
where ϑ,˜ϑ∈℧, b∈[0,1] and s=1,2,3;
(♣4) there exist ϑ0,ϖ0,ϰ0∈℧ so that ϑ0≤Ξ(ϑ0,ϖ0,ϰ0), ϖ0≤Ξ(ϖ0,ϰ0,ϑ0) and ϰ0≤Ξ(ϰ0,ϑ0,ϖ0).
Then Problem (3.1) has a solution provided that the integral equations are homogeneous.
Proof. Assume that α((ϑ,ϖ,ϰ),(˜ϑ,˜ϖ,˜ϰ))=1 for any (ϑ,ϖ,ϰ),(˜ϑ,˜ϖ,˜ϰ)∈℧3. Repeating the same arguments used in Theorem 3.1, under this JS-{metric }ξ and considering r is the identity mapping, we have the ξ−continuities of r and Ξ and all assumption except condition (△i) of Theorem 2.4 are valid.
So, our task is to prove the condition (△i) of Theorem 2.4. Again, this condition can be replaced by assumption (†3) of Corollary 2.5. Let ϑ,ϖ,ϰ,˜ϑ,˜ϖ,˜ϰ∈℧. If ϑ⪯˜ϑ, ϖ⪯˜ϖ and ϰ⪯˜ϰ, then by (♣3), we get
|Ξ(ϑ,ϖ,ϰ)(b)|+|Ξ(˜ϑ,˜ϖ,˜ϰ)(b)|=|1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc| |
+|1∫0ℑ1(b,c)⅁1(c,˜ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,˜ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,˜ϰ(c))dc|≤|1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)[⅁3(c,ϰ(c))+⅁3(c,˜ϰ(c))]dc|+|1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc1∫0ℑ2(b,c)[⅁2(c,ϖ(c))+⅁2(c,˜ϖ(c))]dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc| |
+|1∫0ℑ1(b,c)[⅁1(c,ϑ(c))+⅁1(c,˜ϑ(c))]dc1∫0ℑ2(b,c)⅁2(c,ϖ(c))dc1∫0ℑ3(b,c)⅁3(c,ϰ(c))dc|≤ˆAˆBˆCsupb∈[0,1](|ϰ(b)|+|˜ϰ(b)|)+ˆAˆBˆCsupb∈[0,1](|ϖ(b)|+|˜ϖ(b)|)+ˆAˆBˆCsupb∈[0,1](|ϑ(b)|+|˜ϑ(b)|) |
≤3ˆAˆBˆCmax{supb∈[0,1](|ϰ(b)|+|˜ϰ(b)|),supb∈[0,1](|ϖ(b)|+|˜ϖ(b)|),supb∈[0,1](|ϑ(b)|+|˜ϑ(b)|)}. |
Analogously, if we take ϕ=3ˆAˆBˆC<1, then ϕ∈˜Φ. Hence, the assumption (†3) of Corollary 2.5 is satisfied. Hence, Ξ possesses a tripled fixed point, which is a unique solution for the problem (3.1) under the condition of homogeneity for these equations.
The following example supports Theorem 3.2:
Example 3.3. Consider the problem below:
{ϑ(b)=1∫0c21+b4.11+c3.|ϑ(c)|1+|ϑ(c)|dc1∫0ce−b2.c21+c4.|ϖ(c)|2+|ϖ(c)|dc1∫0c3e−b2.c31+c7.|ϰ(c)|3+|ϰ(c)|dcϖ(b)=1∫0c21+b4.11+c3.|ϖ(c)|1+|ϖ(c)|dc1∫0ce−b2.c21+c4.|ϰ(c)|2+|ϰ(c)|dc1∫0c3e−b2.c31+c7.|ϑ(c)|3+|ϑ(c)|dcϰ(b)=1∫0c21+b4.11+c3.|ϰ(c)|1+|ϰ(c)|dc1∫0ce−b2.c21+c4.|ϑ(c)|2+|ϑ(c)|dc1∫0c3e−b2.c31+c7.|ϖ(c)|3+|ϖ(c)|dc, | (3.2) |
where b∈[0,1]. By comparing this system with system (3.1) in the homogeneous case, we can write
ℑ1(b,c)=c21+b4,⅁1(c,ϑ(c))=11+c3.|ϑ(c)|1+|ϑ(c)|,ℑ2(b,c)=c2e−b2,⅁2(c,ϑ(c))=c1+c4.|ϑ(c)|2+|ϑ(c)|,ℑ3(b,c)=c2e−b3,⅁3(c,ϑ(c))=c41+c7.|ϑ(c)|3+|ϑ(c)|, |
for b,c∈[0,1]. It is easy to see that ℑs and ⅁s are continuous, and ⅁s(c,ϑ)≥0 for s=1,2,3. Furthermore, ⅁s(b,ϑ(b))≤⅁s(b,ϖ(b)) whenever ϑ≤ϖ for all s=1,2,3. Moreover, for non-positive-valued ϑ0,ϖ0,ϰ0, the assumption (♣4) of Theorem 3.2 holds.
Now, consider
|⅁1(b,ϑ(b))|+|⅁1(b,˜ϑ(b))|=11+b3(|ϑ(b)|1+|ϑ(b)|+|˜ϑ(b)|1+|˜ϑ(b)|)≤12(|ϑ(b)|+|˜ϑ(b)|), |
|⅁2(b,ϖ(b))|+|⅁2(b,˜ϖ(b))|=b1+b4(|ϖ(b)|2+|ϖ(b)|+|˜ϖ(b)|2+|˜ϖ(b)|)≤12(|ϖ(b)|+|˜ϖ(b)|), |
and
|⅁3(b,ϰ(b))|+|⅁3(b,˜ϰ(b))|=b41+b7(|ϰ(b)|3+|ϰ(b)|+|˜ϰ(b)|3+|˜ϰ(b)|)≤12(|ϰ(b)|+|˜ϰ(b)|), |
so, assume that ˆB=12. Also, one can write
1∫0ℑ1(b,c)⅁1(c,ϑ(c))dc≤1∫0c21+b4.11+c3dc=11+b4.13ln(2)≤13ln(2),1∫0ℑ2(b,c)⅁2(c,ϑ(c))dc≤1∫0c2e−b2.c1+c4dc=e−b2.14ln(2)≤14ln(2),1∫0ℑ2(b,c)⅁2(c,ϑ(c))dc≤1∫0c2e−b3.c41+c7dc=e−b3.17ln(2)≤17ln(2). |
Putting ˆC=13ln(2), we have 1∫0ℑs(b,c)⅁s(c,ϑ(c))dc≤ˆC for s=1,2,3. Moreover,
1∫0ℑ1(b,c)dc=1∫0c21+b4dc=13(1+b4)≤13,1∫0ℑ2(b,c)dc=1∫0c2e−b2dc=13e−b2≤13,1∫0ℑ3(b,c)dc=1∫0c2e−b3dc=13e−b3≤13, |
select ˆA=13, then we have 1∫0ℑs(b,c)dc≤ˆA. Consequently, 3ˆAˆBˆC=16ln(2)<1. Therefore, all hypotheses of Theorem 3.2 are fulfilled. This implies that Problem (3.2) owns a solution in C[0,1].
The existence of a tripled coincidence point of a generalized contraction type mapping, which is considered in JS-metric spaces endowed with a partial order, was investigated in this article. Furthermore, the theoretical results have been supported by illustrative examples. Ultimately, as an application, the existence of a solution for a system of non-homogeneous and homogeneous integral equations is provided. Moreover, a numerical example of the system is derived. Along with the works presented in [4,24,25] as future works, we launch the following two inquiries: What would the results look like if the JS-metric space was replaced by a Modular space? What if we used the variational principle?
The authors would like to acknowledge the support of Prince Sultan University for paying the Article Processing Charges (APC) of this publication through the Theoretical and Applied Sciences Lab.
The authors declare that they have no competing interests concerning the publication of this article.
[1] | J. Liouville, Extrait d'un mémoire sur le développement des fonctions en séries dont les différents termes sont assujétis satisfaire une meme équation différentielle lináire, contenant un paramètre variable, J. Math. Pures Appli., 2 (1837), 16–35. |
[2] | E. Picard, Mémoire sur la thórie des équations aux derivées partielles et la méthode des approximations successives, J. Math. Pures Appl., 6 (1890), 145–210. |
[3] | S. Banach, Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales, Fund. Math., 3 (1922), 138–181. |
[4] |
M. Jleli, B. Samet, A generalized metric space and related fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 61. https://doi.org/10.1186/s13663-015-0312-7 doi: 10.1186/s13663-015-0312-7
![]() |
[5] |
H. A. Hammad, M. De la Sen, H. Aydi, Analytical solution for differential and nonlinear integral equations via Fϖe-Suzuki contractions in modified ϖe-metric-like spaces, J. Funct. Spaces, 2021 (2021), 6128586. https://doi.org/10.1155/2021/6128586 doi: 10.1155/2021/6128586
![]() |
[6] |
E. Karapinar, B. Samet, D. Zhang, Meir-Keeler type contractions on JS-metric spaces and related fixed point theorems, J. Fixed Point Theory Appl., 20 (2018), 60. https://doi.org/10.1007/s11784-018-0544-3 doi: 10.1007/s11784-018-0544-3
![]() |
[7] |
N. Phudolsitthiphat, A. Wiriyapongsanon, Coupled coincidence point results in partially ordered JS-metric spaces, Novi Sad J. Math., 47 (2017), 173–185. https://doi.org/10.30755/NSJOM.06094 doi: 10.30755/NSJOM.06094
![]() |
[8] |
D. Guo, V. Lakshmikantham, Coupled fixed points of nonlinear operators with application, Nonlinear Anal.: Theory Methods Appl., 11 (1987), 623–632. https://doi.org/10.1016/0362-546X(87)90077-0 doi: 10.1016/0362-546X(87)90077-0
![]() |
[9] |
T. G. Bhaskar, V. Lakshmikantham, Fixed point theorems in partially ordered metric space and applications, Nonlinear Anal.: Theory Methods Appl., 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017 doi: 10.1016/j.na.2005.10.017
![]() |
[10] |
M. Abbas, M. A. Khan, S. Radenović, Common coupled fixed point theorems in cone metric spaces for w-compatible mappings, Appl. Math. Comput., 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042 doi: 10.1016/j.amc.2010.05.042
![]() |
[11] |
H. Aydi, M. Postolache, W. Shatanawi, Coupled fixed point results for (ψ,ϕ)-weakly contractive mappings in ordered G- metric spaces, Comput. Math. Appl., 63 (2012), 298–309. https://doi.org/10.1016/j.camwa.2011.11.022 doi: 10.1016/j.camwa.2011.11.022
![]() |
[12] |
H. A. Hammad, M. De la Sen, A coupled fixed point technique for solving coupled systems of functional and nonlinear integral equations, Mathematics, 7 (2019), 634. https://doi.org/10.3390/math7070634 doi: 10.3390/math7070634
![]() |
[13] |
N. V. Luong, N. X. Thuan, Coupled fixed points in partially ordered metric spaces and application, Nonlinear Anal.: Theory Methods Appl., 74 (2011), 983–992. https://doi.org/10.1016/j.na.2010.09.055 doi: 10.1016/j.na.2010.09.055
![]() |
[14] | H. A. Hammad, D. M. Albaqeri, R. A. Rashwan, Coupled coincidence point technique and its application for solving nonlinear integral equations in RPOCbML spaces, J. Egypt. Math. Soc., 28 (2020), 1–17. |
[15] |
V. Berinde, M. Borcut, Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4889–4897. https://doi.org/10.1016/j.na.2011.03.032 doi: 10.1016/j.na.2011.03.032
![]() |
[16] |
M. Borcut, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 7339–7346. https://doi.org/10.1016/j.amc.2012.01.030 doi: 10.1016/j.amc.2012.01.030
![]() |
[17] |
M. Borcut, V. Berinde, Tripled coincidence theorems for contractive type mappings in partially ordered metric spaces, Appl. Math. Comput., 218 (2012), 5929–5936. https://doi.org/10.1016/j.amc.2011.11.049 doi: 10.1016/j.amc.2011.11.049
![]() |
[18] |
H. Aydi, M. Abbas, W. Sintunavarat, P. Kumam, Tripled fixed point of W-compatible mappings in abstract metric spaces, Fixed Point Theory Appl., 2012 (2012), 134. https://doi.org/10.1186/1687-1812-2012-134 doi: 10.1186/1687-1812-2012-134
![]() |
[19] |
H. A. Hammad, M. De la Sen, Tripled fixed point techniques for solving system of tripled-fractional differential equations, AIMS Math., 6 (2021), 2330–2343. https://doi.org/10.3934/math.2021141 doi: 10.3934/math.2021141
![]() |
[20] |
H. A. Hammad, M. De la Sen, A tripled fixed point technique for solving a tripled-system of integral equations and Markov process in CCbMS, Adv. Differ. Equ., 2020 (2020), 567. https://doi.org/10.1186/s13662-020-03023-y doi: 10.1186/s13662-020-03023-y
![]() |
[21] |
H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2020), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
![]() |
[22] | A. H. Ansari, Note on α-admissible mappings and related fixed point theorems, The 2nd Regional Conference on Mathematics and Applications, Payame Noor University, 2014,373–376. |
[23] |
Z. Kadelburg, P. Kumam, S. Radenović, W. Sintunavarat, Common coupled fixed point theorems for Geraghty-type contraction mappings using monotone property, Fixed Point Theory Appl., 2015 (2015), 27. https://doi.org/10.1186/s13663-015-0278-5 doi: 10.1186/s13663-015-0278-5
![]() |
[24] |
B. Zlatanov, A variational principle and coupled fixed points, J. Fixed Point Theory Appl., 21 (2019), 69. https://doi.org/10.1007/s11784-019-0706-y doi: 10.1007/s11784-019-0706-y
![]() |
[25] |
S. Kabaivanov, B. Zlatanov, A variational principle, coupled fixed points and market equilibrium, Nonlinear Anal.: Model. Control, 26 (2021), 169–185. https://doi.org/10.15388/namc.2021.26.21413 doi: 10.15388/namc.2021.26.21413
![]() |