Research article Special Issues

On a general class of $ n $th order sequential hybrid fractional differential equations with boundary conditions

  • Received: 07 December 2022 Revised: 28 January 2023 Accepted: 28 January 2023 Published: 21 February 2023
  • MSC : 34A08, 34A12, 47H10

  • This manuscript is related to consider a general class of $ n $th order sequential hybrid fractional differential equations (S-HFDEs) with boundary conditions. With the help of the coincidence degree theory of topology, some appropriate results for the existence theory of the aforementioned class are developed. The mentioned degree theory is a powerful tool to investigate nonlinear problems for qualitative theory. A result related to Ulam-Hyers (U-H) stability is also developed for the considered problem. It should be kept in mind that the considered degree theory relaxes the strong compact condition by some weaker one. Hence, it is used as a sophisticated tool in the investigation of the existence theory of solutions to nonlinear problems. Also, an example is given.

    Citation: Shaista Gul, Rahmat Ali Khan, Kamal Shah, Thabet Abdeljawad. On a general class of $ n $th order sequential hybrid fractional differential equations with boundary conditions[J]. AIMS Mathematics, 2023, 8(4): 9740-9760. doi: 10.3934/math.2023491

    Related Papers:

  • This manuscript is related to consider a general class of $ n $th order sequential hybrid fractional differential equations (S-HFDEs) with boundary conditions. With the help of the coincidence degree theory of topology, some appropriate results for the existence theory of the aforementioned class are developed. The mentioned degree theory is a powerful tool to investigate nonlinear problems for qualitative theory. A result related to Ulam-Hyers (U-H) stability is also developed for the considered problem. It should be kept in mind that the considered degree theory relaxes the strong compact condition by some weaker one. Hence, it is used as a sophisticated tool in the investigation of the existence theory of solutions to nonlinear problems. Also, an example is given.



    加载中


    [1] S. Ahmad, A. Ullah, Q. M. Al-Mdallal, H. Khan, K. Shah, A. Khan, Fractional order mathematical modeling of COVID-19 transmission, Chaos Soliton. Fract., 139 (2020), 110256. https://doi.org/10.1016/j.chaos.2020.110256 doi: 10.1016/j.chaos.2020.110256
    [2] J. Alzabut, S. Tyagi, S. Abbas, Discrete fractional-order BAM neural networks with leakage delay: Existence and stability results, Asian J. Control, 22 (2020), 143–155. https://doi.org/10.1002/asjc.1918 doi: 10.1002/asjc.1918
    [3] J. Alzabut, G. T. Stamov, E. Sermutlu, Positive almost periodic solutions for a delay logarithmic population model, Math. Comput. Model., 53 (2011), 161–167. https://doi.org/10.1016/j.mcm.2010.07.029 doi: 10.1016/j.mcm.2010.07.029
    [4] R. Hilfer, Applications of fractional calculus in Physics, World scientific, Singapore, 2000.
    [5] J. A. T. Machado, M. F. Silva, R. S. Barbosa, I. S. Jesus, C. M. Reis, M. G. Marcos, et al., Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010). https://doi.org/10.1155/2010/639801 doi: 10.1155/2010/639801
    [6] M. A. García-Aspeitia, G. Fernandez-Anaya, A. Hernández-Almada, G. Leon, J. Magana, Cosmology under the fractional calculus approach, Mon. Not. R. Astron. Soc., 517 (2022), 4813–4826. https://doi.org/10.1093/mnras/stac3006 doi: 10.1093/mnras/stac3006
    [7] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Soliton. Fract., 144 (2021), 110668. https://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [8] E. F. D. Goufo, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos Soliton. Fract., 130 (2020), 109467. https://doi.org/10.1016/j.chaos.2019.109467 doi: 10.1016/j.chaos.2019.109467
    [9] S. Kumar, R. Kumar, M. S. Osman, B. Samet, A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials, Numer. Meth. Part. Differ. Equ., 37 (2021), 1250–1268. https://doi.org/10.1002/num.22577 doi: 10.1002/num.22577
    [10] V. E. Tarasov, Geometric interpretation of fractional-order derivative, Fract. Calc. Appl. Anal., 19 (2016), 1200–1221. https://doi.org/10.1515/fca-2016-0062 doi: 10.1515/fca-2016-0062
    [11] F. B. Adda, Geometric interpretation of the differentiability and gradient of real order, C. R. Acad. Sci. I-Math., 8 (1998), 931–934. https://doi.org/10.1016/S0764-4442(98)80116-X doi: 10.1016/S0764-4442(98)80116-X
    [12] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equations, Nonlinear Anal.-Hybri., 4 (2010), 414–424. https://doi.org/10.1016/j.nahs.2009.10.005 doi: 10.1016/j.nahs.2009.10.005
    [13] B. C. Dhage, N. Jadhav, Basic results in the theory of hybrid differential equations with linear perturbations of second type, Tamkang J. Math., 44 (2013), 171–186. https://doi.org/10.5556/j.tkjm.44.2013.1086 doi: 10.5556/j.tkjm.44.2013.1086
    [14] H. Lu, S. Sun, D. Yang, H. Teng, Theory of fractional hybrid differential equations with linear perturbations of second type, Bound. Value Probl., 2013 (2013), 23.
    [15] Y. Zhao, S. Sun, Z. Han, Q. Li, Theory of fractional hybrid differential equations, Comput. Math. Appl., 62 (2011), 1312–1324. https://doi.org/10.1016/j.camwa.2011.03.041 doi: 10.1016/j.camwa.2011.03.041
    [16] B. Ahmad, S. K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal., 2014 (2014), 705809.
    [17] B. C. Dhage, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equat. Appl., 2 (2010), 465–486.
    [18] S. Sun, Y. Zhao, Z. Han, Y. Li, The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci., 17 (2012), 4961–4967. https://doi.org/10.1016/j.cnsns.2012.06.001 doi: 10.1016/j.cnsns.2012.06.001
    [19] B. C. Dhage, Periodic boundary value problems of first order Caratheodory and discontinuous differential equations, Nonlinear Funct. Anal. Appl., 13 (2008), 323–352.
    [20] B. C. Dhage, Basic results in the theory of hybrid differential equations with mixed perturbations of second type, Funct. Differ. Equ., 19 (2012), 1–20.
    [21] S. Sitho, S. K. Ntouyas, J. Tariboon, Existence results for hybrid fractional integro-differential equations, Bound. Value Probl., 2015 (2015), 1–13.
    [22] B. C. Dhage, S. K. Ntouyas, Existence results for boundary value problems for fractional hybrid differential inclusions, Topol. Method. Nonl. An., 44 (2014), 229–238.
    [23] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence results for a system of coupled hybrid fractional differential equations, The Scientific World J., 2014 (2014), 426438.
    [24] M. Hannabou, K. Hilal, A. Kajouni, Existence results of hybrid fractional sequential integro-differntial equations, Eng. Math. Lett., 2 (2020), 1–19.
    [25] F. Isaia, On a nonlinear integral equation without compactness, Acta Math. Univ. Comen., 75 (2006), 233–240.
    [26] D. Baleanu, S. Etemad, S. Rezapour, A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions, Bound. Value Probl., 2020 (2020), 1–6.
    [27] D. Baleanu, S. Etemad, S. Rezapour, On a fractional hybrid integro-differential equation with mixed hybrid integral boundary value conditions by using three operators, Alex. Eng. J., 59 (2020), 3019–3027. https://doi.org/10.1016/j.aej.2020.04.053 doi: 10.1016/j.aej.2020.04.053
    [28] S. Rezapour, A. Imran, A. Hussain, F. Martinez, S. Etemad, M. K. Kaabar, Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs, Symmetry, 13 (2021), 469. https://doi.org/10.3390/sym13030469 doi: 10.3390/sym13030469
    [29] S. Rezapour, S. B. Chikh, A. Amara, S. K. Ntouyas, J. Tariboon, S. Etemad, Existence results for Caputo-Hadamard nonlocal fractional multi-order boundary value problems, Mathematics, 9 (2021), 719. https://doi.org/10.3390/math9070719 doi: 10.3390/math9070719
    [30] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Soliton. Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [31] N. H. Tuan, H. Mohammadi, S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Soliton. Fract., 140 (2020), 110107. https://doi.org/10.1016/j.chaos.2020.110107 doi: 10.1016/j.chaos.2020.110107
    [32] N. Laksaci, A. Boudaoui, K. Abodayeh, W. Shatanawi, T. A. Shatnawi, Existence and uniqueness results of coupled fractional-order differential systems involving Riemann-Liouville derivative in the space $Wa+ \gamma_1, 1 (a, b)\times Wa+ \gamma_2, 1 (a, b)$ with Perov's fixed point theorem, Fractal Fract., 5 (2021), 217. https://doi.org/10.3390/fractalfract5040217 doi: 10.3390/fractalfract5040217
    [33] S. Rezapour, S. K. Ntouyas, M. Q. Iqbal, A. Hussain, S. Etemad, J. Tariboon, An analytical survey on the solutions of the generalized double-order-integrodifferential equation, J. Funct. Space., 2021 (2021), 6667757.
    [34] S. S. Redhwan, S. L. Shaikh, M. S. Abdo, W. Shatanawi, K. Abodayeh, M. A. Almalahi, et al., Investigating a generalized Hilfer-type fractional differential equation with two-point and integral boundary conditions, AIMS Math., 7 (2022), 1856–1872. https://doi.org/10.3934/math.2022107 doi: 10.3934/math.2022107
    [35] A. Amara, S. Etemad, S. Rezapour, Topological degree theory and Caputo-Hadamard fractional boundary value problems, Adv. Differential Equ., 2020 (2020), 1–22. https://doi.org/10.1186/s13662-020-02833-4 doi: 10.1186/s13662-020-02833-4
    [36] D. Baleanu, S. Etemad, S. Pourrazi, S. Rezapour, On the new fractional hybrid boundary value problems with three-point integral hybrid conditions, Adv. Differential Equ., 2019 (2019), 1–21. https://doi.org/10.1186/s13662-019-2407-7 doi: 10.1186/s13662-019-2407-7
    [37] A. Boutiara, S. Etemad, A. Hussain, S. Rezapour, The generalized U-H and U-H stability and existence analysis of a coupled hybrid system of integro-differential IVPs involving f-Caputo fractional operators, Adv. Differential Equ., 2021 (2021), 1–21. https://doi.org/10.1186/s13662-021-03253-8 doi: 10.1186/s13662-021-03253-8
    [38] W. M. Haddad, V. S. Chellaboina, S. G. Nersesov, Impulsive and hybrid dynamical systems: Stability, dissipativity and control, Princeton University Press: Princeton, NJ, USA, 2006.
    [39] G. Rajchakit, A. Pratap, R. Raja, J. Cao, J. Alzabut, C. Huang, Hybrid control scheme for projective lag synchronization of Riemann-Liouville sense fractional order memristive BAM neural networks with mixed delays, Mathematics, 7 (2019), 759. https://doi.org/10.3390/math7080759 doi: 10.3390/math7080759
    [40] M. Sher, K. Shah, M. Feckan, R. A. Khan, Qualitative analysis of multi-terms fractional order delay differential equations via the topological degree theory, Mathematics, 8 (2020), 218. https://doi.org/10.3390/math8020218 doi: 10.3390/math8020218
    [41] M. Jamil, R. A. Khan, K. Shah, Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations, Bound. Value Probl., 2019 (2019), 1–12.
    [42] A. Salem, M. Alnegga, Measure of noncompactness for hybrid Langevin fractional differential equations, Axioms, 9 (2020), 59. https://doi.org/10.3390/axioms9020059 doi: 10.3390/axioms9020059
    [43] Y. J. Cho, Y. Q. Chen, Topological degree theory and applications, Chapman and Hall/CRC, New York, 2006.
    [44] K. Kuratowski, Topology: Volume I, Elsevier, New York, 2014.
    [45] M. Ahmad, A. Zada, J. Alzabut, Stability analysis of a nonlinear coupled implicit switched singular fractional differential system with p-Laplacian, Adv. Differential Equ., 2019 (2019), 1–22. https://doi.org/10.1186/s13662-019-2367-y doi: 10.1186/s13662-019-2367-y
    [46] K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, New York, 1985. https://doi.org/10.1007/978-3-662-00547-7
    [47] I. Ahmad, K. Shah, G. Rahman, D. Baleanu, Stability analysis for a nonlinear coupled system of fractional hybrid delay differential equations, Math. Meth. Appl. Sci., 43 (2020), 8669–8682. https://doi.org/10.1002/mma.6526 doi: 10.1002/mma.6526
    [48] Samina, K. Shah, R. A. Khan, Stability theory to a coupled system of nonlinear fractional hybrid differential equations, Indian J. Pure Appl. Math., 51 (2020), 669–687. https://doi.org/10.1007/s13226-020-0423-7 doi: 10.1007/s13226-020-0423-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(943) PDF downloads(49) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog