Research article Special Issues

Numerical solution for heat transfer in a staggered enclosure with wavy insulated baffles

  • Received: 12 September 2022 Revised: 31 December 2022 Accepted: 09 January 2023 Published: 02 February 2023
  • MSC : 35A25, 65MO6, 76D05, 76M10

  • The present study contains examination on partial differential equations narrating heat transfer aspects in magnetized staggered cavity manifested with wavy insulated baffles. The nanoparticles namely Aluminium oxide are suspended in the flow regime within staggered enclosure having purely viscous fluid. The flow is modelled mathematically in terms of partial differential equations and the finite element is used to discretized the flow differential equations. The effects of several parameters such as Hartmann number $ \left(0\le Ha\le 100\right) $, Volume fraction $ \left(0.00\le \phi \le 0.08\right), $ Rayleigh number $ \left({10}^{3}\le Ra\le {10}^{5}\right), $ and angle of inclinaton $ \left({0}^{o}\le \gamma \le {60}^{o}\right) $ on the thermal flow and distribution of nanomaterials for natural convection are inspected. It is calculated how much Ha will affect velocities and isotherms wit h $ Ra = {10}^{4} $ and $ \phi = 0.02 $. With Ha = 20 and $ \phi $ = 0.02, the effect of Ra on velocity and isotherms is also estimated. The average Bejan number and average Nusselt number against Hartmann number are investigated. When the walls move in an opposite direction, line graphs of velocity distribution are created for both the u and v components. The presence of Hartmann number leads to increase in Bejan number while, opposite behavior can be observed in case of average Nusselt number. When the volume fraction is large, the velocity increases significantly. The flow strength is greater when the Rayleigh number is smaller. On the other hand, as Ra drops, or when $ Ra = {10}^{4} $, flow strength drops.

    Citation: Rashid Mahmood, Nusrat Rehman, Afraz Hussain Majeed, Khalil Ur Rehman, Wasfi Shatanawi. Numerical solution for heat transfer in a staggered enclosure with wavy insulated baffles[J]. AIMS Mathematics, 2023, 8(4): 8332-8348. doi: 10.3934/math.2023420

    Related Papers:

  • The present study contains examination on partial differential equations narrating heat transfer aspects in magnetized staggered cavity manifested with wavy insulated baffles. The nanoparticles namely Aluminium oxide are suspended in the flow regime within staggered enclosure having purely viscous fluid. The flow is modelled mathematically in terms of partial differential equations and the finite element is used to discretized the flow differential equations. The effects of several parameters such as Hartmann number $ \left(0\le Ha\le 100\right) $, Volume fraction $ \left(0.00\le \phi \le 0.08\right), $ Rayleigh number $ \left({10}^{3}\le Ra\le {10}^{5}\right), $ and angle of inclinaton $ \left({0}^{o}\le \gamma \le {60}^{o}\right) $ on the thermal flow and distribution of nanomaterials for natural convection are inspected. It is calculated how much Ha will affect velocities and isotherms wit h $ Ra = {10}^{4} $ and $ \phi = 0.02 $. With Ha = 20 and $ \phi $ = 0.02, the effect of Ra on velocity and isotherms is also estimated. The average Bejan number and average Nusselt number against Hartmann number are investigated. When the walls move in an opposite direction, line graphs of velocity distribution are created for both the u and v components. The presence of Hartmann number leads to increase in Bejan number while, opposite behavior can be observed in case of average Nusselt number. When the volume fraction is large, the velocity increases significantly. The flow strength is greater when the Rayleigh number is smaller. On the other hand, as Ra drops, or when $ Ra = {10}^{4} $, flow strength drops.



    加载中


    [1] U. Ghia, K. N. Ghia, C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387–411. https://doi.org/10.1016/0021-9991(82)90058-4 doi: 10.1016/0021-9991(82)90058-4
    [2] W. F. Spotz, G. F. Carey, High‐order compact scheme for the steady stream‐function vorticity equations, Int. J. Numer. Methods Eng., 38 (1995), 3497–3512. https://doi.org/10.1002/nme.1620382008 doi: 10.1002/nme.1620382008
    [3] J. C. Kalita, D. C. Dalal, A. K. Dass, A class of higher order compact schemes for the unsteady two-dimensional convection-diffusion equation with variable convection coefficients, Int. J. Numer. Methods Fluids, 38 (2002), 1111–1131. https://doi.org/10.1002/fld.263 doi: 10.1002/fld.263
    [4] J. C. Kalita, P. Chhabra, An improved (9, 5) higher order compact scheme for the transient two-dimensional convection-diffusion equation, Int. J. Numer. Methods Fluids, 51 (2006), 703–717. https://doi.org/10.1002/fld.1133 doi: 10.1002/fld.1133
    [5] S. K. Pandit, J. C. Kalita, D. C. Dalal, A fourth-order accurate compact scheme for the solution of steady Navier-Stokes equations on non-uniform grids, 37 (2008), 121–134. https://doi.org/10.1016/j.compfluid.2007.04.002
    [6] P. M. Tekić, J. B. Rađenović, N. Lj. Lukić, S. S. Popović, Lattice Boltzmann simulation of two-sided lid-driven flow in a staggered cavity, 24 (2010), 383–390. https://doi.org/10.1080/10618562.2010.539974
    [7] Y. Bazilevs, M. Hsu, J. Kiendl, R. Wüchner, K. Bletzinger, 3D simulation of wind turbine rotors at full scale. Part Ⅱ: Fluid-structure interaction modeling with composite blades, Int. J. Numer. Methods Fluids, 65 (2010), 236–253. https://doi.org/10.1002/fld.2454. doi: 10.1002/fld.2454
    [8] J. C. Kalita, B. B. Gogoi, Global two-dimensional stability of the staggered cavity flow with an HOC approach, Comput. Math. Appl., 67 (2014), 569–590. http://doi.org/10.1016/j.camwa.2013.12.001 doi: 10.1016/j.camwa.2013.12.001
    [9] J. V. Indukuri, R. Maniyeri, Numerical simulation of oscillating lid driven square cavity, Alexandria Eng. J., 57 (2018), 2609–2625. http://doi.org/10.1016/j.aej.2017.07.011 doi: 10.1016/j.aej.2017.07.011
    [10] H. F. Oztop, E. Abu-nada, Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids, Int. J. Heat Fluid Flow, 29 (2008), 1326–1336. https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009 doi: 10.1016/j.ijheatfluidflow.2008.04.009
    [11] M. Hinatsu, J. H. Ferziger, Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique, Int. J. Numer. Methods Fluids, 13 (1991), 971–997. https://doi.org/10.1002/fld.1650130804 doi: 10.1002/fld.1650130804
    [12] H. C. Kuhlmann, M. Wanschura, H. J. Rath, Flow in two-sided lid-driven cavities: non-uniqueness, instabilities, and cellular structures, 336 (1997), 267–299. https://doi.org/10.1017/S0022112096004727 doi: 10.1017/S0022112096004727
    [13] S. Albensoeder, H. C. Kuhlmann, H. J. Rath, Multiplicity of steady two-dimensional flows in two-sided lid-driven cavities, Theor. Comput. Fluid Dyn., 14 (2001), 223–241.
    [14] Y. C. Zhou, B. S. V Patnaik, D. C. Wan, G. W. Wei, DSC solution for flow in a staggered double lid driven cavity, Int. J. Numer. Methods Eng., 234 (2003), 211–234. https://doi.org/10.1002/nme.674 doi: 10.1002/nme.674
    [15] P. Nithiarasu, C. -B. Liu, Steady and unsteady incompressible flow in a double driven cavity using the artificial compressibility (AC) -based characteristic-based split (CBS) scheme, Int. J. Numer. Methods Eng., 63 (2005), 380–397. https://doi.org/10.1002/nme.1280 doi: 10.1002/nme.1280
    [16] S. A. M. Alsallami, Usman, S. U. Khan, A. Ghaffari, M. I. Khan, M. A. El-Shorbagy, et al., Numerical simulations for optimised flow of second-grade nanofluid due to rotating disk with nonlinear thermal radiation: Chebyshev spectral collocation method analysis, Pramana-J. Phys., 96 (2022), 98. https://doi.org/10.1007/s12043-022-02337-8 doi: 10.1007/s12043-022-02337-8
    [17] Usman, A. A. Memon, H. Anwaar, T. Muhammad, A. A. Alharbi, A. S. Alshomrani, et al., A forced convection of water-aluminum oxide nanofluids in a square cavity containing a circular rotating disk of unit speed with high Reynolds number: A Comsol multiphysics study, Case Stud. Therm. Eng., 39 (2022), 102370. https://doi.org/10.1016/j.csite.2022.102370 doi: 10.1016/j.csite.2022.102370
    [18] S. Eiamsa-ard, S. Pattanapipat, P. Promvonge, Influence of triangular wavy baffles on heat and fluid flow characteristics in a channel, 27 (2013), 2199–2208. http://doi.org/10.1007/s12206-013-0534-8
    [19] A. A. A. A. Al-Rashed, W. Aich, L. Kolsi, O. Mahian, A. K. Hussein, M. N. Borjini, Effects of movable-baffle on heat transfer and entropy generation in a cavity saturated by CNT suspensions: three-dimensional modeling, Entropy, 19 (2017), 200. https://doi.org/10.3390/e19050200 doi: 10.3390/e19050200
    [20] K. U. Rehman, N. Kousar, W. A. Khan, N. Fatima, On fluid flow field visualization in a staggered cavity: A numerical result, Processes, 8 (2020), 226. https://doi.org/10.3390/pr8020226 doi: 10.3390/pr8020226
    [21] P. B. A. Reddy, T. Salah, S. Jakeer, M. A. Mansour, A. M. Rashad, Entropy generation due to magneto-natural convection in a square enclosure with heated corners saturated porous medium using Cu/water nanofluid, Chinese J. Phys., 77 (2022), 1863–1884. https://doi.org/10.1016/j.cjph.2022.01.012 doi: 10.1016/j.cjph.2022.01.012
    [22] M. M. Bhatti, R. Ellahi, M. Hossein Doranehgard, Numerical study on the hybrid nanofluid (Co3O4-Go/H2O) flow over a circular elastic surface with non-Darcy medium: Application in solar energy, J. Mol. Liq., 361 (2022), 119655. https://doi.org/10.1016/j.molliq.2022.119655 doi: 10.1016/j.molliq.2022.119655
    [23] M. M. Bhatti, O. A. Bég, R. Ellahi, T. Abbas, Natural convection non-Newtonian EMHD dissipative flow through a microchannel containing a non-Darcy porous medium: Homotopy perturbation method study, Qual. Theory Dyn. Syst., 21 (2022), 97.
    [24] S. Marzougui, F. Mebarek-Oudina, A. Assia, M. Magherbi, Z. Shah, K. Ramesh, Entropy generation on magneto-convective flow of copper-water nanofluid in a cavity with chamfers, J. Therm. Anal. Calorim., 143 (2021), 2203–2214.
    [25] O. Mahian, A. Kianifar, C. Kleinstreuer, M. A. Al-Nimr, I. Pop, A. Z. Sahin, et al., A review of entropy generation in nanofluid flow, Int. J. Heat Mass Transf., 65 (2013), 514–532. https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.010 doi: 10.1016/j.ijheatmasstransfer.2013.06.010
    [26] S. Lee, S. U. -S. Choi, S. Li, J. A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, Heat Transf., 121 (1999), 280–289. https://doi.org/10.1115/1.2825978 doi: 10.1115/1.2825978
    [27] J. C. Maxwell, A Treatise On Electricity and Magnetism, Cambridge: Cambridge University Press, 2 (1873). https://doi.org/10.1017/CBO9780511709340
    [28] J. A. Templeton, R. E. Jones, J. W. Lee, J. A. Zimmerman, and B. M. Wong, A long-range electric field solver for molecular dynamics based on atomistic-to-continuum modeling, J. Chem. Theory Comput., 7 (2011), 1736–1749. https://doi.org/10.1021/ct100727g doi: 10.1021/ct100727g
    [29] X. Liu, L. Liu, An immersed transitional interface finite element method for fluid interacting with rigid/deformable solid, Eng. Appl. Comput. Fluid Mech., 13 (2019), 337–358. https://doi.org/10.1080/19942060.2019.1586774 doi: 10.1080/19942060.2019.1586774
    [30] R. Mahmood, N. Kousar, K. Ur. Rehman, M. Mohasan, Lid driven flow field statistics: A non-conforming finite element simulation, Phys. A, 528 (2019), 121198. https://doi.org/10.1016/j.physa.2019.121198 doi: 10.1016/j.physa.2019.121198
    [31] S. Bilal, R. Mahmood, A. H. Majeed, I. Khan, K. S. Nisar, Finite element method visualization about heat transfer analysis of Newtonian material in triangular cavity with square cylinder, J. Mater. Res. Technol., 9 (2020), 4904–4918. https://doi.org/10.1016/j.jmrt.2020.03.010 doi: 10.1016/j.jmrt.2020.03.010
    [32] M. Hatami, S. E. Ghasemi, Thermophoresis and Brownian diffusion of nanoparticles around a vertical cone in a porous media by Galerkin finite element method (GFEM), Case Stud. Therm. Eng., 28 (2021), 101627. https://doi.org/10.1016/j.csite.2021.101627 doi: 10.1016/j.csite.2021.101627
    [33] X. F. Yang, X. M. He, A fully-discrete decoupled finite element method for the conserved Allen–Cahn type phase-field model of three-phase fluid flow system, Comput. Methods Appl. Mech. Engrg., 389 (2022), 114376. https://doi.org/10.1016/j.cma.2021.114376 doi: 10.1016/j.cma.2021.114376
    [34] S. Maarouf, C. Bernardi, D. Yakoubi, Characteristics/finite element analysis for two incompressible fluid flows with surface tension using level set method, Comput. Methods Appl. Mech. Engrg., 394 (2022), 114843. https://doi.org/10.1016/j.cma.2022.114843 doi: 10.1016/j.cma.2022.114843
    [35] S. Averweg, A. Schwarz, C. Schwarz, J. Schröder, 3D modeling of generalized Newtonian fluid flow with data assimilation using the least-squares finite element method, Comput. Methods Appl. Mech. Engrg., 392 (2022), 114668. https://doi.org/10.1016/j.cma.2022.114668 doi: 10.1016/j.cma.2022.114668
    [36] A. D. Hobiny, I. Abbas, The impacts of variable thermal conductivity in a semiconducting medium using finite element method, Case Stud. Therm. Eng., 31 (2022), 101773. https://doi.org/10.1016/j.csite.2022.101773 doi: 10.1016/j.csite.2022.101773
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1173) PDF downloads(60) Cited by(7)

Article outline

Figures and Tables

Figures(9)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog