Double diffusive natural convection (DDNC) is one of the most studied phenomena in convective energy transfer, having applications in heat exchangers, oceanography and climate Science, biological Systems, renewable energy, and geothermal energy systems. We aimed to conduct a numerical analysis of DDNC within a quadrantal enclosure that contained a Cu-Al2O3 hybrid nanofluid with water as a host fluid. The motivation for choosing this model was attributed to the relatively limited research conducted within this particular geometric configuration, specifically in the context of double-diffusive natural convection, which served as the primary mode of heat and mass transfer. Using numerical simulations, we focused on the impacts of an external magnetic field. The bottom wall of the quadrantal cavity was kept at high temperatures $ {(T}_{h}) $ and concentrations $ {(c}_{h}), $while the vertical wall maintained at low temperatures $ {(T}_{c}) $and concentrations $ {(c}_{c}) $. Moreover, the curved wall is kept thermally insulated. With an eminent numerical method, the finite element method is employed to solve the governing partial differential equations (PDEs), which are transformed into a dimensionless form. The outcomes were acquainted with streamlines, isoconcentration contours, and isotherms, along with local and average Nusselt and Sherwood numbers. The analysis revealed that enhancing the volume fraction of Cu-Al2O3 nanoparticles within the conventional fluid increased heat transfer efficiency by up to 11% compared to the base fluid. It was also noticed that without a magnetic field (Ha = 0), the stream functional measures at its highest value of $ {(\psi }_{max} = 6.2) $ indicated strong convection. However, with the presence of a magnetic field (Ha = 40), the stream function significantly decreased to $ {(\psi }_{max} = 0.2) $.
Citation: Saleh Mousa Alzahrani. Enhancing thermal performance: A numerical study of MHD double diffusive natural convection in a hybrid nanofluid-filled quadrantal enclosure[J]. AIMS Mathematics, 2024, 9(4): 9267-9286. doi: 10.3934/math.2024451
Double diffusive natural convection (DDNC) is one of the most studied phenomena in convective energy transfer, having applications in heat exchangers, oceanography and climate Science, biological Systems, renewable energy, and geothermal energy systems. We aimed to conduct a numerical analysis of DDNC within a quadrantal enclosure that contained a Cu-Al2O3 hybrid nanofluid with water as a host fluid. The motivation for choosing this model was attributed to the relatively limited research conducted within this particular geometric configuration, specifically in the context of double-diffusive natural convection, which served as the primary mode of heat and mass transfer. Using numerical simulations, we focused on the impacts of an external magnetic field. The bottom wall of the quadrantal cavity was kept at high temperatures $ {(T}_{h}) $ and concentrations $ {(c}_{h}), $while the vertical wall maintained at low temperatures $ {(T}_{c}) $and concentrations $ {(c}_{c}) $. Moreover, the curved wall is kept thermally insulated. With an eminent numerical method, the finite element method is employed to solve the governing partial differential equations (PDEs), which are transformed into a dimensionless form. The outcomes were acquainted with streamlines, isoconcentration contours, and isotherms, along with local and average Nusselt and Sherwood numbers. The analysis revealed that enhancing the volume fraction of Cu-Al2O3 nanoparticles within the conventional fluid increased heat transfer efficiency by up to 11% compared to the base fluid. It was also noticed that without a magnetic field (Ha = 0), the stream functional measures at its highest value of $ {(\psi }_{max} = 6.2) $ indicated strong convection. However, with the presence of a magnetic field (Ha = 40), the stream function significantly decreased to $ {(\psi }_{max} = 0.2) $.
[1] | E. H. Huppert, J. S. Turner, Double-diffusive convection, J. Fluid Mech., 106 (1981), 299–329. https://doi.org/10.1017/S0022112081001614 doi: 10.1017/S0022112081001614 |
[2] | B. Gebhart, L. Pera, The nature of vertical natural convection flows resulting from the combined buoyancy effects of thermal and mass diffusion, Int. J. Heat Mass Tran., 14 (1971), 2025–2050. http://doi.org/10.1016/0017-9310(71)90026-3 |
[3] | A. Bejan, Mass and heat transfer by natural convection in a vertical cavity, Int. J. Heat Fluid Fl., 6 (1985), 149–159. https://doi.org/10.1016/0142-727X(85)90002-5 doi: 10.1016/0142-727X(85)90002-5 |
[4] | J. W. Lee, J. M. Hyun, Double-diffusive convection in a rectangle with opposing horizontal temperature and concentration gradients, Int. J. Heat Mass Tran., 33 (1990), 1619–1632. https://doi.org/10.1016/0017-9310(90)90018-P doi: 10.1016/0017-9310(90)90018-P |
[5] | K. Ghorayeb, A. Mojtabi, Double diffusive convection in a vertical rectangular cavity, Phys. Fluids, 9 (1997), 2339–2348. https://doi.org/10.1063/1.869354 doi: 10.1063/1.869354 |
[6] | T. R. Mahapatra, D. Pal, S. Mondal, Effects of buoyancy ratio on double-diffusive natural convection in a lid-driven cavity, Int. J. Heat Mass Tran., 57 (2013), 771–785. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.028 doi: 10.1016/j.ijheatmasstransfer.2012.10.028 |
[7] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab. (ANL), Argonne, IL (United States), 1995. https://doi.org/10.4236/jamp.2019.76092 |
[8] | J. Buongiorno, D. C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, et al., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106 (2009), 094312. https://doi.org/10.1063/1.3245330 doi: 10.1063/1.3245330 |
[9] | L. Ali, B. Ali, M. B. Ghori, Melting effect on Cattaneo-Christov and thermal radiation features for aligned MHD nanofluid flow comprising microorganisms to leading edge: FEM approach, Comput. Math. Appl., 109 (2022), 260–269. https://doi.org/10.1016/j.camwa.2022.01.009 doi: 10.1016/j.camwa.2022.01.009 |
[10] | L. Ali, P. Kumar, Z. Iqbal, S. E. Alhazmi, S. Areekara, M. M. Alqarni, et al., The optimization of heat transfer in thermally convective micropolar-based nanofluid flow by the influence of nanoparticle's diameter and nanolayer via stretching sheet: sensitivity analysis approach, J. Non-Equil. Thermody., 48 (2023), 313–330. https://doi.org/10.1515/jnet-2022-0064 doi: 10.1515/jnet-2022-0064 |
[11] | L. Ali, Z. Ullah, M. Boujelbene, R. Apsari, S. Alshammari, I. A. Chaudhry, et al., Wave oscillations in thermal boundary layer of Darcy-Forchheimer nanofluid flow along buoyancy-driven porous plate under solar radiation region, Case Stud. Therm. Eng., 54 (2024), 103980. https://doi.org/10.1016/j.csite.2024.103980 doi: 10.1016/j.csite.2024.103980 |
[12] | T. G. Myers, H. Ribera, V. Cregan, Does mathematics contribute to the nanofluid debate, Int. J. Heat Mass Tran., 111 (2017), 279–288. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.118 doi: 10.1016/j.ijheatmasstransfer.2017.03.118 |
[13] | K. V. Wong, O. D. Leon, Applications of nanofluids: current and future, Adv. Mech. Eng., 2 (2010), 519659. https://doi.org/10.1155/2010/519659 doi: 10.1155/2010/519659 |
[14] | M. R. Khan, A. S. Al-Johani, A. Elsiddieg, T. Saeed, A. M. Allah, The computational study of heat transfer and friction drag in an unsteady MHD radiated Casson fluid flow across a stretching/shrinking surface, Int. Commun. Heat Mass, 130 (2022), 105832. https://doi.org/10.1016/j.icheatmasstransfer.2021.105832 doi: 10.1016/j.icheatmasstransfer.2021.105832 |
[15] | J. A. Esfahani, V. Bordbar, Double diffusive natural convection heat transfer enhancement in a square enclosure using nanofluids, J. Nanotechnol. Eng. Med., 2 (2011), 021002. https://doi.org/10.1115/1.4003794 doi: 10.1115/1.4003794 |
[16] | S. Parvin, R. Nasrin, M. A. Alim, N. F. Hossain, Double‐diffusive natural convection in a partially heated enclosure using a nanofluid, Heat Transf.-Asian Re., 41 (2012), 484–497. https://doi.org/10.1002/htj.21010 doi: 10.1002/htj.21010 |
[17] | R. Nasrin, M. A. Alim, Modeling of double diffusive buoyant flow in a solar collector with water‐CuO nanofluid, Heat Transf.-Asian Re., 42 (2013), 212–229. https://doi.org/10.1002/htj.21039 doi: 10.1002/htj.21039 |
[18] | S. Chen, B. Yang, X. Xiao, C. Zheng, Analysis of entropy generation in double-diffusive natural convection of nanofluid, Int. J. Heat Mass Tran., 87 (2015), 447–463. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.023 doi: 10.1016/j.ijheatmasstransfer.2015.04.023 |
[19] | A. M. Alqahtani, M. R. Khan, N. Akkurt, V. Puneeth, A. Alhowaity, H. Hamam, Thermal analysis of a radiative nanofluid over a stretching/shrinking cylinder with viscous dissipation, Chem. Phys. Lett., 808 (2022), 140133. https://doi.org/10.1016/j.cplett.2022.140133 doi: 10.1016/j.cplett.2022.140133 |
[20] | V. Puneeth, F. Ali, M. R. Khan, M. S. Anwar, N. A. Ahammad, Theoretical analysis of the thermal characteristics of Ree-Eyring nanofluid flowing past a stretching sheet due to bioconvection, Biomass Conv. Bioref., 2022 (2022), 1–12. https://doi.org/10.1007/s13399-022-02985-1 doi: 10.1007/s13399-022-02985-1 |
[21] | L. Ali, A. Manan, B. Ali, Maxwell nanofluids: FEM simulation of the effects of suction/injection on the dynamics of rotatory fluid subjected to bioconvection, Lorentz, and Coriolis forces, Nanomaterials, 12 (2022), 3453. https://doi.org/10.3390/nano12193453 doi: 10.3390/nano12193453 |
[22] | L. Ali, B. Ali, T. Iqbal, Finite element analysis of the impact of particles aggregation on the thermal conductivity of nanofluid under chemical reaction, Wave. Random Complex, 2023 (2023), 1–21. https://doi.org/10.1080/17455030.2023.2172962 doi: 10.1080/17455030.2023.2172962 |
[23] | L. Ali, X. Liu, B. Ali, S. Mujeed, S. Abdal, Finite element simulation of multi-slip effects on unsteady MHD bioconvective micropolar nanofluid flow over a sheet with solutal and thermal convective boundary conditions, Coatings, 9 (2019), 842. https://doi.org/10.3390/coatings9120842 doi: 10.3390/coatings9120842 |
[24] | L. Ali, Y. Wu, B. Ali, S. Abdal, S. Hussain, The crucial features of aggregation in TiO2-water nanofluid aligned of chemically comprising microorganisms: a FEM approach, Comput. Math. Appl., 123 (2022), 241–251. https://doi.org/10.1016/j.camwa.2022.08.028 doi: 10.1016/j.camwa.2022.08.028 |
[25] | N. A. C. Sidik, I. M. Adamu, M. M. Jamil, G. H. R. Kefayati, R. Mamat, G. Najafi, Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review, Int. Commun. Heat Mass, 78 (2016), 68–79. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.019 doi: 10.1016/j.icheatmasstransfer.2016.08.019 |
[26] | K. Kalidasan, R. Velkennedy, P. R. Kanna, Laminar natural convection of Copper-Titania/Water hybrid nanofluid in an open-ended C-shaped enclosure with an isothermal block, J. Mol. Liq., 246 (2017), 251–258. https://doi.org/10.1016/j.molliq.2017.09.071 doi: 10.1016/j.molliq.2017.09.071 |
[27] | S. Chen, B. Yang, K. H. Luo, X. Xiong, C. Zheng, Double diffusion natural convection in a square cavity filled with nanofluid, Int. J. Heat Mass Trans., 95 (2016) 1070–1083. https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.069 doi: 10.1016/j.ijheatmasstransfer.2015.12.069 |
[28] | H. T. Kadhim, F. A. Jabbar, A. Rona, Cu-Al2O3 hybrid nanofluid natural convection in an inclined enclosure with wavy walls partially layered by porous medium, Int. J. Mech. Sci., 186 (2020), 105889. https://doi.org/10.1016/j.ijmecsci.2020.105889 doi: 10.1016/j.ijmecsci.2020.105889 |
[29] | S. Goudarzi, M. Shekaramiz, A. Omidvar, E. Golab, A. Karimipour, A. Karimipour, Nanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/Water hybrid nanofluid natural convection, Powder Technol., 375 (2020), 493–503. https://doi.org/10.1016/j.powtec.2020.07.115 doi: 10.1016/j.powtec.2020.07.115 |
[30] | B. Takabi, S. Salehi, Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid, Adv. Mech. Eng., 6 (2014), 147059. https://doi.org/10.1155/2014/147059 doi: 10.1155/2014/147059 |
[31] | A. S. Dogonchi, M. A. Ismael, A. J. Chamkha, D. D. Ganji, Numerical analysis of natural convection of Cu-water nanofluid filling triangular cavity with semicircular bottom wall, J. Therm. Anal. Calorim., 135 (2019), 3485–3497. https://doi.org/10.1007/s10973-018-7520-4 doi: 10.1007/s10973-018-7520-4 |
[32] | A. Moghadassi, E. Ghomi, F. Parvizian, A numerical study of water based Al2O3and Al2O3-Cu hybrid nanofluid effect on forced convective heat transfer, Int. J. Therm. Sci., 92 (2015), 50–57. https://doi.org/10.1016/j.ijthermalsci.2015.01.025 doi: 10.1016/j.ijthermalsci.2015.01.025 |
[33] | Y. M, Chu, M. I. Khan, T. Abbas, M. O. Sidi, K. A. M. Alharbi, U. F. Alqsair, et al., Radiative thermal analysis for four types of hybrid nanoparticles subject to non-uniform heat source: Keller box numerical approach, Case Stud. Therm. Eng., 40 (2022), 102474. https://doi.org/10.1016/j.csite.2022.102474 doi: 10.1016/j.csite.2022.102474 |
[34] | M. M. Ali, R. Akhter, M. A. Alim, Hydromagnetic natural convection in a wavy-walled enclosure equipped with hybrid nanofluid and heat generating cylinder, Alex. Eng. J., 60 (2021), 5245–5264. https://doi.org/10.1016/j.aej.2021.04.059 doi: 10.1016/j.aej.2021.04.059 |
[35] | G. A. Sheikhzadeh, M. Dastmalchi, H. Khorasanizadeh, Effects of nanoparticles transport mechanisms on Al2O3-water nanofluid natural convection in a square enclosure, Int. J. Therm. Sci., 66 (2013), 51–62. https://doi.org/10.1016/j.ijthermalsci.2012.12.001 doi: 10.1016/j.ijthermalsci.2012.12.001 |
[36] | B. Ghasemi, S. M. Aminossadati, A. Raisi, Magnetic field effect on natural convection in a nanofluid-filled square enclosure, Int. J. Therm. Sci., 50 (2011), 1748–1756. https://doi.org/10.1016/j.ijthermalsci.2011.04.010 doi: 10.1016/j.ijthermalsci.2011.04.010 |
[37] | M. A. Teamah, Numerical simulation of double diffusive natural convection in rectangular enclosure in the presences of magnetic field and heat source, Int. J. Therm. Sci., 47 (2008), 237–248. https://doi.org/10.1016/j.ijthermalsci.2007.02.003 doi: 10.1016/j.ijthermalsci.2007.02.003 |
[38] | M. A. Teamah, A. I. Shehata, Magnetohydrodynamic double diffusive natural convection in trapezoidal cavities, Alex. Eng. J., 55 (2016), 1037–1046. https://doi.org/10.1016/j.aej.2016.02.033 doi: 10.1016/j.aej.2016.02.033 |
[39] | M. M. Rahman, R. Saidur, N. A. Rahim, Conjugated effect of joule heating and magneto-hydrodynamic on double-diffusive mixed convection in a horizontal channel with an open cavity, Int. J. Heat Mass Tran., 54 (2011), 3201–3213. https://doi.org/10.1016/j.ijheatmasstransfer.2011.04.010 doi: 10.1016/j.ijheatmasstransfer.2011.04.010 |
[40] | T. R. Mahapatra, B. C. Saha, D. Pal, Magnetohydrodynamic double-diffusive natural convection for nanofluid within a trapezoidal enclosure, Comp. Appl. Math., 37 (2018), 6132–6151. https://doi.org/10.1007/s40314-018-0676-5 doi: 10.1007/s40314-018-0676-5 |
[41] | COMSOL Multiphysics® v. 5.2, COMSOL AB, Stockholm, Sweden. Available from: www.comsol.com. |
[42] | S. Dutta, S. Pati, L. Baranyi, Numerical analysis of magnetohydrodynamic natural convection in a nanofluid filled quadrantal enclosure, Case Stud. Therm. Eng., 28 (2021), 101507. https://doi.org/10.1016/j.csite.2021.101507 doi: 10.1016/j.csite.2021.101507 |