Research article Special Issues

Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference

  • Received: 04 October 2022 Revised: 18 November 2022 Accepted: 02 December 2022 Published: 31 January 2023
  • MSC : 35B30, 35B40, 35B44, 35Q31, 76N10

  • The compressible Euler equations are an elementary model in mathematical fluid mechanics. In this article, we combine the Sideris and Makino-Ukai-Kawashima's classical functional techniques to study the new second inertia functional of reference:

    $ { H}_{ref}{ (t) = }\frac{1}{2}\int_{\Omega(t)}\left( { \rho-\bar{\rho}}\right) \left\vert { \vec{x} }\right\vert ^{2}dV{{ , }} $

    for the blowup phenomena of $ C^{1} $ solutions $ (\rho, \vec{u}) $ with the support of $ \left({ \rho-\bar{\rho}}, \vec{u}\right) $, and with a positive constant $ { \bar{\rho}} $ for the adiabatic index $ \gamma > 1 $. We find that if the total reference mass

    $ M_{ref}(0) = { \int_{{\bf R}^{N}}} (\rho_{0}({ \vec{x}})-\bar{\rho})dV\geq0, $

    and the total reference energy

    $ E_{ref}(0) = \int_{{\bf R}^{N}}\left( \frac{1}{2}\rho_{0}({ \vec {x}})\left\vert \vec{u}_{0}({ \vec{x}})\right\vert ^{2}+\frac {K}{\gamma-1}\left( \rho_{0}^{\gamma}({ \vec{x}})-\bar{\rho }^{\gamma}\right) \right) dV, $

    with a positive constant $ K $ is sufficiently large, then the corresponding solution blows up on or before any finite time $ T > 0 $.

    Citation: Manwai Yuen. Blowup for $ {{\rm{C}}}^{1} $ solutions of Euler equations in $ {{\rm{R}}}^{N} $ with the second inertia functional of reference[J]. AIMS Mathematics, 2023, 8(4): 8162-8170. doi: 10.3934/math.2023412

    Related Papers:

  • The compressible Euler equations are an elementary model in mathematical fluid mechanics. In this article, we combine the Sideris and Makino-Ukai-Kawashima's classical functional techniques to study the new second inertia functional of reference:

    $ { H}_{ref}{ (t) = }\frac{1}{2}\int_{\Omega(t)}\left( { \rho-\bar{\rho}}\right) \left\vert { \vec{x} }\right\vert ^{2}dV{{ , }} $

    for the blowup phenomena of $ C^{1} $ solutions $ (\rho, \vec{u}) $ with the support of $ \left({ \rho-\bar{\rho}}, \vec{u}\right) $, and with a positive constant $ { \bar{\rho}} $ for the adiabatic index $ \gamma > 1 $. We find that if the total reference mass

    $ M_{ref}(0) = { \int_{{\bf R}^{N}}} (\rho_{0}({ \vec{x}})-\bar{\rho})dV\geq0, $

    and the total reference energy

    $ E_{ref}(0) = \int_{{\bf R}^{N}}\left( \frac{1}{2}\rho_{0}({ \vec {x}})\left\vert \vec{u}_{0}({ \vec{x}})\right\vert ^{2}+\frac {K}{\gamma-1}\left( \rho_{0}^{\gamma}({ \vec{x}})-\bar{\rho }^{\gamma}\right) \right) dV, $

    with a positive constant $ K $ is sufficiently large, then the corresponding solution blows up on or before any finite time $ T > 0 $.



    加载中


    [1] C. Cercignani, R. Illner, M. Pulvirenti, The mathematical theory of dilute gases, J. Fluid Mech., 309 (1996), 346–348. http://doi.org/10.1017/S0022112096231660 doi: 10.1017/S0022112096231660
    [2] A. Constantin, Breaking water waves, In: Encyclopedia of Mathematical Physics, Academic Press, 2006,383–386. https://doi.org/10.1016/B0-12-512666-2/00112-7
    [3] D. Einzel, Superfluids, In: Encyclopedia of Mathematical Physics, Academic Press, 2006,115–121. https://doi.org/10.1016/B0-12-512666-2/00110-3
    [4] G. B. Whitham, Linear and Nonlinear Waves, John Wiley Sons, Inc., 1974.
    [5] G. Q. Chen, D. H. Wang, The Cauchy problem for the Euler equations for compressible fluids, In: Handbook of Differential Equations: Evolutionary Equations, 1 (2002), 421–543. http://doi.org/10.1016/S1874-5792(02)80012-X
    [6] A. J. Chorin, J. E. Marsden, A mathematical introduction to fluid mechanics, Math. Gaz., 75 (1991), 392–393. http://doi.org/10.2307/3619548 doi: 10.2307/3619548
    [7] P. L. Lions, Mathematical Topics in Fluid Mechanics, Oxford: Clarendon Press, 1998.
    [8] R. Temam, A. Miranville, Mathematical Modeling in Continuum Mechanicsm, Cambridge: Cambridge University Press, 2005. https://doi.org/10.1017/CBO9780511755422
    [9] D. Bresch, Shallow-water equations and related topics, In: Handbook of Differential Equations: Evolutionary Equations, 5 (2009), 1–104. http://doi.org/10.1016/S1874-5717(08)00208-9
    [10] A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, In: Applied Mathematical Sciences, New York: Springer-Verlag, 53 (1984).
    [11] T. Makino, S. Ukai, S. Kawashima, Sur la solution à support compact de l'equations d'Euler compressible, Japan J. Appl. Math., 3 (1986), 249. http://doi.org/10.1007/BF03167100 doi: 10.1007/BF03167100
    [12] C. L. Fefferman, Existence and smoothness of the Navier-Stokes equation, Clay Math. Inst., 2006, 57–67.
    [13] T. C. Sideris, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys., 101 (1985), 475–485. http://doi.org/10.1007/BF01210741 doi: 10.1007/BF01210741
    [14] S. Wong, M. W. Yuen, Blow-up phenomena for compressible Euler equations with non-vacuum initial data, Z. Angew. Math. Phys., 66 (2015), 2941–2955. http://doi.org/10.1007/s00033-015-0535-9 doi: 10.1007/s00033-015-0535-9
    [15] D. H. Chae, S. Y. Ha, On the formation of shocks to the compressible Euler equations, Commun. Math. Sci., 7 (2009), 627–634. http://doi.org/10.4310/CMS.2009.v7.n3.a6 doi: 10.4310/CMS.2009.v7.n3.a6
    [16] Y. Du, Z. Lei, Q. Zhang, Singularities of solutions to compressible Euler equations with vacuum, Math. Res. Lett., 20 (2013), 41–50. http://doi.org/10.4310/MRL.2013.v20.n1.a4 doi: 10.4310/MRL.2013.v20.n1.a4
    [17] M. A. Rammaha, Formation of singularities in compressible fluids in two-space dimensions, Proc. Amer. Math. Soc., 107 (1989), 705–714. http://doi.org/10.2307/2048169 doi: 10.2307/2048169
    [18] D. Serre, Expansion of a Compressible Gas in Vacuum, Bull. Inst. Math. Acad. Sin. (N.S.), 10 (2015), 695–716. http://doi.org/10.48550/arXiv.1504.01580 doi: 10.48550/arXiv.1504.01580
    [19] T. C. Sideris, Spreading of the free boundary of an ideal fluid in a vacuum, J. Differ. Equ., 257 (2014), 1–14. http://doi.org/10.1016/j.jde.2014.03.006 doi: 10.1016/j.jde.2014.03.006
    [20] T. Suzuki, Irrotational blowup of the solution to compressible euler equation, J. Math. Fluid Mech., 15 (2013), 617–633. http://doi.org/10.1007/s00021-012-0116-z doi: 10.1007/s00021-012-0116-z
    [21] M. W. Yuen, Blowup for irrotational $C^{1}$ solutions of the compressible Euler equations in $R^{N}$, Nonlinear Anal., 158 (2017), 132–141. http://doi.org/10.1016/j.na.2017.04.007 doi: 10.1016/j.na.2017.04.007
    [22] M. W. Yuen, Blowup for regular solutions and $C^{1}$ solutions of Euler equations in $R^{N}$ with a free boundary, Eur. J. Mech. B Fluids, 67 (2018), 427–432. http://doi.org/10.1016/j.euromechflu.2017.09.017 doi: 10.1016/j.euromechflu.2017.09.017
    [23] M. W. Yuen, Blowup for projected 2-dimensional rotational $C^{2}$ solutions of compressible Euler equations, J. Math. Fluid Mech., 21 (2019), 54. http://doi.org/10.1007/s00021-019-0458-x doi: 10.1007/s00021-019-0458-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(926) PDF downloads(72) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog