Processing math: 16%
Research article

Some new characterizations and results for fuzzy contractions in fuzzy b-metric spaces and applications

  • In this work, we initiate the notion of a fuzzy cyclic (α,β)-admissibility to establish some fixed point results for contraction mappings involving a generalized simulation function in the class of fuzzy b-metric spaces. We give some illustrative examples to validate the new concepts and obtained results. At the end, we present an application on a Fredholm integral equation.

    Citation: Haitham Qawaqneh, Mohd Salmi Md Noorani, Hassen Aydi. Some new characterizations and results for fuzzy contractions in fuzzy b-metric spaces and applications[J]. AIMS Mathematics, 2023, 8(3): 6682-6696. doi: 10.3934/math.2023338

    Related Papers:

    [1] Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa . Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management. AIMS Mathematics, 2023, 8(7): 16961-16988. doi: 10.3934/math.2023866
    [2] Saleem Abdullah, Muhammad Qiyas, Muhammad Naeem, Mamona, Yi Liu . Pythagorean Cubic fuzzy Hamacher aggregation operators and their application in green supply selection problem. AIMS Mathematics, 2022, 7(3): 4735-4766. doi: 10.3934/math.2022263
    [3] Khulud Fahad Bin Muhaya, Kholood Mohammad Alsager . Extending neutrosophic set theory: Cubic bipolar neutrosophic soft sets for decision making. AIMS Mathematics, 2024, 9(10): 27739-27769. doi: 10.3934/math.20241347
    [4] Hifza, Muhammad Gulistan, Zahid Khan, Mohammed M. Al-Shamiri, Muhammad Azhar, Asad Ali, Joseph David Madasi . A new fuzzy decision support system approach; analysis and applications. AIMS Mathematics, 2022, 7(8): 14785-14825. doi: 10.3934/math.2022812
    [5] Anam Habib, Zareen A. Khan, Nimra Jamil, Muhammad Riaz . A decision-making strategy to combat CO2 emissions using sine trigonometric aggregation operators with cubic bipolar fuzzy input. AIMS Mathematics, 2023, 8(7): 15092-15128. doi: 10.3934/math.2023771
    [6] Muhammad Danish Zia, Esmail Hassan Abdullatif Al-Sabri, Faisal Yousafzai, Murad-ul-Islam Khan, Rashad Ismail, Mohammed M. Khalaf . A study of quadratic Diophantine fuzzy sets with structural properties and their application in face mask detection during COVID-19. AIMS Mathematics, 2023, 8(6): 14449-14474. doi: 10.3934/math.2023738
    [7] Sohail Ahmad, Ponam Basharat, Saleem Abdullah, Thongchai Botmart, Anuwat Jirawattanapanit . MABAC under non-linear diophantine fuzzy numbers: A new approach for emergency decision support systems. AIMS Mathematics, 2022, 7(10): 17699-17736. doi: 10.3934/math.2022975
    [8] Muhammad Riaz, Khadija Akmal, Yahya Almalki, S. A. Alblowi . Cubic m-polar fuzzy topology with multi-criteria group decision-making. AIMS Mathematics, 2022, 7(7): 13019-13052. doi: 10.3934/math.2022721
    [9] Ashraf Al-Quran, Nimra Jamil, Syeda Tayyba Tehrim, Muhammad Riaz . Cubic bipolar fuzzy VIKOR and ELECTRE-II algorithms for efficient freight transportation in Industry 4.0. AIMS Mathematics, 2023, 8(10): 24484-24514. doi: 10.3934/math.20231249
    [10] Attaullah, Shahzaib Ashraf, Noor Rehman, Asghar Khan, Muhammad Naeem, Choonkil Park . Improved VIKOR methodology based on q-rung orthopair hesitant fuzzy rough aggregation information: application in multi expert decision making. AIMS Mathematics, 2022, 7(5): 9524-9548. doi: 10.3934/math.2022530
  • In this work, we initiate the notion of a fuzzy cyclic (α,β)-admissibility to establish some fixed point results for contraction mappings involving a generalized simulation function in the class of fuzzy b-metric spaces. We give some illustrative examples to validate the new concepts and obtained results. At the end, we present an application on a Fredholm integral equation.



    Multi attribute group decision making (MAGDM) is quite an interesting and eminent field of research attempting to produce arguments and techniques that determine the most favorable alternative from a set of alternatives. It is challenging for decision makers to give accurate information about options due to the complexity of the socioeconomic environment and their lack of expertise and judgment. Classical set theory deals with the information of type yes or no, that is, whether an element belongs to a set or not. On the other hand, real life situations may be imprecise or unclear, and there may be possibility other than yes or no. To tackle vague or imprecise information, in 1965, Zadeh [36] extended the concept of classical sets in the form of fuzzy sets. Fuzzy set theory permits a membership function valued in the interval [0,1]. After that, Atanassov [1] presented the intuitionistic fuzzy set (IFS) as a generalization of the fuzzy set. The IFS has both a positive and a negative membership degree, and that the sum of both these degrees is less than or equal to one.

    Analysis of clusters [6], medical diagnosis problems with decision-making (DM) [14] and pattern recognition [8] are some of the fields that have used IFSs. In the success of IFSs, numerous researchers have contributed. Chen et al. [7] defined a method for the use of intuitionistic fuzzy numbers (IFNs) and interval valued intuitionistic fuzzy (IVIF) numbers in aggregation processes and to address DM challenges. The intuitionistic fuzzy Hamacher aggregation procedures were cited by Huang as being advantageous in instances involving decision-making. Khan et al. [22] defined a solution of linear and quadratic equations based on triangular linear Diophantine fuzzy numbers. Alaoui et al. [5] defined a novel analysis of fuzzy physical models by generalized fractional fuzzy operators.

    In order to combine intuitionistic fuzzy data and make decisions, a variety of intuitionistic fuzzy aggregation operators have been proposed for combining different options [20]. The cumulative positive and negative membership degrees of the decision-maker may occasionally exceed one. For example, if a decision-maker assigns a positive membership degree of 0.3 and a negative membership degree of 0.9,0.3+0.9=1.2>1. Intuitionistic fuzzy sets are unable to handle this situation. Yager [34] developed the Pythagorean fuzzy set (PyFS), which includes both positive and negative membership degrees but whose square sum is equal to or less than one, to address this issue. 0.32+0.92=0.9 corresponds to the above-mentioned example. PyFS is a generalization of IFS. PyFS resolves inaccurate and uncertain information in actual MADM problems better than IFS. Since the development of PyFS, many aggregation operators have been established for Pythagorean fuzzy Dombi aggregation operators and their application in Pythagorean fuzzy multiple criteria group decision making and decision support systems [20,37]. In multiple attribute group decision-making, some generalized Pythagorean fuzzy Bonferroni mean aggregation operations are used [38]. Ren et al. [31] defined the Pythagorean fuzzy TODIM approach to multi-criteria decision making. Gou et al. [12] proposed some properties of continuous Pythagorean fuzzy information.

    Zeng et al. [39] introduced the exponential intuitionistic divergence measure, envelopment analysis, preference fusion and membership improvement of intuitionistic fuzzy numbers and discussed its potential application in multi-criteria decision making in 2019. Garg et al. [13] discussed the correlation measures for cubic m-polar fuzzy sets with applications. Ayub et al. [3] proposed cubic Heronian mean Dombi aggregation operators and their application on the MADM problem. Qiyas et al. [30] presented a novel approach of linguistic intuitionistic cubic hesitant variables and their application in decision making.

    In multi-attribute decision making, Hussain et al. [15] applied averaging operators based on spherical cubic fuzzy numbers. Decision support systems use cubic picture fuzzy aggregation operators [28]. Decision-making including distance measure and induced aggregation operators, as well as decision-making involving distance measures and linguistic aggregation operators are discussed in [24]. Fuzzy generalized hybrid aggregation operators and their application in fuzzy decision making, and fuzzy induced generalized aggregation operators and its application in multi-criteria decision making are discussed in [25,27]. For comparison, the author studied the cubic fuzzy Einstein aggregation operations and their application to decision-making [10]. Multi-attribute decision-making problems were solved under a cubic intuitionistic fuzzy set environment, based on Bonferroni mean operators [18], and cubic intuitionistic fuzzy aggregation operators [19]. Multi-attribute decision-making problems are solved under cubic hesitant fuzzy sets and an assessment method of prostate cancer risk classes utilizing cubic hesitant fuzzy sets similarity measure was presented by different authors [2,9,35]. The expected values of aggregation operators on cubic triangular fuzzy numbers and their use in problems involving multi-criteria are described in [32,33]. Abdullah et al. [4] defined Pythagorean cubic fuzzy Hamacher aggregation operators and their application in a green supply selection problem.

    The main motivation is the extension of aggregation operators characteristics to consider a wider range of complex problems. To deal with the aggregate uncertainty expressed in the form of cubic sets, a variety of aggregation operators have been created based on the algebraic t-norm and t-conorm. Important mathematical processes called logarithmic operational rules can be used to conveniently aggregate uncertain and erroneous data. These concepts served as inspiration for us to create a cubic MAGDM approach to solve the problem within cubic sets (CSs). This method is built on the logarithmic aggregation operators and the logarithmic operations of cubic sets.

    The contributions of our method are as follows:

    (1) To overcome the limitations of algebraic operations and represent the interactions between various cubic sets, we developed a variety of distinct logarithmic operations for cubic sets.

    (2) We developed aggregation operators for cubic information that overcome the limitations of algebraic operators. These operators are logarithmic cubic weighted averaging (log-CWA), logarithmic cubic ordered weighted averaging (log-COWA), logarithmic cubic weighted geometric (log -CWG) and logarithmic cubic ordered weighted geometric (log-COWG) operators.

    (3) Using cubic information, we developed a method to handle multi-attribute decision-making scenarios.

    (4) To illustrate the efficiency and dependability of the recommended cubic logarithmic aggregation operators, we used a circulation center evaluation problem.

    (5) According to the data, the suggested strategy performs better and yields more accurate results when compared to the current approaches.

    The remainder of the paper is organized as follows: Section 2 introduces numerous key terms, including IFS, PyFS, CS, score, and accuracy function. Section 3 discusses the logarithmic operation rules and characteristics of cubic numbers (CNs). In Section 4, logarithmic cubic averaging aggregation operators are defined. In Section 5, logarithmic cubic geometric aggregation operators are defined. The MAGDM approach is given in Section 6 based on the logarithmic cubic aggregation operators. An example is solved in Section 7 based on the logarithmic aggregation operator. In Section 8, we demonstrate the sensitivity analysis and comparison of the proposed method to other existing methods. Finally, the study's conclusion is reached in Section 8.

    This part recaps the basic definitions of current fuzzy set extensions, which served as the study's foundation.

    Definition 2.1. [1] Let ˆGϕ be a universal set. Then, the set

    ˇZ={ˆs.(ˆWˇZ(ˆs),˘UˇZ(ˆs)|ˆsˆG)}, (2.1)

    is an IFS, where ˆWˇZ(ˆs),˘UˇZ(ˆs)[0,1] are the element's positive and negative membership degrees ˆsˆG in ˇZ, respectively. ˆWˇZ(ˆs),˘UˇZ(ˆs) satisfy the condition, for all ˆsˆG,

    0ˆWˇZ(ˆs)+˘UˇZ(ˆs)1. (2.2)

    Definition 2.2.[29] Let ˇZ=(ˆWˇZ(ˆs),˘UˇZ(ˆs)|ˆsˆG) be an IFN. Then, the score function of ˇZ is defined as;

    S(ˇZ)=ˆWˇZ(ˆs)˘UˇZ(ˆs),S(ˇZ)[1,1]. (2.3)

    The accuracy function of ˇZ is defined as;

    ˆS(ˇZ)=ˆWˇZ(ˆs)+˘UˇZ(ˆs),ˆS(ˇZ)[1,1]. (2.4)

    Definition 2.3. [39] Let ˇZ1=((ˆWˇZ1(ˆs),˘UˇZ1(ˆs)) and ˇZ2=((ˆWˇZ2(ˆs),˘UˇZ2(ˆs)) be any two IFNs. Then, the comparison rules are defined as follows:

    (1) If S(ˇZ1)>S(ˇZ2), then ˇZ1>ˇZ2.

    (2) If S(ˇZ1)=S(ˇZ2) and ˆS(ˇZ1)>ˆS(ˇZ2), then ˇZ1>ˇZ2.

    (3) If S(ˇZ1)=S(ˇZ2) and ˆS(ˇZ1)=ˆS(ˇZ2), then ˇZ1=ˇZ2.

    Definition 2.4.[1] Let ˇZ1,ˇZ2 and ˇZ3 be a fuzzy sets. Then, the following properties of fuzzy sets are as follows:

    Identity

    ˇZ1U=ˇZ1,whereUisauniversalset.ˇZ1ϕ=ˇZ1,whereϕistheemptyset.

    Absorption by ϕ and U

    ˇZ1ϕ=ϕˇZ1U=U.

    Idempotent

    ˇZ1ˇZ1=ˇZ1ˇZ1ˇZ1=ˇZ1.

    De Morgan laws

    (ˇZ1ˇZ2)=ˇZ1ˇZ2(ˇZ1ˇZ2)=ˇZ1ˇZ2.

    Involution

    (ˇZ1)=ˇZ1.

    Absorption

    ˇZ1(ˇZ2ˇZ3)=ˇZ1ˇZ1(ˇZ2ˇZ3)=ˇZ1.

    The cubic set is an appropriate way to deal with fuzziness. The cubic set has been extensively applied to the decision making problems. It can be defined as follows:

    Definition 2.5.[10] Let ˆGϕ, be a fixed set. Then, the set

    ˇZ={ˆs,([ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs)|ˆsˆG)}, (2.5)

    is called CS, where [ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs) are known as the element's positive and negative membership degrees ˆsˆG in ˇZ respectively, with the condition that 0[ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs)1.

    Definition 2.6.[10] Let ˇZ=([ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs)|ˆsˆG),ˇZ1=([ˆWˇZ1(ˆs),˘UˇZ1(ˆs)],ˆYˇZ1(ˆs)|ˆsˆG) and ˇZ2=([ˆWˇZ2(ˆs),˘UˇZ2(ˆs)],ˆYˇZ2(ˆs)|ˆsˆG) are any two IFSs. Then the following operations are defined:

    (1) ˇZc={ˆYˇZ(ˆs),[˘UˇZ(ˆs),ˆWˇZ(ˆs)]}.

    (2) ˇZ1ˇZ2={[min(ˆWˇZ1(ˆs),ˆWˇZ2(ˆs)),min(˘UˇZ1(ˆs),˘UˇZ2(ˆs))],max(ˆYˇZ1(ˆs),ˆYˇZ2(ˆs))}.

    (3) ˇZ1ˇZ2={[max(ˆWˇZ1(ˆs),ˆWˇZ2(ˆs)),max(˘UˇZ1(ˆs),˘UˇZ2(ˆs))],min(ˆYˇZ1(ˆs),ˆYˇZ2(ˆs))}.

    (4) υˇZ={[1(1ˆWˇZ)υ,(˘UˇZ)υ],(ˆYˇZ)υ}.

    (5) ˇZυ={[(ˆWˇZ)υ,1(1˘UˇZ)υ],1(1ˆYˇZ)υ}.

    In this section, we define the basic operation laws, and some properties of logarithmic cubic numbers.

    In this section, we will introduce and investigate the characteristics of certain novel logarithmic operating rules for cubic numbers. It is noted that log˘e0 in the real number system, has no meaning, and log˘e1 is not defined. As a result, we assume ˇZ0, where ˇZ is a CN. Also, the base of a logarithm, i.e., ˘e1, is in the open interval (0,1) and always a positive-real number.

    Definition 3.1. Let ˆGϕ be a fixed set and ˇZ=([ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs)) be a cubic number. Then, the logarithmic cubic number is defined as,

    log˘eˇZ={([1log˘eˆWˇZ(ˆslog˘e˘UˇZ),1(ˆs)],log˘e(1ˆYˇZ(ˆs))|ˆsˆG)},0<˘e[ˆW,˘U]1,˘e1, (3.1)

    where, [ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs) are identified as positive and negative membership degrees of the element ˆsˆG in ˇZ respectively, with the condition that 0[ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs)1. The logarithmic operational law's positive membership is thus defined as follows: 

    [1log˘eˆWˇZ(ˆs),1log˘e˘UˇZ(ˆs)]:ˆG[0,1],suchthat[1log˘eˆWˇZ(ˆs),1log˘e˘UˇZ(ˆs)][0,1],forall˚uˆG,

    Negative membership is defined as

    log˘e(1ˆYˇZ(ˆs)):ˆG[0,1],suchthatlog˘e(1ˆYˇZ(ˆs))[0,1],ˆsˆG, (3.2)

    and the refusal degree is defined as

    1([(1log˘eˆWˇZ(ˆs))+1log˘e˘UˇZ(ˆs)]+log˘e(1ˆYˇZ(ˆs))),forallˆsˆG. (3.3)

    The operational law of log-CNs is defined next.

    Definition 3.2. Let ˇZ=([ˆWˇZ(ˆs),˘UˇZ(ˆs)],ˆYˇZ(ˆs)), ˇZ1=([ˆWˇZ1(ˆs),˘UˇZ1(ˆs)],ˆYˇZ1(ˆs)) and ˇZ2=([ˆWˇZ2(ˆs),˘UˇZ2(ˆs)],ˆYˇZ2(ˆs)) be any three CNs, let υ be any scalar greater than 0. Then, the logarithmic cubic operational law is defined as follows;

    logˇeˇZ1logˇeˇZ2=([1logˇeˆW1.logˇeˆW2,1logˇe˘U1.logˇe˘U2],logˇe(1ˆY1).logˇe(1ˆY2))logˇeˇZ1logˇeˇZ2=([(1logˇeˆW1).(1logˇeˆW2),1(1(1logˇe˘U1)).(1(1logˇe˘U2))],1(1logˇe(1ˆY1)).(1logˇe(1ˆY2)))υ.logˇeˇZ=([1(logˇeˆW)υ,(1(logˇe˘U))υ],(logˇe(1ˆY)υ))logˇeˇZυ=([(1logˇeˆW)υ,1(1(1logˇe˘U))υ],1(1logˇe(1ˆY))υ).

    We discuss the attributes of CNs based on the logarithmic operational law in this section of the article.

    Theorem 3.1. Let ˇZ=([ˆWˇZ,˘UˇZ],ˆYˇZ) be any cubic number with condition  0<˘e[ˆW,˘U]1,˘e1. Then, prove that

    ˇelogˇeˇZ=ˇZ.

    Proof. For proof, see Appendix A.

    Theorem 3.2.Let ˇZ=([ˆWˇZ,˘UˇZ],ˆYˇZ) be any cubic numbers with condition 0<˘e[ˆW,˘U]1,˘e1, Then, prove that

    logˇeˇeˇZ=ˇZ. (3.4)

    Proof. As we know,

    logˇeˇeˇZ=logˇe([ˇe(1ˆWˇZ),ˇe(1˘UˇZ)],1ˇeˆYˇZ)=([1logˇeˇe(1ˆWˇZ),1logˇeˇe(1˘UˇZ)],logˇe(1(1ˇeˆYˇZ))=([ˆWˇZ,˘UˇZ],ˆYˇZ)=ˇZ.

    Theorem 3.3. Let the collection of two cubic numbers is ˇZ1=([ˆW1,˘U1],ˆY1) and ˇZ2=([ˆW2,˘U2],ˆY2) with conditions 0<ˇemin([ˆW1,˘U1],[ˆW2,˘U2]) and ˇe1. Then, show that

    (a)logˇeˇZ1logˇeˇZ2=logˇeˇZ2logˇeˇZ1.(b)logˇeˇZ1logˇeˇZ2=logˇeˇZ2logˇeˇZ1.

    Proof. For proof, see Appendix B.

    Theorem 3.4. Let the collection of three cubic numbers is ˇZ1=([ˆW1,˘U1],ˆY1),ˇZ2=([ˆW2,˘U2],ˆY2) and ˇZ3=([ˆW3,˘U3],ˆY3) with conditions 0<ˇemin([ˆW1,˘U1],[ˆW2,˘U2]) and ˇe1. Then, we shows that

    (logˇeˇZ1logˇeˇZ2)logˇeˇZ3=logˇeˇZ1(logˇeˇZ2logˇeˇZ3). (3.5)

    Proof. For proof, see Appendix C.

    Theorem 3.5. Let the collection of three cubic numbers is ˇZ1=([ˆW1,˘U1],ˆY1),ˇZ2=([ˆW2,˘U2],ˆY2) and ˇZ3=([ˆW3,˘U3],ˆY3) with conditions 0<ˇemin([ˆW1,˘U1],[ˆW2,˘U2]) and ˇe1. Then, we shows that

    (logˇeˇZ1logˇeˇZ2)logˇeˇZ3=logˇeˇZ1(logˇeˇZ2logˇeˇZ3). (3.6)

    Proof. For proof, see Appendix D.

    Theorem 3.6.Let two CNs is ˇZ1=([ˆW1,˘U1],ˆY1) and ˇZ2=([ˆW2,˘U2],ˆY2) with conditions satisfy, 0<ˇemin([ˆW1,˘U1],[ˆW2,˘U2]) and ˇe1, and also let υ be any positive real number. Then,

    (logˇeˇZ1logˇeˇZ2)υ=(logˇeˇZ1)υ(logˇeˇZ2)υ. (3.7)

    Proof. The procedure in this case is eliminated because the proof is comparable to Theorem 3.2.

    Theorem 3.7. Let ˇZ=([ˆW,˘U],ˆY) be a CN, 0<ˇeˆW1, ˇe1, and υ1,υ2>0. Then, we show that

    υ1.logˇeˇZυ2.logˇeˇZ=(υ1υ2)logˇeˇZ(logˇeˇZ)υ1(logˇeˇZ)υ2=(logˇeˇZ)υ1υ2((logˇeˇZ)υ1)υ2=(logˇeˇZ)υ1υ2. (3.8)

    Proof. For proof, see Appendix E.

    We defined some logarithmic cubic fuzzy averaging aggregation operators, namely, log-CWA and log-COWA, and study their features in depth in this section.

    Definition 4.1.Let ˇZp=([ˆWˇZp,˘UˇZp],ˆYˇZp)(p=1,2,,n) be a collection of cubic numbers with 0<˘ep[ˆWp,˘Up]1, and ˘ep1. Then, the mapping logCWA:ˇRnˇR, is defined,

    logCWA(ˇZ1,,ˇZn)=np=1ϖp.log˘epˇZp. (4.1)

    The function log-CWA is called the logarithmic cubic weighted averaging operator, where ϖ=(ϖ1,ϖ2,,ϖn)T denotes the weighed vector of log˘epˇZp(p=1,2,,n), such that ϖp[0,1], and np=1ϖp=1.

    Theorem 4.1. Let ˇZp=([ˆWp,˘Up],ˆYp)(p=1,2,,n) be a collection of CNs with condition 0<ˇep[ˆWp,˘Up]1, and ˇep1. Then, using Definitions 3.1 and 3.2, we have

    logCWA(ˇZ1,...,ˇZn)=([1np=1(log˘ep(ˆWp))ϖP,1np=1(log˘ep(˘Up))ϖP],np=1(log˘ep(1ˆYp))ϖP). (4.2)

    Proof. For proof, see Appendix F.

    (1) Idempotency:Let ˇZp=([ˆWp,˘Up],ˆYp)(p=1,2,,n) be a collection of cubic numbers that are equal, i.e., ˇZp=ˇZ,(p=1,2,,n). Then,

    logCWA(ˇZ1,...,ˇZn)=log˘eˇZ, (4.3)

    where ˘e1=˘e2=...=˘en=˘e.

    Proof. We have

    logCWA(ˇZ1,...,ˇZn)=([1np=1(log˘ep(ˆWp))ϖP,1np=1(log˘ep(˘Up))ϖP],np=1(log˘ep(1ˆYp))ϖP)
    logCWA(ˇZ1,...,ˇZn)=([1np=1(log˘ep(ˆW))ϖP,1np=1(log˘ep(˘U))ϖP],np=1(log˘ep(1ˆY))ϖP)
    =([1log˘eˆWˇZ(ˆslog˘e˘UˇZ),1(ˆs)],log˘e(1ˆYˇZ(ˆs)))=log˘eˇZ.

    (2) Boundedness:If ˇZp=([ˆWp,˘Up],ˆYp)(p=1,2,,n) is a collection of CNs, let ˇZ=min(ˇZ1,,ˇZn) and ˇZ+=max(ˇZ1,ˇZ2,,ˇZn). Then,

    ˇZlogCWA(ˇZ1,ˇZ2,,ˇZn)ˇZ+ (4.4)

    where ˘e1=˘e2==˘en=˘e.

    Proof. Let, ˇZp=([ˆWp,˘Up],ˆYp),(p=1,2,,n) be a collection of CNs and ˇZ=min(ˇZ1,,ˇZn), ˇZ+=max(ˇZ1,ˇZ2,,ˇZn). We have the following inequalities.

    minp{[ˆWp,˘Up]}[ˆWp,˘Up]maxp{[ˆWp,˘Up]}minp{ˆYp}ˆYpmaxp{ˆYp}.

    It follows that

    [1np=1(log˘ep(ˆWp))ϖP,1np=1(log˘ep(˘Up))ϖP][1np=1(log˘ep(minp{ˆWp}))ϖP,1np=1(log˘ep(minp{˘Up}))ϖP]=[1(log˘ep(minp{ˆWp}))np=1ϖP,1(log˘ep(minp{˘Up}))np=1ϖP]=[1(log˘ep(minp{ˆWp})),1(log˘ep(minp{˘Up}))]np=1(log˘ep(1ˆYp))ϖPnp=1(log˘ep(1minp{ˆYp}))ϖP=(log˘ep(1minp{ˆYp}))np=1ϖP=(log˘ep(1minp{ˆYp}))
    [1np=1(log˘ep(ˆWp))ϖP,1np=1(log˘ep(˘Up))ϖP][1np=1(log˘ep(maxp{ˆWp}))ϖP,1np=1(log˘ep(maxp{˘Up}))ϖP]=[1np=1(log˘ep(maxp{ˆWp}))np=1ϖP,1np=1(log˘ep(maxp{˘Up}))np=1ϖP]=[1np=1(log˘ep(maxp{ˆWp})),1np=1(log˘ep(maxp{˘Up}))]np=1(log˘ep(1ˆYp))ϖPnp=1(log˘ep(1maxp{ˆYp}))ϖP=(log˘ep(1maxp{ˆYp}))np=1ϖP=(log˘ep(1maxp{ˆYp})).

    Therefore, we have

    ˇZlogCFWA(ˇZ1,ˇZ2,...,ˇZn)ˇZ+.

    (3) Monotonicity: Let ˇZp=([ˆWp,˘Up],ˆYp) and ˇZp=([ˆWp,˘Up],ˆYp),(p=1,2,,n) be a collections of CNs, if [ˆWp,˘Up][ˆWp,˘Up] and ˆYpˆYp, with 0<˘epmin([ˆWp,˘Up],[ˆWp,˘Up])1, hold for any p, then

    logCWA(ˇZ1,,ˇZn)=logCFWG(ˇZ1,,ˇZn) (4.5)

    where ˘e1=˘e2=...=˘en=˘e.

    Proof. Let

    ˇZp=logCWA(ˇZ1,...,ˇZn)=([1np=1(log˘ep(ˆWp))ϖP,1np=1(log˘ep(˘Up))ϖP],np=1(log˘ep(1ˆYp))ϖP)

    and

    ˇZp=logCWA(ˇZ1,...,ˇZn)=([1np=1(log˘ep(ˆWp))ϖP,1np=1(log˘ep(˘Up))ϖP],np=1(log˘ep(1ˆYp))ϖP)

    altough \left[ \hat{W}_{\check{Z}_{p}}, \breve{U}_{\check{Z}_{p}}\right] \leq \left[ \hat{W}_{\check{Z}_{p}}^{\ast }, \breve{U}_{\check{Z}_{p}}^{\ast } \right] and \hat{Y}_{\check{Z}_{p}}\geq \hat{Y}_{\check{Z}_{p}}^{\ast } for any p, giving

    \begin{eqnarray*} &&\left[ 1-\prod\limits_{p = 1}^{n}\left( \log _{\breve{e}_{p}}\left( \hat{W} _{p}\right) \right) ^{\varpi _{P}},1-\prod\limits_{p = 1}^{n}\left( \log _{ \breve{e}_{p}}(\breve{U}_{p})\right) ^{\varpi _{P}}\right] \\ &\leq &\left[ 1-\prod\limits_{p = 1}^{n}\left( \log _{\breve{e}_{p}}\left( \hat{W}_{p}^{\ast }\right) \right) ^{\varpi _{P}},1-\prod\limits_{p = 1}^{n}\left( \log _{\breve{e}_{p}}\left( \breve{U} _{p}^{\ast }\right) \right) ^{\varpi _{P}}\right] \\ \prod\limits_{p = 1}^{n}\left( \log _{\breve{e}_{p}}\left( 1-\hat{Y} _{p}\right) \right) ^{\varpi _{P}} &\geq &\prod\limits_{p = 1}^{n}\left( \log _{\breve{e}_{p}}\left( 1-\hat{Y}_{p}\right) \right) ^{\varpi _{P}}. \end{eqnarray*}

    Therefore, by using the score function and accuracy function, we can conclude that

    \begin{equation*} \log -CWA\left( \check{Z}_{1},...,\check{Z}_{n}\right) = \log -CWG\left( \check{Z}_{1}^{\ast },...,\check{Z}_{n}^{\ast }\right). \end{equation*}

    Definition 4.2.Let \check{Z}_{p} = \left(\left[ \hat{W}_{\check{Z} _{p}}, \breve{U}_{\check{Z}_{p}}\right], \hat{Y}_{\check{Z}_{p}}\right) where \left(p = 1, 2, ..., n\right) be a collection of cubic numbers with 0 < \breve{e} _{p}\leq \left[ \hat{W}_{p}, \breve{U}_{p}\right] \leq 1, and \breve{e} _{p}\neq 1. Then, the mapping \log -CWA:\check{R}^{n}\longrightarrow \check{R}, is defined as

    \begin{equation} \log -COWA\left( \check{Z}_{1},...,\check{Z}_{n}\right) = \bigoplus\limits_{ {\rm{ p = 1 }}}^{n}\varpi _{{\rm{ p }}}.\log _{\breve{e}_{{\rm{ p }}}}\check{Z} _{{\rm{ p }}}. \end{equation} (4.6)

    Thus, the function \log -CWA is known as the logarithmic cubic ordered weighted averaging operator, where the weighed vectors are denoted by \varpi = \left(\varpi _{1}, \varpi _{2}, ..., \varpi _{n}\right) ^{T} of \log _{\breve{e}_{p}}\check{Z}_{p}\left(p = 1, 2, ..., n\right), subject to \varpi _{{\rm{ p }}}\in \left[ 0, 1\right], and their sum is always equal to 1.

    Theorem 4.2. Let \check{Z}_{p} = \left(\left[ \hat{W} _{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right) \left(p = 1, ..., n\right) be a collections of CNs with 0 < \breve{e}_{p}\leq \left[ \hat{W}_{p}, \breve{U}_{p} \right] \leq 1, and \breve{e}_{p}\neq 1, that is, p = 1, 2, ..., n. Then, utilized Definition 4.2, we have

    \begin{eqnarray} &&\log -COWA\left( \check{Z}_{1},...,\check{Z}_{n}\right) \\ & = &\left( \begin{array}{c} \left[ 1-\prod\limits_{p = 1}^{n}\left( \log _{\breve{e}_{p}}\left( \hat{W} _{p}\right) \right) ^{\varpi _{P}},1-\prod\limits_{p = 1}^{n}\left( \log _{ \breve{e}_{p}}(\breve{U}_{p})\right) ^{\varpi _{P}}\right] , \\ \prod\limits_{p = 1}^{n}\left( \log _{\breve{e}_{p}}\left( 1-\hat{Y} _{p}\right) \right) ^{\varpi _{P}} \end{array} \right). \end{eqnarray} (4.7)

    Proof. For proof, see Appendix G.

    (1) Idempotency:Let \check{Z}_{p} = \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right), \left(p = 1, 2, .., n\right) be a collection of CNs are equal, i.e., \check{Z}_{p} = \check{Z}, \left(p = 1, 2, ..., n\right) . Then,

    \begin{equation} \log -COWA\left( \check{Z}_{1},...,\check{Z}_{n}\right) = \log _{\breve{e}} \check{Z} \end{equation} (4.8)

    where \breve{e}_{1} = \breve{e}_{2} = ... = \breve{e}_{n} = \breve{e} .

    (2) Boundedness:If \check{Z}_{p} = \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right) \left(p = 1, 2, \cdots, n\right) be a collection of CNs. Let \check{Z}^{-} = \min \left(\check{Z}_{1}, ..., \check{ Z}_{n}\right) and \check{Z}^{+} = \max \left(\check{Z}_{1}, \check{Z} _{2}, ..., \check{Z}_{n}\right) . Then,

    \begin{equation} \check{Z}^{-}\leq \log -COWA\left( \check{Z}_{1},\check{Z}_{2},\cdots , \check{Z}_{n}\right) \leq \check{Z}^{+} \end{equation} (4.9)

    where \breve{e}_{1} = \breve{e}_{2} = \cdots = \breve{e}_{n} = \breve{e} .

    (3) Monotonicity: Let \check{Z}_{p} = \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right) and \check{Z}_{p}^{\ast } = \left(\left[ \hat{W}_{p}^{\ast }, \breve{U}_{p}^{\ast }\right], \hat{Y}_{p}^{\ast }\right), \left(p = 1, 2, \cdots, n\right) be a family of cubic numbers, if \left[ \hat{W}_{p}, \breve{U}_{p}\right] \leq \left[ \hat{W}_{p}^{\ast }, \breve{U} _{p}^{\ast }\right] and \hat{Y}_{p}\geq \hat{Y}_{p}^{\ast }, also 0 < \breve{e}_{p}\leq \min \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \left[ \hat{W}_{p}^{\ast }, \breve{U}_{p}^{\ast }\right] \right) \leq 1 , holds for any p , then

    \begin{equation} \log -COWA\left( \check{Z}_{1},\cdots ,\check{Z}_{n}\right) \leq \log -CWG\left( \check{Z}_{1}^{\ast },\cdots ,\check{Z}_{n}^{\ast }\right) \end{equation} (23)

    where \breve{e}_{1} = \breve{e}_{2} = \cdots = \breve{e}_{n} = \breve{e}.

    The logarithmic cubic weighted geometric and \log -CFOWG aggregation operators, as well as their properties, are defined and explained in this portion of the paper.

    Definition 5.1.Let \check{Z}_{p} = \left(\left[ \hat{W}_{p}, \breve{ U}_{p}\right], \hat{Y}_{p}\right) \left(p = 1, 2, \cdots, n\right) be a collection of cubic numbers with condition 0 < \breve{e}_{{\rm{ p }}}\leq \left[ \hat{W} _{p}, \breve{U}_{p}\right] \leq 1, and \breve{e}_{{\rm{ p }}}\neq 1. Then, the mapping \log -CWG:\check{R}^{n}\longrightarrow \check{R}, defined as

    \begin{equation} \log -CWG\left( \check{Z}_{1},\cdots ,\check{Z}_{n}\right) = \bigotimes\limits_{{\rm{ p = 1 }}}^{n}\left( \log _{\breve{e}_{{\rm{ p }}}} \check{Z}_{{\rm{ p }}}\right) ^{\varpi _{{\rm{ p }}}}, \end{equation} (5.1)

    is called the logarithmic cubic weighted geometric operator of dimension n . Where \varpi = \left(\varpi _{1}, \cdots, \varpi _{n}\right) ^{T} are the weight vector of \log _{\breve{e}_{p}}\check{Z}_{p{\rm{\ }}}\left(p = 1, 2, \cdots, n\right) , such that \varpi _{{\rm{ p }}}\in \left[ 0, 1\right], \sum_{p = 1}^{n}\varpi _{{\rm{ p }}} = 1 . And also we have take \breve{e}_{1} = \breve{e}_{2} = \cdots = \breve{e}_{n} = \breve{e} .

    Theorem 5.1. Let there be a collection of cubic numbers \check{Z} _{p} = \left(\left(\hat{W}_{p}, \breve{U}_{p}\right), \hat{Y}_{p}\right), \left(p = 1, 2, \cdots, n\right) with condition 0 < \check{e}_{p}\leq \left[ \hat{W}_{p}, \breve{U}_{p}\right] \leq 1, and \check{e}_{p}\neq 1. Then, utilizing the \log - CWG operator the aggregated value is also a logarithmic cubic number. Hence,

    \begin{equation} \log -CWG\left( \check{Z}_{1},...,\check{Z}_{n}\right) = \left( \begin{array}{c} \left[ \prod\limits_{p = 1}^{n}\left( 1-\log _{\breve{e}_{p}}\left( \hat{W} _{p}\right) \right) ^{\varpi _{P}},\prod\limits_{p = 1}^{n}\left( 1-\log _{ \breve{e}_{p}}\left( \breve{U}_{p}\right) \right) ^{\varpi _{P}}\right] , \\ 1-\prod\limits_{p = 1}^{n}\left( 1-\log _{\breve{e}_{p}}\left( 1-\hat{Y} _{p}\right) \right) ^{\varpi _{P}} \end{array} \right). \end{equation} (5.2)

    Proof. For proof, see Appendix H.

    (1) Idempotency:Let \check{Z}_{p} = \left([\hat{W}_{p}, \breve{U} _{p}], \hat{Y}_{p}\right) \left(p = 1, 2, ..., n\right) be a collection of cubic numbers and all the CNs are equal, i.e., \check{Z}_{p} = \check{Z}, \left(p = 1, 2, ..., n\right) . Then,

    \begin{equation} \log -CWG\left( \check{Z}_{1},...,\check{Z}_{n}\right) = \log _{\breve{e}} \check{Z} \end{equation} (5.3)

    where \breve{e}_{1} = \breve{e}_{2} = ... = \breve{e}_{n} = \breve{e} .

    (2) Boundedness:If \check{Z}_{p} = \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right), \left(p = 1, 2, ..., n\right) is a family of CNs, let \check{Z}^{-} = \min \left(\check{Z}_{1}, ..., \check{Z} _{n}\right) and \check{Z}^{+} = \max \left(\check{Z}_{1}, \check{Z}_{2}, ..., \check{Z}_{n}\right) . Then,

    \begin{equation} \check{Z}^{-}\leq \log -CWG\left( \check{Z}_{1},\check{Z}_{2},\cdots ,\check{ Z}_{n}\right) \leq \check{Z}^{+} \end{equation} (5.4)

    where \breve{e}_{1} = \breve{e}_{2} = \cdots = \breve{e}_{n} = \breve{e} .

    (3) Monotonicity: Let \check{Z}_{p} = \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right) and \check{Z}_{p}^{\ast } = \left(\left[ \hat{W}_{p}^{\ast }, \breve{U}_{p}^{\ast }\right], \hat{Y}_{p}^{\ast }\right), \left(p = 1, 2, ..., n\right) be a collections of cubic numbers. If \left[ \hat{W}_{p}, \breve{U}_{p}\right] \leq \left[ \hat{W}_{p}^{\ast }, \breve{U} _{p}^{\ast }\right] and \ \hat{Y}_{p}\geq \hat{Y}_{p}^{\ast }, with 0 < \breve{e}_{p}\leq \min \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \left[ \hat{W}_{p}^{\ast }, \breve{U}_{p}^{\ast }\right] \right) \leq 1 , holds for any p , then

    \begin{equation} \log -CWG\left( \check{Z}_{1},...,\check{Z}_{n}\right) \leq \log -CWG\left( \check{Z}_{1}^{\ast },...,\check{Z}_{n}^{\ast }\right) \end{equation} (5.5)

    where \ \breve{e}_{1} = \breve{e}_{2} = ... = \breve{e}_{n} = \breve{e}.

    Definition 5.2.Let the collection of the cubic numbers are \check{Z} _{p} = \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right) \left(p = 1, 2, ..., n\right) with condition 0 < \breve{e}_{p}\leq \left[ \hat{W }_{p}, \breve{U}_{p}\right] \leq 1, and \breve{e}_{p}\neq 1. Then, the mapping \log -COWG:\check{R}^{n}\longrightarrow \check{R} , defined as

    \begin{equation} \log -COWG\left( \check{Z}_{1},...,\check{Z}_{n}\right) = \bigotimes\limits_{ {\rm{ p = 1 }}}^{n}\left( \log _{\breve{e}}\check{Z}_{\check{z}\left( p\right) }\right) ^{\varpi _{{\rm{ p }}}}, \end{equation} (5.6)

    is called the logarithmic cubic ordered weighted geometric operator of dimension n. The permutations are denoted by \left(\check{z}\left(1\right), \check{z}\left(2\right), ..., \check{z}\left(n\right) \right) of \left({\rm{ p }} = 1, 2, ..., n\right), such that \check{Z}_{\check{z}\left({\rm{ p- }}1\right) }\geq \check{Z}_{\check{z}\left({\rm{ p }}\right) }, for all p = 1, 2, ..., n . Also the weighted vectors are denoted by \varpi = \left(\varpi _{1}, \varpi _{2}, \cdots, \varpi _{n}\right) ^{T} of \log _{\breve{e} }\check{Z}_{\left(p\right) }, \left({\rm{ p }} = 1, 2, ..., n\right) , subject to \varpi _{{\rm{ p }}}\in \lbrack 0, 1], and their sum is always equal to one. And, we have \breve{e}_{1} = \breve{e}_{2} = ... = \breve{e}_{n} = \breve{e} .

    Theorem 5.2. Let the collection of cubic numbers are \check{Z}_{ {\rm{ p }}} = \left(\left[ \hat{W}_{{\rm{ p }}}, \breve{U}_{{\rm{ p }}}\right], \hat{Y}_{{\rm{ p }}}\right), \left(p = 1, 2, ..., n\right) with the condition 0 < \breve{e}_{{\rm{ p }}}\leq \left[ \hat{W}_{{\rm{ p }}}, \breve{U}_{{\rm{ p }}}\right] \leq 1, and \breve{e}_{{\rm{ p }}}\neq 1. Then, by utilizing the \log - COWG operator the aggregated value is also a logarithmic CNs. Hence,

    \begin{eqnarray} &&\log -COWG\left( \check{Z}_{1},...,\check{Z}_{n}\right) \\ & = &\left( \begin{array}{c} \left[ \prod\limits_{p = 1}^{n}\left( 1-\log _{\breve{e}_{p}}\left( \hat{W} _{p}\right) \right) ^{\varpi _{P}},\prod\limits_{p = 1}^{n}\left( 1-\log _{ \breve{e}_{p}}(\breve{U}_{p})\right) ^{\varpi _{P}}\right] , \\ 1-\prod\limits_{p = 1}^{n}\left( 1-\log _{\breve{e}_{p}}\left( 1-\hat{Y} _{p}\right) \right) ^{\varpi _{P}} \end{array} \right) . \end{eqnarray} (5.7)

    Proof. For proof, see Appendix I.

    (1) Idempotency:Let there be a collection of cubic numbers are \check{Z} _{p} = \left([\hat{W}_{p}, \breve{U}_{p}], \hat{Y}_{p}\right) \left(p = 1, 2, ..., n\right) with \check{Z}_{p} = \check{Z}. Then, we show that

    \begin{equation} \log -COWG\left( \check{Z}_{1},...,\check{Z}_{n}\right) = \log _{\check{e}} \check{Z} \end{equation} (5.8)

    where \check{e}_{1} = \check{e}_{2} = ... = \check{e}_{n} = \check{e}.

    (2) Boundedness:Let there be a collection of cubic numbers are \check{Z} _{p} = \left([\hat{W}_{p}, \breve{U}_{p}], \hat{Y}_{p}\right) \left(p = 1, 2, ..., n\right). \check{Z}^{-} = \min \left(\check{Z}_{1}, \check{Z }_{2}, ..., \check{Z}_{n}\right) and \check{Z}^{+} = \max \left(\check{Z} _{1}, \check{Z}_{2}, ..., \check{Z}_{n}\right). Then,

    \begin{equation} \check{Z}^{-}\leq \log -COWG\left( \check{Z}_{1},\cdots ,\check{Z} _{n}\right) \leq \check{Z}^{+}, \end{equation} (5.9)

    where \check{e}_{1} = \check{e}_{2} = \cdots = \check{e}_{n} = \check{e}.

    (3) Monotonicity: Let \check{Z}_{p} = \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \hat{Y}_{p}\right) and \check{Z}_{p}^{\ast } = \left(\left[ \hat{W}_{p}^{\ast }, \breve{U}_{p}^{\ast }\right], \hat{Y}_{p}^{\ast }\right) \left(p = 1, 2, ..., n\right) be a collections of cubic numbers. If \ \left[ \hat{W}_{p}, \breve{U}_{p}\right] \leq \left[ \hat{W}_{p}^{\ast }, \breve{U} _{p}^{\ast }\right] and \ \hat{Y}_{p}\geq \hat{Y}_{p}^{\ast }, with 0 < \check{e}_{p}\leq \min \left(\left[ \hat{W}_{p}, \breve{U}_{p}\right], \left[ \hat{W}_{p}^{\ast }, \breve{U}_{p}^{\ast }\right] \right) \leq 1, holds for any p , then,

    \begin{equation} \log -COWG\left( \check{Z}_{1},...,\check{Z}_{n}\right) \leq \log -PFOWG\left( \check{Z}_{1}^{\ast },...,\check{Z}_{n}^{\ast }\right). \end{equation} (5.10)

    Definition 5.3. Let there be a collection of cubic numbers are \log _{ \check{e}}\check{Z} = \left(\left[ 1-\log _{\check{e}}\breve{U}, \log _{\check{ e}}(1-\breve{U})\right], \log _{\check{e}}(1-\hat{Y})\right).

    Then, S is the score function of \log _{\breve{e}}\check{Z} , which is defined as follows:

    \begin{equation*} S\left( \log _{\breve{e}}\check{Z}\right) = \left[ \left( 1-\log _{\breve{e}} \hat{W}_{\check{Z}}\right) -\log _{\breve{e}}(1-\breve{U}_{\check{Z}})\right] -\log _{\breve{e}}(1-\hat{Y}_{\check{Z}}),S\left( \log _{\breve{e}}\check{Z} \right) \in \left[ -1,1\right]. \end{equation*}

    \hat{S} be the accuracy degree of \log _{\breve{e}}\check{Z} and is defined as follows:

    \begin{equation*} \hat{S}\left( \log _{\breve{e}}\check{Z}\right) = \left[ \left( 1-\log _{ \breve{e}}\hat{W}_{\check{Z}}\right) +\log _{\breve{e}}(1-\breve{U}_{\check{Z }})\right] +\log _{\breve{e}}(1-\hat{Y}_{\check{Z}}),\hat{S}\left( \log _{ \breve{e}}\check{Z}\right) \in \left[ 0,1\right] \end{equation*}

    (1) If S\left(\log _{\breve{e}}\check{Z}_{1}\right) > S\left(\log _{\breve{ e}}\check{Z}_{2}\right), then \log _{\breve{e}}\check{Z}_{1} > \log _{\breve{ e}}\check{Z}_{2} .

    (2) If S\left(\log _{\breve{e}}\check{Z}_{1}\right) = S\left(\log _{\breve{ e}}\check{Z}_{2}\right), then if \hat{S}\left(\log _{\breve{e}}\check{Z} _{1}\right) > \hat{S}\left(\log _{\breve{e}}\check{Z}_{2}\right), then \log _{\breve{e}}\check{Z}_{1} > \log _{\breve{e}}\check{Z}_{2} .

    (3) If \hat{S}\left(\log _{\breve{e}}\check{Z}_{1}\right) = \hat{S}\left(\log _{\breve{e}}\check{Z}_{2}\right), then \log _{\breve{e}}\check{Z} _{1} = \log _{\breve{e}}\check{Z}_{2}.

    This part tackles the MAGDM problem using the previously mentioned aggregation operations. An example is given to demonstrate the superiority as well as the validity of the introduced operators in a real-life scenario. Let the finite set of m alternatives be \breve{U} = \left\{ u_{1}, u_{2}, ..., u_{m}\right\}, and the finite set of n attribute is \check{Z} = \left\{ z_{1}, z_{2}, ..., z_{n}\right\} . The weight vector of attributes is \varpi = \left(\varpi _{1}, \varpi _{2}, \cdots, \varpi _{n}\right) ^{T} , such that \varpi _{p}\in \left[ 0, 1\right], \sum_{p = 1}^{n}\varpi _{p} = 1 . Let the decision matrices (DMs) as follows:

    By using the \log -CWA, \log -COWA, \log -CWG, and \log -CWG operators, we intend to solve the MAGDM issue using cubic fuzzy information using the following algorithm.

    Step 1.Make the decision matrices (DMs).

    Step 2.Normalize the given decision matrices (DMs).

    Step 3. Use the introduced operators to combine the preferences of the DMs of various types.

    Step 4.Use the Definition of the score function to calculate the score value.

    Step 5.On the basis of the score function, rank all of the possibilities and choose the best one.

    Figure 1 shows the algorithm of the proposed method.

    Figure 1.  Flow chart of the algorithm.

    Education plays a vital role in the development of society and individual behavior. For that purpose, the role of teachers is the most important in delivering and transferring of knowledge and experience to students in a healthy and effective environment with smoothness and easy way. The relationship of teacher to student in this sense is like a backbone in the body. If there is more effective ways and suitable environment for sharing knowledge there will be the best outcomes of it. The flow of knowledge between teacher and student plays a key role in that scenario. We have studied and observed the difference between the flow and gaining of knowledge between students and teacher before and after the Covid- 19 pandemic. We have found very vivid clues of teacher teaching effect before Covid- 19 , and the effects on students today has a clear difference.

    Knowledge flow between Students and teacher before and after Covid- 19 in colleges:

    R_{1} : Face to face interaction

    Teacher student interaction in the classroom before Covid was face to face interaction. The teacher was teaching everything in a friendly environment with direct student interaction. However this effective way of teaching with face to face interaction has vanished because of Covid- 19 , which creates hurdles in the way of transferring knowledge from teacher to students.

    R_{2} : Attention

    Face to face interaction was interrupted by the arrival of Covid- 19. Before Covid, the relationship between teacher and student was so closed which was showing their strong connection whenever students lost their attention during class from their particular topic, teachers were always there to help them pay their attention again. However now, using virtual classrooms, that strong bonding between teacher and students has lost and students lose their attention. Such teaching method includes not powerful visual presentations because the teacher didn't see whether students are attentive or not. Finally, we come to the conclusion that taking classes from home fuels a disturbing environment that leads to losing attention, etc.

    R_{3} : Performance

    Performances of students are getting worse because of the lack of face to face interaction in the classroom between teacher and student and the lack of full attention. This badly effects students performance. They lose their vocabulary skills, fluency, sharpness, and obedience, etc. Informal environment of class at home leads to disturbed patterns of gaining knowledge that directly affects student performance.

    R_{4} : Interest

    Interest is something really important for achieving goals. Online classes create a situation in which students cannot hold their interest in studies. When the students pick up a cell phone and get on the internet, a lot of unwanted notifications start coming, which attract students toward unproductive things. Especially immature students can easily lose their attention to other things than studies and taking classes.

    Step 1.Decision matrices given by three experts are given in Tables 14.

    Table 1.  Forth decision matrix E^{1} .
    \ \ \ \ \ \ \ \ \ C_{1} \ \ \ \ \ \ \ \ \ \ C_{2} \ \ \ \ \ \ \ \ \ \ \ C_{3} \ \ \ \ \ \ \ \ \ \ \ C_{4} \ \ \ \ \ \ \ \ \ \ C_{5}
    R_{1} \left([.11, .15], .23\right) \left([.13, .18], .32\right) \left([.11, .21], .20\right) \left([.26, .27], .12\right) \left([.16, .18], .23\right)
    R_{2} \left([.19, .20], .25\right) \left([.17, .18], .29\right) \left([.25, .26], .19\right) \left([.17, .18], .25\right) \left([.21, .22], .15\right)
    R_{3} \left([.12, .14], .20\right) \left([.14, .16], .26\right) \left([.15, .16], .23\right) \left([.21, .22], .16\right) \left([.17, .18], .22\right)
    R_{4} \left([.16, .17], .40\right) \left([.20, .21], .21\right) \left([.24, .25], .21\right) \left([.31, .32], .23\right) \left([.30, .31], .25\right)

     | Show Table
    DownLoad: CSV
    Table 2.  Forth decision matrix E^{2} .
    \ \ \ \ \ \ \ \ \ C_{1} \ \ \ \ \ \ \ \ \ C_{2} \ \ \ \ \ \ \ \ C_{3} \ \ \ \ \ \ \ \ C_{4} \ \ \ \ \ \ \ \ C_{5}
    R_{1} \left( \left[ .16,.18\right] ,.23\right) \left( \left[ .26,.27\right] ,.12\right) \left( \left[ .23,.25\right] ,.20\right) \left( \left[ .13,.15\right] ,.32\right) \left( \left[ .11,.15\right] ,.23\right)
    R_{2} \left( \left[ .17,.18\right] ,.25\right) \left( \left[ .25,.26\right] ,.19\right) \left( \left[ .17,.18\right] ,.29\right) \left( \left[ .19,.20\right] ,.25\right) \left( \left[ .21,.23\right] ,.15\right)
    R_{3} \left( \left[ .15,.16\right] ,.23\right) \left( \left[ .14,.15\right] ,.26\right) \left( \left[ .12,.13\right] ,.20\right) \left( \left[ .21,.22\right] ,.26\right) \left( \left[ .21,.22\right] ,.26\right)
    R_{4} \left( \left[ .20,.21,.21\right] \right) \left( \left[ .16,.17\right] ,.40\right) \left( \left[ .30,.31\right] ,.25\right) \left( \left[ .21,.22\right] ,.15\right) \left( \left[ .24,.25\right] ,.21\right)

     | Show Table
    DownLoad: CSV
    Table 3.  First decision matrix E^{3} .
    \ \ \ \ \ \ \ \ \ C_{1} \ \ \ \ \ \ \ \ \ C_{2} \ \ \ \ \ \ \ \ \ \ C_{3} \ \ \ \ \ \ \ \ \ \ \ C_{4} \ \ \ \ \ \ \ \ \ \ C_{5}
    R_{1} \left( \left[ .13,.15\right] ,.32\right) \left( [.26,.27],.12\right) \left( \left[ .18,.20\right] ,.23\right) \left( \left[ .16,.17\right] ,.40\right) \left( \left[ .20,.22\right] ,.21\right)
    R_{2} \left( \left[ .17,.18\right] ,.29\right) \left( \left[ .12,.15\right] ,.20\right) \left( \left[ .17,.18\right] ,.25\right) \left( \left[ .31,.32\right] ,.13\right) \left( \left[ .16,.17\right] ,.40\right)
    R_{3} \left( \left[ .14,.15\right] ,.26\right) \left( \left[ .21,.22\right] ,.25\right) \left( \left[ .16,.17\right] ,.23\right) \left( \left[ .17,.18\right] ,.22\right) \left( \left[ .11,.13\right] ,.20\right)
    R_{4} \left( \left[ .20,.21\right] ,.31\right) \left( \left[ .21,.22\right] ,.16\right) \left( \left[ .14,.15\right] ,.26\right) \left( \left[ .24,.25\right] ,.21\right) \left( \left[ .11,.14\right] ,.31\right)

     | Show Table
    DownLoad: CSV
    Table 4.  Forth decision matrix E^{4} .
    \ \ \ \ \ \ \ \ C_{1} \ \ \ \ \ \ \ \ C_{2} \ \ \ \ \ \ \ \ C_{3} \ \ \ \ \ \ \ \ \ \ \ C_{4} \ \ \ \ \ \ \ \ \ C_{5}
    R_{1} \left( \left[ .20,.21\right] ,.21\right) \left( [.16,.19],.40\right) \left( \left[ .20,.21\right] ,.23\right) \left( \left[ .13,.15\right] ,.32\right) \left( \left[ .30,.31\right] ,.25\right)
    R_{2} \left( \left[ .31,.32\right] ,.13\right) \left( \left[ .17,.18\right] ,.25\right) \left( \left[ .12,.15\right] ,.20\right) \left( \left[ .16,.17\right] ,.40\right) \left( \left[ .21,.22\right] ,.16\right)
    R_{3} \left( \left[ .16,.17\right] ,.23\right) \left( \left[ .21,.22\right] ,.18\right) \left( \left[ .14,.15\right] ,.26\right) \left( \left[ .17,.18\right] ,.22\right) \left( \left[ .21,.22\right] ,.23\right)
    R_{4} \left( \left[ .21,.22\right] ,.16\right) \left( \left[ .20,.21\right] ,.18\right) \left( \left[ .13,.14\right] ,.31\right) \left( \left[ .14,.15\right] ,.25\right) \left( \left[ .16,.17\right] ,.41\right)

     | Show Table
    DownLoad: CSV

    Step 2.We do not need to normalize the data because all the criteria are of the same type.

    Step 3.Use the methods that have been introduced, which are listed below.

    First, we utilized the \log -CWA operator, and we obtained Table 5.

    Table 5.  Aggregated value obtained using log-CWA operator.
    R_{1} \left(\left[ 0.381, 0.466\right], 0.055\right)
    R_{2} \left(\left[ 0.449, 0.494\right], 0.050\right)
    R_{3} \left(\left[ 0.307, 0.367\right], 0.051\right)
    R_{4} \left(\left[ 0.449, 0.486\right], 0.055\right)

     | Show Table
    DownLoad: CSV

    Second, we utilized the \log -CWG operator, and we get Table 6.

    Table 6.  Aggregated value obtained using log-CWG operator.
    R_{1} \left(\left[ 0.419, 0.497\right], 0.053\right)
    R_{2} \left(\left[ 0.456, 0.499\right], 0.049\right)
    R_{3} \left(\left[ 0.347, 0.402\right], 0.051\right)
    R_{4} \left(\left[ 0.453, 0.489\right], 0.053\right)

     | Show Table
    DownLoad: CSV

    Third, we utilized the \log -COWA operator, and we get Table 7.

    Table 7.  Aggregated value obtained using log-COWA operator.
    R_{1} \left(\left[ 0.275, 0.430\right], 0.060\right)
    R_{2} \left(\left[ 0.368, 0.456\right], 0.055\right)
    R_{3} \left(\left[ 0.244, 0.327\right], 0.052\right)
    R_{4} \left(\left[ 0.372, 0.443\right], 0.059\right)

     | Show Table
    DownLoad: CSV

    Fourth, we utilized the \log -COWG operator, and we get Table 8.

    Table 8.  Aggregated value obtained using \log -COWG operator.
    R_{1} \left(\left[ 0.312, 0.463\right], 0.059\right)
    R_{2} \left(\left[ 0.386, 0.465\right], 0.055\right)
    R_{3} \left(\left[ 0.272, 0.361\right], 0.051\right)
    R_{4} \left(\left[ 0.376, 0.447\right], 0.059\right)

     | Show Table
    DownLoad: CSV

    Step 4.The following score values are obtained by using the score function (see Table 9).

    Table 9.  Score values obtained using different aggregation operators.
    Proposed Operators Score value
    S\left(R_{1}\right) S\left(R_{2}\right) S\left(R_{3}\right) S\left(R_{4}\right)
    \log -CWA 0.264 0.297 0.207 0.293
    \log -COWA 0.287 0.302 0.232 0.296
    \log -CWG 0.215 0.256 0.173 0.252
    \log -COWG 0.238 0.265 0.194 0.254

     | Show Table
    DownLoad: CSV

    Step 5.Thus, from the obtained score values, we get the ranking of the attributes, as shown in Table 10.

    Table 10.  Proposed aggregation operators and their rankings.
    Proposed operators Ranking
    \log -CWA R_{2} > R_{4} > R_{1} > R_{3}
    \log -COWA R_{2} > R_{4} > R_{1} > R_{3}
    \log -CWG R_{2} > R_{4} > R_{1} > R_{3}
    \log -COWG R_{2} > R_{4} > R_{1} > R_{3}

     | Show Table
    DownLoad: CSV

    Hence, R_{2} is our best choice.

    In Figure 2, we show the ranking of the alternative graphically.

    Figure 2.  Ranking of the alternatives using proposed operators.

    Uncertain outcomes are a result of the fact that, when applied to the same decision making problem, several MAGDM methods provide different assessments (rankings). In order to assess the validity and reliability of the MAGDM method, we consider the following.

    Test criteria on 1:The MAGDM method works well when the best alternative is kept as the default, and the non-optimal alternative is changed to a worse alternative without altering the relative importance of any decision attribute.

    Test criteria on 2:Transitive qualities should be followed by an effective MAGDM strategy.

    Test criteria on 3:When the MAGDM problem is divided into smaller problems and these smaller problems, are subjected to the proposed MAGDM approach for the ranking of alternatives, the MAGDM approach is effective. The cumulative rating of the options maintains consistency with the ranking of the original problem.

    The following attributes are used to evaluate the suggested solution's validity.

    In order to assess the viability of the established technique using criteria on 1, the worst alternative R_{4}^{/} is substituted for the non-optimal alternative R_{4}^{/} for each expert in the original decision matrix, and the rating values are provided in Table 11.

    Table 11.  Transferred alternative R_{4}^{/} by each expert.
    \ \ \ \ \ \ \ \ \ C_{1} \ \ \ \ \ \ \ \ \ C_{2} \ \ \ \ \ \ \ \ \ \ C_{3} \ \ \ \ \ \ \ \ \ \ C_{4} \ \ \ \ \ \ \ \ \ \ C_{5}
    E^{1} \left(\left[.14, .15\right], .26\right) \left(\left[.11, .14\right], .31\right) \left(\left[.18, .20\right], .23\right) \left([.16, .17, .40\right) \left(\left[.16, .17\right], .23\right)
    E^{2} \left([.26, .27], .12\right) \left(\left[.14, .15\right], .26\right) \left(\left[.20, .21\right], .31\right) \left(\left[.20, .22\right], .21\right) \left(\left[.12, .15\right], .20\right)
    E^{3} \left(\left[.24, .25\right], .21\right) \left(\left[.11, .13\right], .20\right) \left(\left[.31, .32\right], .13\right) \left(\left[.17, .18\right], .22\right) \left(\left[.13, .15\right], .32\right)
    E^{4} \left(\left[.17, .18\right], .25\right) \left(\left[.16, .17\right], .40\right) \left(\left[.21, .22\right], .16\right) \left(\left[.21, .22\right], .25\right) \left(\left[.17, .18\right], .29\right)

     | Show Table
    DownLoad: CSV

    Now, utilizing the \log -CWA operator in Step 3 on transferring alternative, we get the computed scores of the alternatives are S(R_{1}) = 0.234, S(R_{2}) = 0.265, S(R_{3}) = 0.223, S(R_{4}) = 0.245 . As a result, the final ranking of the options points to R_{2} as the best alternative, and the approach developed satisfies test criteria on 1.

    We divided the initial decision-making problem into smaller decision making problems \left(R_{1}, R_{2}, R_{3}\right), \left(R_{2}, R_{3}, R_{4}\right) and \left(R_{1}, R_{3}, R_{4}\right) using these possibilities in order to test the defined MAGDM approach with criteria 2 and 3. When we use the provided MAGDM approach to solve these subproblems, the rating of the alternatives will be R_{2} > R_{1} > R_{3}, R_{2} > R_{4} > R_{3} and R_{4} > R_{1} > R_{3} . We achieve the ultimate ranking order as R_{2} > R_{4} > R_{1} > R_{3} by adding a ranking of alternatives to the smaller problems. This shows a transitive property and is equivalent to a non-decomposed problem. As a result, the criteria 2 and 3 have same best alternative as the defined MAGDM approach.

    In this part, the comparing of our suggested aggregation operators to previous information aggregation operators is expressed using [10,11,18,21] aggregation operators. The STOLs for the MAGDM problem are defined for MAGDM problems with CFNs. The results and rankings are shown in Table 12. For comparison, we have solved the same numerical example present in Section 7.1 by the existing aggregation operators in [10,11,18,21]. The results are shown in Table 12. It is determined that the best option is still the same. Consequently, the new strategy is more logical than the existing one.

    Table 12.  Score values and rankings of the existing methods.
    {\rm{Proposed\ operators}} S\left(R_{1}\right) S\left(R_{2}\right) S\left(R_{3}\right) S\left(R_{4}\right) {\rm{Ranking}}
    Khoshaim et al. [21] 0.139 0.163 0.109 0.156 R_{2} > R_{4} > R_{1} > R_{3}
    Fahmi et al. [11] 0.363 0.440 0.395 0.414 R_{2} > R_{4} > R_{3} > R_{1}
    Fahmi et al. [10] 0.207 0.224 0.180 0.195 R_{2} > R_{1} > R_{4} > R_{3}
    Kaur et al. [18] 0.541 0.563 0.538 0.551 R_{2} > R_{4} > R_{1} > R_{3}

     | Show Table
    DownLoad: CSV

    We have observed the logarithmic aggregation operators, and we have suggested proposed results that are broader, are more accurate and represent a novel approach to aggregating the cubic fuzzy data. In Figure 3, we show the ranking of the alternatives using different methods.

    Figure 3.  Ranking of the alternatives using different methods.

    In this study, we presented the CNs logarithmic operating laws, which are a useful addition to the currently used cubic aggregation methods. Based on logarithmic operational principles, we derived valuable operational laws under cubic information. Then, based on the developed logarithmic operational laws, a number of cubic aggregation operators were defined, including \log -CWA, \log -CWG, \log -COWA, and \log -COWG aggregation operators. We have examined a number of prerequisites for these logarithmic aggregation operations. To show the effectiveness and consistency of the suggested cubic logarithmic aggregation operators, we developed a method to handle MAGDM problems with uncertainty in the form of cubic fuzzy information. A real life example of Online study effect during Covid-19 was given in order to assess and show the applicability of our suggested technique. In order to demonstrate the superiority and the validity of the recommended aggregation methods, we employed certain existing tools. The research shows that our proposed aggregation operator outperforms the existing method in terms of reliability and accuracy. Thus, our suggested technique, logarithmic aggregation operator, provides a novel way to identify the best option in the MAGDM decision-making problem. The theory of logarithmic aggregation operators based on the CS is a very effective and dominant idea, which can be used for aggregating the collection of information into a single set. The proposed theory can easily resolve many real-life problems: for instance, artificial intelligence in education, in Health care, in business, in manufacturing, roads, machine learning, game theory, computer science and many more. Thus, our suggested technique, logarithmic aggregation operator, provides a novel way to identify the best option in the MAGDM decision-making problem.

    In the future, we extended our work to other disciplines for further research, including pattern recognition, symmetric operators, power operators, Hamacher operators, Dombi operators, Einstein operator, etc.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work under grant code 22UQU4310396DSR45.

    The authors declare that they have no conflicts of interest.



    [1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
    [2] A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific J. Math., 5 (1955), 285–309. https://doi.org/10.2140/pjm.1955.5.285 doi: 10.2140/pjm.1955.5.285
    [3] S. Heikkil? On fixed points through a generalized iteration method with applications to differential and integral equations involving discontinuities, Nonlinear Anal., 14 (1990), 413–426. https://doi.org/10.1016/0362-546X(90)90082-R
    [4] E. A. Ok, Fixed set theory for closed correspondences with applications to self-similarity and games, Nonlinear Anal., 56 (2004), 309–330. https://doi.org/10.1016/j.na.2003.08.001 doi: 10.1016/j.na.2003.08.001
    [5] S. Reich, A. J. Zaslavski, Generic well-posedness of fixed point problems, Vietnam J. Math., 46 (2018), 5–13. https://doi.org/10.1007/s10013-017-0251-1 doi: 10.1007/s10013-017-0251-1
    [6] I. Kramosil, J. Michálek, Fuzzy metrics and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [7] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
    [8] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566–569. https://doi.org/10.1016/0022-247X(81)90141-4 doi: 10.1016/0022-247X(81)90141-4
    [9] T. Došenović, D. Rakić, M. Brdar, Fixed point theorem in fuzzy metric spaces using altering distance, Filomat, 28 (2014), 1517–1524. https://doi.org/10.2298/FIL1407517D doi: 10.2298/FIL1407517D
    [10] A. George, P. Veeramani, On some results in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395–399. https://doi.org/10.1016/0165-0114(94)90162-7 doi: 10.1016/0165-0114(94)90162-7
    [11] A. George, P. Veeramani, On some results of analysis for fuzzy metric spaces, Fuzzy Sets Syst., 90 (1997), 365–368. https://doi.org/10.1016/S0165-0114(96)00207-2 doi: 10.1016/S0165-0114(96)00207-2
    [12] V. Gregori, A. Sapena, On fixed-point theorem in fuzzy metric spaces, Fuzzy Sets Syst., 125 (2002), 245–252. https://doi.org/10.1016/S0165-0114(00)00088-9 doi: 10.1016/S0165-0114(00)00088-9
    [13] I. H. Jebril, S. K. Datta, R. Sarkar, N. Biswas, Common fixed point theorems under rational contractions for a pair of mappings in bicomplex valued metric spaces, J. Interdisc. Math., 22 (2019), 1071–1082. https://doi.org/10.1080/09720502.2019.1709318 doi: 10.1080/09720502.2019.1709318
    [14] A. Shahzad, A. Shoaib, N. Mlaiki, S. S. Aiadi, Results for fuzzy mappings and stability of fuzzy sets with applications, Fractal Fract., 6 (2022), 556. https://doi.org/10.3390/fractalfract6100556 doi: 10.3390/fractalfract6100556
    [15] S. Sedghi, N. Shobkolaei, T. Došenović, S. Radenović, Suzuki-type of common fixed point theorems in fuzzy metric spaces, Math. Slovaca, 68 (2018), 451–462. https://doi.org/10.1515/ms-2017-0115 doi: 10.1515/ms-2017-0115
    [16] F. Uddin, U. Ishtiaq, K. Javed, S. S. Aiadi, M. Arshad, N. Souayah, et al., A new extension to the intuitionistic fuzzy metric-like spaces, Symmetry, 14 (2022), 1400. https://doi.org/10.3390/sym14071400 doi: 10.3390/sym14071400
    [17] N. Wairojjana, T. Došenović, T. Rakić, D. Gopal, P. Kumam, An altering distance function in fuzzy metric fixed point theorems, Fixed Point Theory Appl., 2015 (2015), 1–19. https://doi.org/10.1186/s13663-015-0318-1 doi: 10.1186/s13663-015-0318-1
    [18] D. Miheţ, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets Syst., 144 (2004), 431–439. https://doi.org/10.1016/S0165-0114(03)00305-1 doi: 10.1016/S0165-0114(03)00305-1
    [19] I. A. Bakhtin, The contraction principle in quasimetric spaces, Funct. Anal., 30 (1989), 26–37.
    [20] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11.
    [21] E. P. Klement, R. Mesiar, E. Pap, Triangular norms, Dordrecht: Springer, 2000. https://doi.org/10.1007/978-94-015-9540-7
    [22] O. Hadžić, A fixed point theorem in Menger spaces, Publ. Inst. Math., 20 (1979), 107–112.
    [23] O. Hadžić, E. Pap, Fixed point theory in probabilistic metric spaces, Kluwer Academic Publisher, 2001.
    [24] S. Sedghi, N. Shobe, Common fixed point theorem in b-fuzzy metric space, Nonlinear Funct. Anal. Appl., 17 (2012), 349–359.
    [25] T. Došenović, A. Javaheri, S. Sedghi, N. Shobe, Coupled fixed point theorem in b-fuzzy metric spaces, Novi Sad J. Math., 47 (2017), 77–88. https://doi.org/ 10.30755/NSJOM.04361 doi: 10.30755/NSJOM.04361
    [26] S. Sedghi, N. Shobe, Common fixed point theorem for R-weakly commuting maps in b-fuzzy metric space, Nonlinear Funct. Anal. Appl., 19 (2014), 285–295.
    [27] F. Khojasteh, S. Shukla, S. Radenović, A new approach to the study of fixed point theory for simulation functions, Filomat, 29 (2015), 1189–1194. https://doi.org/10.2298/FIL1506189K doi: 10.2298/FIL1506189K
    [28] H. Argoubi, B. Samet, C. Vetro, Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082–1094. https://doi.org/10.22436/jnsa.008.06.18 doi: 10.22436/jnsa.008.06.18
    [29] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-simulation functions, Iran. J. Math. Sci. Inform., 11 (2016), 123–136. https://doi.org/10.7508/IJMSI.2016.01.011 doi: 10.7508/IJMSI.2016.01.011
    [30] E. Karapinar, Fixed points results via simulation functions, Filomat, 30 (2016), 2343–2350. https://doi.org/ 10.2298/FIL1608343K doi: 10.2298/FIL1608343K
    [31] A. Perveen, M. Imdad, Proving new fixed point results in fuzzy metric spaces employing simulation function, J. Intell. Fuzzy Syst., 36 (2019), 6493–6501. https://doi.org/10.3233/JIFS-182873 doi: 10.3233/JIFS-182873
    [32] S. A. Alizadeh, F. Moradlou, P. Salimi, Some fixed point results for (\alpha, \beta)-(\psi, \phi)-contractive mappings, Filomat, 28 (2014), 635–647. https://doi.org/10.2298/FIL1403635A doi: 10.2298/FIL1403635A
    [33] P. Salimi, A. Latif, N. Hussain, Modified \alpha-\psi-contractive mappings with applications, Fixed Point Theory Appl., 2013 (2013), 1–19. https://doi.org/10.1186/1687-1812-2013-151 doi: 10.1186/1687-1812-2013-151
    [34] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [35] Y. Chalco-Cano, H. Román-Flores, M. D. Jiménez-Gamero, Generalized derivative and \pi-derivative for set-valued functions, Inform. Sci., 181 (2011), 2177–2188. https://doi.org/10.1016/j.ins.2011.01.023 doi: 10.1016/j.ins.2011.01.023
    [36] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7
    [37] A. R. Seadawy, M. Arshad, D. C. Lu, The weakly nonlinear wave propagation theory for the Kelvin-Helmholtz instability in magnetohydrodynamics flows, Chaos Solitons Fract., 139 (2020), 110141. https://doi.org/10.1016/j.chaos.2020.110141 doi: 10.1016/j.chaos.2020.110141
    [38] S. T. R. Rizvi, A. R. Seadawy, I. Ali, I. Bibi, M. Younis, Chirp-free optical dromions for the presence of higher order spatio-temporal dispersions and absence of self-phase modulation in birefringent fibers, Modern Phys. Lett. B, 34 (2020), 2050399. https://doi.org/10.1142/S0217984920503996 doi: 10.1142/S0217984920503996
    [39] A. R. Seadawy, S. Ahmed, S. T. R. Rizvi, K. Ali, Lumps, breathers, interactions and rogue wave solutions for a stochastic gene evolution in double chain deoxyribonucleic acid system, Chaos Solitons Fract., 161 (2022), 112307. https://doi.org/10.1016/j.chaos.2022.112307 doi: 10.1016/j.chaos.2022.112307
    [40] A. R. Seadawy, S. T. R. Rizvi, S. Ahmed, Weierstrass and Jacobi elliptic, bell and kink type, lumps, Ma and Kuznetsov breathers with rogue wave solutions to the dissipative nonlinear Schrödinger equation, Chaos Solitons Fract., 160 (2022), 112258. https://doi.org/10.1016/j.chaos.2022.112258 doi: 10.1016/j.chaos.2022.112258
    [41] N. Aziz, A. R. Seadawy, U. Raza, K. Ali, S. T. R. Rizvi, Chirped optical pulses for generalized longitudinal Lugiato Lefever: cubic nonlinear Schrödinger equation, Opt. Quant. Electron., 54 (2022), 1–29. https://doi.org/10.1007/s11082-022-04061-4 doi: 10.1007/s11082-022-04061-4
    [42] S. T. R. Rizvi, A. R. Seadawy, B. Mustafa, K. Ali, R. Ashraf, Propagation of chirped periodic and solitary waves for the coupled nonlinear Schrödinger equation in two core optical fibers with parabolic law with weak non-local nonlinearity, Opt. Quant. Electron., 54 (2022), 1–46. https://doi.org/10.1007/s11082-022-03960-w doi: 10.1007/s11082-022-03960-w
    [43] A. Georgieva, Solving two-dimensional nonlinear fuzzy Volterra integral equations by homotopy analysis method, Demonstr. Math., 54 (2021), 11–24. https://doi.org/10.1515/dema-2021-0005 doi: 10.1515/dema-2021-0005
    [44] D. Gopal, M. Abbas, C. Vetro, Some new fixed point theorems in Menger PM-spaces with application to Volterra type integral equation, Appl. Math. Comput., 232 (2014), 955–967. https://doi.org/10.1016/j.amc.2014.01.135 doi: 10.1016/j.amc.2014.01.135
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1609) PDF downloads(65) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog