Research article Special Issues

About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics

  • Received: 30 October 2022 Revised: 21 December 2022 Accepted: 25 December 2022 Published: 03 January 2023
  • MSC : 54H25, 43A80

  • For some class of 2-step Carnot groups $ D_n $ with 1-dimensional centre we find the exact values of the constants in $ (1, q_2) $-generalized triangle inequality for their $ \text{Box} $-quasimetrics $ \rho_{\text{Box}_{D_n}} $. Using this result we get the best version of the Coincidence Points Theorem of $ \alpha $-covering and $ \beta $-Lipschitz mappings defined on $ (D_n, \rho_{\text{Box}_{D_n}}) $.

    Citation: Alexander Greshnov, Vladimir Potapov. About coincidence points theorems on 2-step Carnot groups with 1-dimensional centre equipped with Box-quasimetrics[J]. AIMS Mathematics, 2023, 8(3): 6191-6205. doi: 10.3934/math.2023313

    Related Papers:

  • For some class of 2-step Carnot groups $ D_n $ with 1-dimensional centre we find the exact values of the constants in $ (1, q_2) $-generalized triangle inequality for their $ \text{Box} $-quasimetrics $ \rho_{\text{Box}_{D_n}} $. Using this result we get the best version of the Coincidence Points Theorem of $ \alpha $-covering and $ \beta $-Lipschitz mappings defined on $ (D_n, \rho_{\text{Box}_{D_n}}) $.



    加载中


    [1] A. V. Arutyunov, A. V. Greshnov, $(q_1, q_2)$-quasimetric spaces. Covering mappings and coincidence points, Izvestiya: Math., 82 (2018), 245–272. https://doi.org/10.4213/im8546 https://doi.org/10.4213/im8546 doi: 10.4213/im8546
    [2] A. V. Arutyunov, A. V. Greshnov, Theory of $(q_1, q_2)$-quasimetric spaces and coincidence points, Dokl. Math., 94 (2016), 434–437. https://doi.org/10.1134/S1064562416040232 doi: 10.1134/S1064562416040232
    [3] A. V. Arutyunov, A. V. Greshnov, Coincidence points of multi-valued mappings in $(q_1, q_2)$-quasimetric spaces, Dokl. Math., 96 (2017), 438–441. https://doi.org/10.1134/S1064562417050064 doi: 10.1134/S1064562417050064
    [4] A. V. Arutyunov, A. V. Greshnov, L. V. Lokoutsievskii, K. V. Storozhuk, Topological and geometrical properties of spaces with symmetric and nonsymmetric f-quasimetrics, Topol. Appl., 221 (2017), 178–194. https://doi.org/10.1016/j.topol.2017.02.035 doi: 10.1016/j.topol.2017.02.035
    [5] R. Sengupta, About fixed points of contraction mappings acting in $(q_1, q_2)$-quasi-metric spaces, Eurasian Math. J., 8 (2017), 70–76.
    [6] A. V. Greshnov, $(q_1, q_2)$-quasimetrics bi-Lipschitz equivalent to 1-quasimetrics, Sib. Adv. Math., 27 (2017), 253–262. https://doi.org/10.3103/S1055134417040034 doi: 10.3103/S1055134417040034
    [7] A. V. Greshnov, Regularization of distance functions and separation axioms on $(q_1, q_2)$-quasimetric spaces, Sib. Electron. Math. Re., 14 (2017), 765–773. https://doi.org/10.17377/semi.2017.14.065 doi: 10.17377/semi.2017.14.065
    [8] A. V. Greshnov, Some problems of regularity of $f$-quasimetrics, Sib. Electron. Math. Re., 15 (2018), 355–361. https://doi.org/10.17377/semi.2018.15.032 doi: 10.17377/semi.2018.15.032
    [9] A. V. Greshnov, R. I. Zhukov, Completeness theorem in $(q_1, q_2)$-quasimetric spaces, Sib. Electron. Math. Re., 16 (2018), 2090–2097. https://doi.org/10.33048/semi.2019.16.148 doi: 10.33048/semi.2019.16.148
    [10] A. V. Arutyunov, A. V. Greshnov, $(q_1, q_2)$-quasimetric spaces. Covering mappings and coincidence points. A review of the results, Fixed Point Theory, 23 (2022), 473–486.
    [11] W. A. Wilson, On quasi-metric spaces, Amer. J. Math., 53 (1931), 675–684. https://doi.org/10.2307/2371174
    [12] S. K. Vodopyanov, Geometry of Carnot-Carathéodory spaces and differentiability of mappings, Contemp. Math., 424 (2007), 247–301.
    [13] S. G. Basalaev, S. K.Vodopyanov, Approximate differentiability of mappings of Carnot-Carathéodory spaces, Eurasian Math. J., 4 (2013), 10–48.
    [14] A. V. Greshnov, On the generalized triangle inequality for quasimetrics induced by noncommuting vector fields, Sib. Adv. Math., 22 (2012), 95–114. https://doi.org/10.3103/S1055134412020034 doi: 10.3103/S1055134412020034
    [15] A. V. Greshnov, Proof of Gromov's theorem on homogeneous nilpotent approximation for vector fields of class $C^1$, Sib. Adv. Math., 23 (2013), 180–191. https://doi.org/10.3103/S1055134413030036 doi: 10.3103/S1055134413030036
    [16] A. V. Greshnov, M. V. Tryamkin, Exact values of constants in the generalized triangle inequality for some $(1, q_2)$-quasimetrics on canonical Carnot groups, Math. Notes, 98 (2015), 694–698. https://doi.org/10.1134/S0001434615090369 doi: 10.1134/S0001434615090369
    [17] A. Nagel, E. M. Stein, S. Wainger, Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155 (1985), 103–147. https://doi.org/10.1007/BF02392539 doi: 10.1007/BF02392539
    [18] A. V. Greshnov, Local approximation of uniformly regular Carnot-Carathéodory quasispaces by their tangent cones, Sib. Math. J., 48 (2007), 229–248. https://doi.org/10.1007/s11202-007-0024-2 doi: 10.1007/s11202-007-0024-2
    [19] A. V. Greshnov, Metrics and tangent cones of uniformly regular Carnot-Carathéodory spaces, Sib. Math. J., 47 (2006), 209–238. https://doi.org/10.1007/s11202-006-0036-3 doi: 10.1007/s11202-006-0036-3
    [20] L. M. Graves, Some mapping theorems, Duke Math. J., 17 (1950), 111–114. https://doi.org/10.1215/S0012-7094-50-01713-3
    [21] A. V. Dmitruk, A. A. Milyutin, N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema, Russ. Math. Surv., 35 (1980), 11–51. https://doi.org/10.1070/RM1980v035n06ABEH001973 doi: 10.1070/RM1980v035n06ABEH001973
    [22] A. L. Dontchev, R. T. Rockafellar, Implicit functions and solution mappings, Berlin: Springer, 2009. https://doi.org/10.1007/978-0-387-87821-8
    [23] B. S. Mordukhovich, Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc., 340 (1993), 1–35. https://doi.org/10.2307/2154544 doi: 10.2307/2154544
    [24] B. S. Mordukhovich, Variational analysis and generalized differentiation I, Basic Theory, Berlin: Springer, 2006. https: //doi.org/10.1007/3-540-31247-1
    [25] A. Uderzo, A metric version of Milyutin theorem, Set-Valued Var. Anal., 20 (2012), 279–306. https://doi.org/10.1007/s11228-011-0193-9 doi: 10.1007/s11228-011-0193-9
    [26] A. V. Arutyunov, Covering mappings in metric spaces and fixed points, Dokl. Math., 76 (2007), 665–668. https://doi.org/10.1134/S1064562407050079 doi: 10.1134/S1064562407050079
    [27] A. V. Arutyunov, Stability of coincidence points and properties of covering mappings, Math. Notes, 86 (2009), 153–158. https://doi.org/10.1134/S0001434609070177 doi: 10.1134/S0001434609070177
    [28] A. V. Arutyunov, The coincidence point problem for set-valued mappings and Ulam–Hyers stability, Dokl. Math., 89 (2014), 188–191. https://doi.org/10.1134/S1064562414020197 doi: 10.1134/S1064562414020197
    [29] A. V. Arutyunov, S. E. Zhukovskiy, Local solvability of control systems with mixed constraints, Differ. Equ., 46 (2010), 1561–1570. https://doi.org/10.1134/S0012266110110042 doi: 10.1134/S0012266110110042
    [30] A. V. Arutyunov, E. S. Zhukovskii, S. E. Zhukovskiy, On the well-posedness of differential equations unsolved for the derivative, Differ. Equ., 47 (2011), 1541–1555. https://doi.org/10.1134/S0012266111110012 doi: 10.1134/S0012266111110012
    [31] E. R. Avakov, A. V. Arutyunov, E. S. Zhukovskii, Covering mappings and their applications to differential equations unsolved for the derivative, Differ. Equ., 45 (2009), 627–649. https://doi.org/10.1134/S0012266109050024 doi: 10.1134/S0012266109050024
    [32] A. V. Arutyunov, E. S. Zhukovskiy, S. E. Zhukovskiy, Covering mappings and well-posedness of nonlinear Volterra equations, Nonlinear Anal., 75 (2012), 1026–1044. https://doi.org/10.1016/j.na.2011.03.038 doi: 10.1016/j.na.2011.03.038
    [33] B. S. Mordukhovich, B. Wang, Restrictive metric regularity and generalized differential calculus in Banach spaces, Int. J. Math. Math. Sci., 2004 (2004), 683907. https://doi.org/10.1155/S0161171204405183 doi: 10.1155/S0161171204405183
    [34] A. Arutyunov, V. A. de Oliveira, F. L. Pereira, E. Zhukovskiy, S. Zhukovskiy, On the solvability of implicit differential inclusions, Appl. Anal., 94 (2015), 129–143. https://doi.org/10.1080/00036811.2014.891732 doi: 10.1080/00036811.2014.891732
    [35] F. Sk, A. Hossain, Q. H. Khan, Relation-theoretic metrical coincidence theorems under weak C-contractions and K-contractions, AIMS Math., 6 (2021), 13072–13091. https://doi.org/10.3934/math.2021756 doi: 10.3934/math.2021756
    [36] F. A. Khan, F. Sk, M. G. Alshehri, Q. H. Khan, Aftab Alam, Relational Meir-Keeler cntractions and common fixed point theorems, J. Funct. Spaces, 2022 (2022), 3550923. https://doi.org/10.1155/2022/3550923 doi: 10.1155/2022/3550923
    [37] F. Sk, M. A. O. Tom, Q. H. Khan, F. A. Khan, On Pre$\check{\text{s}}$i$\acute{\text{c}}$-$\acute{\text{C}}$iri$\acute{\text{c}}$-type $\alpha$-$\psi$ contractions with an application, Symmetry, 14 (2022), 1166. https://doi.org/10.3390/sym14061166 doi: 10.3390/sym14061166
    [38] E. S. Zhukovskiy, The fixed points of contractions of $f$-quasimetric spaces, Sib. Math. J., 59 (2018), 1063–1072. https://doi.org/10.1134/S0037446618060095 doi: 10.1134/S0037446618060095
    [39] A. V. Greshnov, On finding the exact values of the constant in a $(1, q_2)$-generalized triangle inequality for Box-quasimetrics on 2-step Carnot groups with 1-dimensional center, Sib. Electron. Math. Re., 18 (2021), 1251–1260. https://doi.org/10.33048/semi.2021.18.095 doi: 10.33048/semi.2021.18.095
    [40] L. V. Ovsyannikov, Group analysis of differential equations, New York: Academic Press, 1982. https://doi.org/10.1016/C2013-0-07470-1
    [41] S. Chubanov, A scaling algorith optimizing arbitrary functions over vertices of polytopes, Math. Program., 190 (2021), 89–102. https://doi.org/10.1007/s10107-020-01522-0 doi: 10.1007/s10107-020-01522-0
    [42] L. P. Rothchild, E. S. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math., 137 (1976), 247–320. https://doi.org/10.1007/BF02392419 doi: 10.1007/BF02392419
    [43] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacian, Springer Berlin, Heidelberg, 2007. http://doi.org/10.1007/978-3-540-71897-0
    [44] M. M. Postnikov, Lie groups and Lie algebras, Lectures in Geometry, Moscow: Mir, 1986.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1072) PDF downloads(59) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog