In this paper, composite trapezoidal quadrature for numerical evaluation of hypersingular integrals was first introduced. By Taylor expansion at the singular point $ y $, error functional was obtained. We know that the divergence rate of $ O(h^{-p}), p = 1, 2 $, and there were no roots of the special function for the first part in the error functional. Meanwhile, for the second part of the error functional, the divergence rate was $ O(h^{-p+1}), p = 1, 2 $, but there were roots of the special function. We proved that the convergence rate could reach $ O(h^{2}) $ at superconvergence points far from the end of the interval. Two modified trapezoidal quadratures are presented and their convergence rate can reach $ O(h^{2}) $ at certain superconvergence points or any local coordinate point. At last, several examples were presented to test our theorem.
Citation: Xiaoping Zhang, Jin Li. Composite trapezoidal quadrature for computing hypersingular integrals on interval[J]. AIMS Mathematics, 2024, 9(12): 34537-34566. doi: 10.3934/math.20241645
In this paper, composite trapezoidal quadrature for numerical evaluation of hypersingular integrals was first introduced. By Taylor expansion at the singular point $ y $, error functional was obtained. We know that the divergence rate of $ O(h^{-p}), p = 1, 2 $, and there were no roots of the special function for the first part in the error functional. Meanwhile, for the second part of the error functional, the divergence rate was $ O(h^{-p+1}), p = 1, 2 $, but there were roots of the special function. We proved that the convergence rate could reach $ O(h^{2}) $ at superconvergence points far from the end of the interval. Two modified trapezoidal quadratures are presented and their convergence rate can reach $ O(h^{2}) $ at certain superconvergence points or any local coordinate point. At last, several examples were presented to test our theorem.
[1] | L. C. Andrews, Special functions of mathematics for engineers, 2 Eds., New York: McGraw-Hill Inc, 1992. |
[2] | U. J. Choi, S. W. Kim, B. I. Yun, Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals, Int. J. Numer. Meth. Eng., 61 (2004), 496–513. http://dx.doi.org/10.1002/nme.1077 doi: 10.1002/nme.1077 |
[3] | K. Diethdm, Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation, Approx. Theory & its Appl., 11 (1995), 78–89. http://dx.doi.org/10.1007/BF02836832 doi: 10.1007/BF02836832 |
[4] | Q. K. Du, Evaluations of certain hypersingular integrals on interval, Int. J. Numer. Meth. Eng., 51 (2001), 1195–1210. http://dx.doi.org/10.1002/nme.218 doi: 10.1002/nme.218 |
[5] | D. Elliott, E. Venturino, Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals, Numer. Math., 77 (1997), 453–465. http://dx.doi.org/10.1007/s002110050295 doi: 10.1007/s002110050295 |
[6] | J. Huang, Z. Wang, R. Zhu, Asymptotic error expansions for hypersingular integrals, Adv. Comput. Math., 38 (2013), 257–279. http://dx.doi.org/10.1007/s10444-011-9236-x doi: 10.1007/s10444-011-9236-x |
[7] | T. Hasegawa, Uniform approximations to finite Hilbert transform and its derivative, J. Comput. Appl. Math., 163 (2004), 127–138. http://dx.doi.org/10.1016/J.CAM.2003.08.059 doi: 10.1016/J.CAM.2003.08.059 |
[8] | C. Y. Hui, D. Shia, Evaluations of hypersingular integrals using Gaussian quadrature, Int. J. Numer. Meth. Eng., 44 (1999), 205–214. https://dx.doi.org/10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8 doi: 10.1002/(SICI)1097-0207(19990120)44:2<205:AID-NME499>3.0.CO;2-8 |
[9] | N. I. Ioakimidis, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives, Math. Comp., 44 (1985), 191–198. http://dx.doi.org/10.2307/2007802 doi: 10.2307/2007802 |
[10] | J. Li, J. M. Wu, D. H. Yu, Generalized extrapolation for computation of hypersingular integrals in boundary element methods, CMES-Comp. Model. Eng., 42 (2009), 151–176. https://dx.doi.org/10.3970/cmes.2009.042.151 doi: 10.3970/cmes.2009.042.151 |
[11] | J. Li, D. H. Yu, The superconvergence of certain two-dimensional Cauchy principal value integrals, CMES-Comp. Model. Eng., 71 (2011), 331–346. http://dx.doi.org/10.3970/cmes.2011.071.331 doi: 10.3970/cmes.2011.071.331 |
[12] | J. Li, D. H. Yu, The superconvergence of certain two-dimensional Hilbert singular integrals, CMES-Comp. Model. Eng., 82 (2011), 233–252. http://dx.doi.org/10.32604/cmes.2011.082.233 doi: 10.32604/cmes.2011.082.233 |
[13] | J. Li, D. H. Yu, The erroe estimate of Newton-Cotes methods to compute hypersingular integral, Mathematica Numerica Sinica, 33 (2011), 77–86. http://dx.doi.org/10.12286/jssx.2011.1.77 doi: 10.12286/jssx.2011.1.77 |
[14] | J. Li, X. P. Zhang, D. H. Yu, Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals, J. Comput. Appl. Math., 233 (2010), 2841–2854. http://dx.doi.org/10.1016/j.cam.2009.11.029 doi: 10.1016/j.cam.2009.11.029 |
[15] | J. Li, D. H. Yu, Error expansion of classical trapezoidal rule for computing Cauchy principal value integral, CMES-Comp. Model. Eng., 93 (2013), 47–67. http://dx.doi.org/10.3970/cmes.2013.093.047 doi: 10.3970/cmes.2013.093.047 |
[16] | J. Li, H. X. Rui, D. H. Yu, Trapezoidal rule for computing supersingular integral on a circle, J. Sci. Comput., 66 (2016), 740–760. http://dx.doi.org/10.1007/s10915-015-0042-3 doi: 10.1007/s10915-015-0042-3 |
[17] | J. Li, X. P. Zhang, D. H. Yu, Extrapolation methods to compute hypersingular integral in boundary element methods, Sci. China Math., 56 (2013), 1647–1660. http://dx.doi.org/10.1007/s11425-013-4593-1 doi: 10.1007/s11425-013-4593-1 |
[18] | J. Li, J. E. Yang, D. H. Yu, Error expansion of mid-rectangle rule for computation Cauchy Principal Value integral on interval, Int. J. Comput. Math., 91 (2014), 2294–2306. http://dx.doi.org/10.1080/00207160.2013.873123 doi: 10.1080/00207160.2013.873123 |
[19] | P. Linz, On the approximate computation of certain strongly singular integrals, Computing, 35 (1985), 345–353. http://dx.doi.org/10.1007/BF02240199 doi: 10.1007/BF02240199 |
[20] | T. Lv, Extrapolation for hypersingular integrals, Scientia Sinica Mathematica, 45 (2015), 1345–1360. http://dx.doi.org/10.1360/N012014-00210 doi: 10.1360/N012014-00210 |
[21] | P. Kim, U. J. Choi, Two trigonometric quadrature formulae for evaluating hypersingular integrals, Int. J. Numer. Meth. Eng., 56 (2003), 469–486. http://dx.doi.org/10.1002/nme.582 doi: 10.1002/nme.582 |
[22] | H. R. Kutt, The numerical evaluation of principal value integrals by finite-part integration, Numer. Math., 24 (1975), 205–210. http://dx.doi.org/10.1007/BF01436592 doi: 10.1007/BF01436592 |
[23] | J. M. Wu, Y. X. Wang, W. Li, W. W. Sun, Toeplitz-type approximations to the Hadamard integral operator and their applications to electromagnetic cavity problems, Appl. Numer. Math., 58 (2008), 101–121. http://dx.doi.org/10.1016/j.apnum.2006.11.003 doi: 10.1016/j.apnum.2006.11.003 |
[24] | J. M. Wu, W. W. Sun, The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals, Numer. Math., 102 (2005), 343–363. http://dx.doi.org/10.1007/s00211-005-0647-9 doi: 10.1007/s00211-005-0647-9 |
[25] | J. M. Wu, W. W. Sun, The superconvergence of Newton-Cotes rules for the Hadamard finite-part integral on an interval, Numer. Math., 109 (2008), 143–165. http://dx.doi.org/10.1007/s00211-007-0125-7 doi: 10.1007/s00211-007-0125-7 |
[26] | D. H. Yu, Natural boundary integrals method and its applications, Dordrecht: Springer, 2002 |
[27] | D. H. Yu, The approximate computation of hypersingular integrals on interval, Numerical Mathematics: A Journal of Chinese Universities (English Series), 1 (1992), 114–127. |
[28] | X. P. Zhang, J. M. Wu, D. H. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application, Int. J. Comput. Math., 87 (2010), 855–876. http://dx.doi.org/10.1080/00207160802226517 doi: 10.1080/00207160802226517 |