Research article Special Issues

A robust study of the transmission dynamics of syphilis infection through non-integer derivative

  • Received: 01 November 2022 Revised: 07 December 2022 Accepted: 13 December 2022 Published: 03 January 2023
  • MSC : 4C05, 92D25

  • One of the most harmful and widespread sexually transmitted diseases is syphilis. This infection is caused by the Treponema Palladum bacterium that spreads through sexual intercourse and is projected to affect $ 12 $ million people annually worldwide. In order to thoroughly examine the complex and all-encompassing dynamics of syphilis infection. In this article, we constructed the dynamics of syphilis using the fractional derivative of the Atangana-Baleanu for more accurate outcomes. The basic theory of non-integer derivative is illustrated for the examination of the recommended model. We determined the steady-states of the system and calculated the $ \mathcal{R}_{0} $ for the intended fractional model with the help of the next-generation method. The infection-free steady-state of the system is locally stable if $ \mathcal{R}_{0} < 1 $ through jacobian matrix method. The existence and uniqueness of the fractional order system are investigate by applying the fixed-point theory. The iterative solution of our model with fractional order was then carried out by utilising a newly generated numerical approach. Finally, numerical results are computed for various values of the factor $ \Phi $ and other parameters of the system. The solution pathways and chaotic phenomena of the system are highlighted. Our findings show that fractional order derivatives provide more precise and realistic information regarding the dynamics of syphilis infection.

    Citation: Rashid Jan, Adil Khurshaid, Hammad Alotaibi, Mustafa Inc. A robust study of the transmission dynamics of syphilis infection through non-integer derivative[J]. AIMS Mathematics, 2023, 8(3): 6206-6232. doi: 10.3934/math.2023314

    Related Papers:

  • One of the most harmful and widespread sexually transmitted diseases is syphilis. This infection is caused by the Treponema Palladum bacterium that spreads through sexual intercourse and is projected to affect $ 12 $ million people annually worldwide. In order to thoroughly examine the complex and all-encompassing dynamics of syphilis infection. In this article, we constructed the dynamics of syphilis using the fractional derivative of the Atangana-Baleanu for more accurate outcomes. The basic theory of non-integer derivative is illustrated for the examination of the recommended model. We determined the steady-states of the system and calculated the $ \mathcal{R}_{0} $ for the intended fractional model with the help of the next-generation method. The infection-free steady-state of the system is locally stable if $ \mathcal{R}_{0} < 1 $ through jacobian matrix method. The existence and uniqueness of the fractional order system are investigate by applying the fixed-point theory. The iterative solution of our model with fractional order was then carried out by utilising a newly generated numerical approach. Finally, numerical results are computed for various values of the factor $ \Phi $ and other parameters of the system. The solution pathways and chaotic phenomena of the system are highlighted. Our findings show that fractional order derivatives provide more precise and realistic information regarding the dynamics of syphilis infection.



    加载中


    [1] E. W. Hook, C. M. Marra, Acquired syphilis in adults, N. Engl. J. Med., 326 (1992), 1060–1069. https://doi.org/10.1056/NEJM199204163261606 doi: 10.1056/NEJM199204163261606
    [2] J. E. Bennett, G. L. Mandell, Mandell, douglas, and bennett's principles and practice of infectious diseases, Elsevier Churchill Livingstone, 2005.
    [3] L. Goldsmith, S. Katz, B. A. Gilchrest, A. S. Paller, D. J. Leffell, K. Wolff, Fitzpatrick dermatology in general medicine, Ed, McGraw Hill Medical, 150 (2012), 22.
    [4] J. D. Heffelfinger, E. B. Swint, S. M. Berman, H. S. Weinstock, Trends in primary and secondary syphilis among men who have sex with men in the United States, Am. J. Public Health, 97 (2007), 1076–1083.
    [5] E. C. Tramont, Syphilis in adults: from Christopher Columbus to Sir Alexander Fleming to AIDS, Clin. Infect. Dis., 21 (1995), 1361–1369.
    [6] C. Zimmer, Isolated tribe gives clues to the origins of syphilis, Am. Assoc. Adv. Sci., 319 (2008), 272–272. https://doi.org/10.1126/science.319.5861.272 doi: 10.1126/science.319.5861.272
    [7] G. Prabhakararao, Mathematical modelling of syphilis disease; a case study with reference to Anantapur district-Andhra Pradesh-India, Int. J. Eng. Res. Appl., 4 (2014), 29–39.
    [8] A. A. Momoh, Y. Bala, D. J. Washachi, D. Dethie, Mathematical analysis and optimal control interventions for sex structured syphilis model with three stages of infection and loss of immunity, Adv. Differ. Equ., 2021 (2021), 1–26. https://doi.org/10.1186/s13662-021-03432-7 doi: 10.1186/s13662-021-03432-7
    [9] M. E. Kent, F. Romanelli, Reexamining syphilis: an update on epidemiology, clinical manifestations, and management, Ann. Pharmacother., 42 (2008), 226–236. https://doi.org/10.1345/aph.1K086 doi: 10.1345/aph.1K086
    [10] K. Buchacz, A. Greenberg, I. Onorato, R. Janssen, Syphilis epidemics and human immunodeficiency virus (HIV) incidence among men who have sex with men in the United States: implications for HIV prevention, Sex. Transm. Dis., 32 (2005), S73–S79. https://doi.org/10.1097/01.olq.0000180466.62579.4b doi: 10.1097/01.olq.0000180466.62579.4b
    [11] S. Ruan, H. Yang, Y. Zhu, Y. Ma, J. Li, J. Zhao, et al., HIV prevalence and correlates of unprotected anal intercourse among men who have sex with men, Jinan, China, AIDS Behav., 12 (2008), 469–475. https://doi.org/10.1007/s10461-008-9361-9 doi: 10.1007/s10461-008-9361-9
    [12] N. Ahmed, A. Elsonbaty, W. Adel, D. Baleanu, M. Rafiq, Stability analysis and numerical simulations of spatiotemporal HIV CD4+ T cell model with drug therapy, Chaos: Interdisc. J. Nonlinear Sci., 30 (2020), 083122. https://doi.org/10.1063/5.0010541 doi: 10.1063/5.0010541
    [13] M. B. Ghori, P. A. Naik, J. Zu, Z. Eskandari, M. U. D. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Methods Appl. Sci., 45 (2022), 3665–3688. https://doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
    [14] Y. Xiao, T. Zhao, S. Tang, Dynamics of an infectious diseases with media/psychology induced non-smooth incidence, Math. Biosci. Eng., 10 (2013), 445–461. https://doi.org/10.3934/mbe.2013.10.445 doi: 10.3934/mbe.2013.10.445
    [15] A. Wang, Y. Xiao, A Filippov system describing media effects on the spread of infectious diseases, Nonlinear Anal.: Hybrid Syst., 11 (2014), 84–97. https://doi.org/10.1016/j.nahs.2013.06.005 doi: 10.1016/j.nahs.2013.06.005
    [16] R. Jan, Y. Xiao, Effect of partial immunity on transmission dynamics of dengue disease with optimal control, Math. Methods Appl. Sci., 42 (2019), 1967–1983. https://doi.org/10.1002/mma.5491 doi: 10.1002/mma.5491
    [17] R. Jan, Y. Xiao, Effect of pulse vaccination on dynamics of dengue with periodic transmission functions, Adv. Differ. Equ., 2019 (2019), 1–17. https://doi.org/10.1186/s13662-019-2314-y doi: 10.1186/s13662-019-2314-y
    [18] R. Jan, M. A. Khan, G. F. Gomez-Aguilar, Asymptomatic carriers in transmission dynamics of dengue with control interventions, Optim. Control Appl. Methods, 41 (2020), 430–447. https://doi.org/10.1002/oca.2551 doi: 10.1002/oca.2551
    [19] G. P. Garnett, S. O. Aral, D. V. Hoyle, W. Cates Jr., R. M. Anderson, The natural history of syphilis: implications for the transmission dynamics and control of infection, Sex. Transm. Dis., 24 (1997), 185–200.
    [20] R. A. Kimbir, M. J. Udoo, T. Aboiyar, A mathematical model for the transmission dynamics of HIV/AIDS in a two-sex population Counseling and Antiretroviral Therapy (ART), J. Math. Comput. Sci., 2 (2012), 1671–1684.
    [21] B. Pourbohloul, M. L. Rekart, R. C. Brunham, Impact of mass treatment on syphilis transmission: a mathematical modeling approach, Sex. Transm. Dis., 30 (2003), 297–305.
    [22] F. A. Milner, R. Zhao, A new mathematical model of syphilis, Math. Model. Nat. Phenom., 5 (2010), 96–108. https://doi.org/10.1051/mmnp/20105605 doi: 10.1051/mmnp/20105605
    [23] P. Junswang, Z. Sabir, M. A. Z. Raja, W. Adel, T. Botmart, W. Weera, Intelligent networks for chaotic fractional-order nonlinear financial model, CMC-Comput. Mater. Con., 72 (2022), 5015–5030.
    [24] P. A. Naik, J. Zu, M. U. D. Naik, Stability analysis of a fractional-order cancer model with chaotic dynamics Int. J. Biomath., 14 (2021), 2150046. https://doi.org/10.1142/S1793524521500467
    [25] Z. Iqbal, N. Ahmed, D. Baleanu, W. Adel, M. Rafiq, M. A. U. Rehman, et al., Positivity and boundedness preserving numerical algorithm for the solution of fractional nonlinear epidemic model of HIV/AIDS transmission, Chaos, Solitons Fract., 134 (2020), 109706. https://doi.org/10.1016/j.chaos.2020.109706 doi: 10.1016/j.chaos.2020.109706
    [26] Y. Zhou, Y. Zhang, Noether symmetries for fractional generalized Birkhoffian systems in terms of classical and combined Caputo derivatives, Acta Mech., 231 (2020), 3017–3029. https://doi.org/10.1007/s00707-020-02690-y doi: 10.1007/s00707-020-02690-y
    [27] S. Victor, J. F. Duhe, P. Melchior, Y. Abdelmounen, F. Roubertie, Long-memory recursive prediction error method for identification of continuous-time fractional models, Nonlinear Dyn., 110 (2022), 635–648. https://doi.org/10.1007/s11071-022-07628-8 doi: 10.1007/s11071-022-07628-8
    [28] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [29] D. Goufo, E. Franc, A biomathematical view on the fractional dynamics of cellulose degradation, Fract. Calc. Appl. Anal., 18 (2015), 554–564. https://doi.org/10.1515/fca-2015-0034 doi: 10.1515/fca-2015-0034
    [30] R. Jan, S. Boulaaras, S. A. A. Shah, Fractional-calculus analysis of human immunodeficiency virus and $CD4^+$ T-cells with control interventions, Commun. Theor. Phys., 74 (2022), 105001. https://doi.org/10.1088/1572-9494/ac7e2b doi: 10.1088/1572-9494/ac7e2b
    [31] T. Q. Tang, R. Jan, E. Bonyah, Z. Shah, E. Alzahrani, Qualitative analysis of the transmission dynamics of dengue with the effect of memory, reinfection, and vaccination, Comput. Math. Methods. Med., 2022 (2022), 1–20. https://doi.org/10.1155/2022/7893570
    [32] W. Deebani, R. Jan, Z. Shah, N. Vrinceanu, M. Racheriu, Modeling the transmission phenomena of water-borne disease with non-singular and non-local kernel, Comput. Methods Biomech. Biomed. Eng., 2022 (2022), 1–14. https://doi.org/10.1080/10255842.2022.2114793 doi: 10.1080/10255842.2022.2114793
    [33] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769.
    [34] H. Gunerhan, H. Rezazadeh, W. Adel, M. Hatami, K. M. Sagayam, H. Emadifar, et al., Analytical approximate solution of fractional order smoking epidemic model, Adv. Mech. Eng., 14 (2022). https://doi.org/10.1177/16878132221123888
    [35] A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Phenom., 13 (2018), 1–21. https://doi.org/10.1051/mmnp/2018010 doi: 10.1051/mmnp/2018010
    [36] S. Boulaaras, R. Jan, A. Khan, M. Ahsan, Dynamical analysis of the transmission of dengue fever via Caputo-Fabrizio fractional derivative, Chaos, Solitons Fract.: X, 8 (2022), 100072. https://doi.org/10.1016/j.csfx.2022.100072 doi: 10.1016/j.csfx.2022.100072
    [37] H. Gunerhan, H. Dutta, M. A. Dokuyucu, W. Adel, Analysis of a fractional HIV model with Caputo and constant proportional Caputo operators, Chaos, Solitons Fract., 139 (2020), 110053. https://doi.org/10.1016/j.chaos.2020.110053 doi: 10.1016/j.chaos.2020.110053
    [38] P. A. Naik, M. Ghoreishi, J. Zu, Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method, Int. J. Numer. Anal. Model., 19 (2022), 52–84.
    [39] A. Ahmad, M. Farman, P. A. Naik, N. Zafar, A. Akgul, M. U. Saleem, Modeling and numerical investigation of fractional-order bovine babesiosis disease, Numer. Methods Partial Differ. Equ., 37 (2021), 1946–1964. https://doi.org/10.1002/num.22632 doi: 10.1002/num.22632
    [40] I. Podlubny, Fractional differential equations, Math. Sci. Eng., 198 (1999), 41–119.
    [41] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [42] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus., 132 (2017), 1–16. https://doi.org/10.1140/epjp/i2017-11717-0 doi: 10.1140/epjp/i2017-11717-0
    [43] R. B. Oyeniyi, E. B. Are, M. O. Ibraheem, Mathematical modelling of syphilis in a heterogeneous setting with complications, J. Niger. Soc. Math., 36 (2017), 479–490.
    [44] D. Okuonghae, A. B. Gumel, B. O. Ikhimwin, E. Iboi, Mathematical assessment of the role of early latent infections and targeted control strategies on syphilis transmission dynamics, Acta Biotheor., 67 (2019), 47–84. https://doi.org/10.1007/s10441-018-9336-9 doi: 10.1007/s10441-018-9336-9
    [45] A. A. Khan, R. Amin, S. Ullah, W. Sumelka, M. Altanji, Numerical simulation of a Caputo fractional epidemic model for the novel coronavirus with the impact of environmental transmission, Alex. Eng. J., 61 (2022), 5083–5095. https://doi.org/10.1016/j.aej.2021.10.008 doi: 10.1016/j.aej.2021.10.008
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1171) PDF downloads(75) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog