Given a bounded open set $ \Omega\subseteq{\mathbb{R}}^n $, we consider the eigenvalue problem for a nonlinear mixed local/nonlocal operator with vanishing conditions in the complement of $ \Omega $. We prove that the second eigenvalue $ \lambda_2(\Omega) $ is always strictly larger than the first eigenvalue $ \lambda_1(B) $ of a ball $ B $ with volume half of that of $ \Omega $. This bound is proven to be sharp, by comparing to the limit case in which $ \Omega $ consists of two equal balls far from each other. More precisely, differently from the local case, an optimal shape for the second eigenvalue problem does not exist, but a minimizing sequence is given by the union of two disjoint balls of half volume whose mutual distance tends to infinity.
Citation: Stefano Biagi, Serena Dipierro, Enrico Valdinoci, Eugenio Vecchi. A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators[J]. Mathematics in Engineering, 2023, 5(1): 1-25. doi: 10.3934/mine.2023014
Given a bounded open set $ \Omega\subseteq{\mathbb{R}}^n $, we consider the eigenvalue problem for a nonlinear mixed local/nonlocal operator with vanishing conditions in the complement of $ \Omega $. We prove that the second eigenvalue $ \lambda_2(\Omega) $ is always strictly larger than the first eigenvalue $ \lambda_1(B) $ of a ball $ B $ with volume half of that of $ \Omega $. This bound is proven to be sharp, by comparing to the limit case in which $ \Omega $ consists of two equal balls far from each other. More precisely, differently from the local case, an optimal shape for the second eigenvalue problem does not exist, but a minimizing sequence is given by the union of two disjoint balls of half volume whose mutual distance tends to infinity.
[1] | N. Abatangelo, M. Cozzi, An elliptic boundary value problem with fractional nonlinearity, SIAM J. Math. Anal., 53 (2021), 3577–3601. http://dx.doi.org/10.1137/20M1342641 doi: 10.1137/20M1342641 |
[2] | F. J. Almgren, E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683–773. http://dx.doi.org/10.1090/S0894-0347-1989-1002633-4 doi: 10.1090/S0894-0347-1989-1002633-4 |
[3] | R. Bañuelos, R. Latała, P. J. Méndez-Hernández, A Brascamp-Lieb-Luttinger-type inequality and applications to symmetric stable processes, Proc. Amer. Math. Soc., 129 (2001), 2997–3008. http://dx.doi.org/10.1090/S0002-9939-01-06137-8 doi: 10.1090/S0002-9939-01-06137-8 |
[4] | G. Barles, C. Imbert, Second-order elliptic integro-differential equations: viscosity solutions' theory revisited, Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 567–585. http://dx.doi.org/10.1016/j.anihpc.2007.02.007 doi: 10.1016/j.anihpc.2007.02.007 |
[5] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Part. Diff. Eq., in press. http://dx.doi.org/10.1080/03605302.2021.1998908 |
[6] | S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. Roy. Soc. Edinb. A, 151 (2021), 1611–1641. http://dx.doi.org/10.1017/prm.2020.75 doi: 10.1017/prm.2020.75 |
[7] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math., in press. |
[8] | S. Biagi, D. Mugnai, E. Vecchi, Global boundedness and maximum principle for a Brezis-Oswald approach to mixed local and nonlocal operators, 2021, arXiv: 2103.11382. |
[9] | L. Brasco, E. Cinti, S. Vita, A quantitative stability estimate for the fractional Faber-Krahn inequality, J. Funct. Anal., 279 (2020), 108560. http://dx.doi.org/10.1016/j.jfa.2020.108560 doi: 10.1016/j.jfa.2020.108560 |
[10] | L. Brasco, G. Franzina, On the Hong-Krahn-Szego inequality for the $p$-Laplace operator, Manuscripta Math., 141 (2013), 537–557. http://dx.doi.org/10.1007/s00229-012-0582-x doi: 10.1007/s00229-012-0582-x |
[11] | L. Brasco, E. Lindgren, E. Parini, The fractional Cheeger problem, Interfaces Free Bound., 16 (2014), 419–458. http://dx.doi.org/10.4171/IFB/325 doi: 10.4171/IFB/325 |
[12] | L. Brasco, E. Lindgren, A. Schikorra, Higher Hölder regularity for the fractional $p$-Laplacian in the superquadratic case, Adv. Math., 338 (2018), 782–846. http://dx.doi.org/10.1016/j.aim.2018.09.009 doi: 10.1016/j.aim.2018.09.009 |
[13] | L. Brasco, E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9 (2016), 323–355. http://dx.doi.org/10.1515/acv-2015-0007 doi: 10.1515/acv-2015-0007 |
[14] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. http://dx.doi.org/10.1007/978-0-387-70914-7 |
[15] | S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems, 30 (1998), 107–117. |
[16] | X. Cabré, S. Dipierro, E. Valdinoci, The Bernstein technique for integro-differential equations, Arch. Rational Mech. Anal., 243 (2022), 1597–1652. http://dx.doi.org/10.1007/s00205-021-01749-x doi: 10.1007/s00205-021-01749-x |
[17] | Z.-Q. Chen, P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle for $\Delta + \Delta^{\alpha/2}$, Trans. Amer. Math. Soc., 364 (2012), 4169–4205. http://dx.doi.org/10.1090/S0002-9947-2012-05542-5 doi: 10.1090/S0002-9947-2012-05542-5 |
[18] | A. Di Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807–1836. http://dx.doi.org/10.1016/j.jfa.2014.05.023 doi: 10.1016/j.jfa.2014.05.023 |
[19] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[20] | S. Dipierro, E. Proietti Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptotic Anal., in press. http://dx.doi.org/10.3233/ASY-211718 |
[21] | S. Dipierro, E. Proietti Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire, in press. |
[22] | S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Physica A, 575 (2021), 126052. http://dx.doi.org/10.1016/j.physa.2021.126052 doi: 10.1016/j.physa.2021.126052 |
[23] | B. C. dos Santos, S. M. Oliva, J. D. Rossi, A local/nonlocal diffusion model, Appl. Anal., in press. http://dx.doi.org/10.1080/00036811.2021.1884227 |
[24] | G. Faber, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, München: Sitzungsberichte, 1923,169–172. |
[25] | R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407–3430. http://dx.doi.org/10.1016/j.jfa.2008.05.015 doi: 10.1016/j.jfa.2008.05.015 |
[26] | G. Franzina, G. Palatucci, Fractional $p$-eigenvalues, Riv. Math. Univ. Parma, 5 (2014), 373–386. |
[27] | P. Garain, J. Kinnunen, On the regularity theory for mixed local and nonlocal quasilinear elliptic equations, 2021, arXiv: 2108.02986. |
[28] | J. Giacomoni, D. Kumar, K. Sreenadh, Global regularity results for non-homogeneous growth fractional problems, J. Geom. Anal., 32 (2022), 36. http://dx.doi.org/10.1007/s12220-021-00837-4 doi: 10.1007/s12220-021-00837-4 |
[29] | D. Goel, K. Sreenadh, On the second eigenvalue of combination between local and nonlocal $p$-Laplacian, Proc. Amer. Math. Soc., 147 (2019), 4315–4327. http://dx.doi.org/10.1090/proc/14542 doi: 10.1090/proc/14542 |
[30] | D. Hilbert, Grundzüge einer allgeminen Theorie der linaren Integralrechnungen. (Erste Mitteilung), Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch–Physika lische Klasse, 1904, 49–91. |
[31] | I. Hong, On an inequality concerning the eigenvalue problem of membrane, Kōdai Math. Sem. Rep., 6 (1954), 113–114. http://dx.doi.org/10.2996/kmj/1138843535 doi: 10.2996/kmj/1138843535 |
[32] | E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann., 94 (1925), 97–100. http://dx.doi.org/10.1007/BF01208645 doi: 10.1007/BF01208645 |
[33] | E. Krahn, Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen, Acta Univ. Dorpat A, 9 (1926), 1–44. |
[34] | T. Kuusi, G. Mingione, Y. Sire, Nonlocal equations with measure data, Commun. Math. Phys., 337 (2015), 1317–1368. http://dx.doi.org/10.1007/s00220-015-2356-2 doi: 10.1007/s00220-015-2356-2 |
[35] | E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var., 49 (2014), 795–826. http://dx.doi.org/10.1007/s00526-013-0600-1 doi: 10.1007/s00526-013-0600-1 |
[36] | G. Pagnini, S. Vitali, Should I stay or should I go? Zero-size jumps in random walks for Lévy flights, Fract. Calc. Appl. Anal., 24 (2021), 137–167. http://dx.doi.org/10.1515/fca-2021-0007 doi: 10.1515/fca-2021-0007 |
[37] | G. Pólya, On the characteristic frequencies of a symmetric membrane, Math. Z., 63 (1955), 331–337. http://dx.doi.org/10.1007/BF01187944 doi: 10.1007/BF01187944 |
[38] | G. Pólya, G. Szegö, Isoperimetric inequalities in mathematical physics, Princeton, N.J.: Princeton University Press, 1951. |
[39] | A. M. Salort, E. Vecchi, On the mixed local–nonlocal Hénon equation, 2021, arXiv: 2107.09520. |
[40] | R. Servadei, E. Valdinoci, A Brezis-Nirenberg result for non-local critical equations in low dimension, Commun. Pure Appl. Anal., 12 (2013), 2445–2464. http://dx.doi.org/10.3934/cpaa.2013.12.2445 doi: 10.3934/cpaa.2013.12.2445 |
[41] | Y. Sire, J. L. Vázquez, B. Volzone, Symmetrization for fractional elliptic and parabolic equations and an isoperimetric application, Chin. Ann. Math. Ser. B, 38 (2017), 661–686. http://dx.doi.org/10.1007/s11401-017-1089-2 doi: 10.1007/s11401-017-1089-2 |