Research article Special Issues

Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces

  • Received: 05 November 2022 Revised: 08 December 2022 Accepted: 19 December 2022 Published: 27 December 2022
  • MSC : 34K40, 34K42

  • In this work, we scrutinize the existence and uniqueness of the solution to the Integro differential equations for the Caputo fractional derivative on the time scale. We derive the solution of the neutral fractional differential equations along the finite delay conditions. The fixed point theory is demonstrated, and the solution depends upon the fixed point theorems: Banach contraction principle, nonlinear alternative for Leray-Schauder type, and Krasnoselskii fixed point theorem.

    Citation: Ahmed Morsy, Kottakkaran Sooppy Nisar, Chokkalingam Ravichandran, Chandran Anusha. Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces[J]. AIMS Mathematics, 2023, 8(3): 5934-5949. doi: 10.3934/math.2023299

    Related Papers:

  • In this work, we scrutinize the existence and uniqueness of the solution to the Integro differential equations for the Caputo fractional derivative on the time scale. We derive the solution of the neutral fractional differential equations along the finite delay conditions. The fixed point theory is demonstrated, and the solution depends upon the fixed point theorems: Banach contraction principle, nonlinear alternative for Leray-Schauder type, and Krasnoselskii fixed point theorem.



    加载中


    [1] S. Abbas, M. Benchohra, J. E. Lagreg, A. Alsaedi, Y. Zhou, Existence and Ulam stability for fractional differential equations of Hilfer-Hadmard type, Adv. Differ. Equ., 2017 (2017), 180. https://doi.org/10.1186/s13662-017-1231-1 doi: 10.1186/s13662-017-1231-1
    [2] S. Abbas, M. Benchohra, J. E. Lazreg, Y. Zhou, A survey on Hadamard and Hilfer fractional differential equations: analysis and stability, Chaos Soliton. Fract., 102 (2017), 47–71. https://doi.org/10.1016/j.chaos.2017.03.010 doi: 10.1016/j.chaos.2017.03.010
    [3] S. Abbas, M. Benchohra, G. M. N’Guerekata, Advanced fractional differential and integral equations, New York: Nova Science Publishers, 2014.
    [4] K. Logeswari, C. Ravichandran, K. S. Nisar, Mathematical model for spreading of COVID-19 virus with the Mittag-Leffler kernel, Numer. Meth. Part. Differ. Eq., 2020, 1–16. https://doi.org/10.1002/num.22652 doi: 10.1002/num.22652
    [5] K. S. Nisar, K. Logeswari, V. Vijayaraj, H. M. Baskonus, C. Ravichandran, Fractional order modeling the Gemini Virus in capsicum annuum with optimal control, Fractal Fract., 6 (2022), 61. https://doi.org/10.3390/fractalfract6020061 doi: 10.3390/fractalfract6020061
    [6] S. Belmor, R. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Uni. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265
    [7] K. S. Nisar, K. Jothimani, C. Ravichandran, D. Baleanu, D.Kumar, New approach on controllability of Hilfer fractional derivatives with nondense domain, AIMS Math., 7 (2022), 10079–10095. https://doi.org/10.3934/math.2022561 doi: 10.3934/math.2022561
    [8] J. E. Lazreg, N. Benkhettou, M. Benchora, E. Karapinar, Neutral functional sequential differential equations with Caputo fractional derivative on time scales, Fixed Point Theory Algorithms Sci. Eng., 2022 (2022), 6. https://doi.org/10.1186/s13663-022-00716-9 doi: 10.1186/s13663-022-00716-9
    [9] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their solution and some of their applications, San Diego: Academic Press, 1999.
    [10] C. Ravichandran, V. Sowbakiya, K. S. Nisar, Study on existence and data dependence results for fractional order differential equations, Chaos Soliton. Fract., 160 (2022), 112232. https://doi.org/10.1016/j.chaos.2022.112232 doi: 10.1016/j.chaos.2022.112232
    [11] B. Ahmad, S. Ntouyas, Existence and uniqueness of solutions for Caputo Hadamard sequential fractional order neutral functional differential equations, Electron. J. Differ. Eq., 36 (2017), 1–11.
    [12] A. Domoshnitsky, A. Maghakyan, R. Shklyar, Maximum principles and Boundary value problems for first order Neutral functional differential equations, J. Inequal. Appl., 2009 (2009), 141959. https://doi.org/10.1155/2009/141959 doi: 10.1155/2009/141959
    [13] A. D. Khalaf, M. Abouagwa, A. Mustafa, X. Wang, Stochastic Volterra integral equations with jumps and the strong superconvergence of the Euler Maruyama approximation, J. Comput. Appl. Math., 382 (2021), 113071. doilinkhttps://doi.org/10.1016/j.cam.2020.113071 doi: 10.1016/j.cam.2020.113071
    [14] K. Kaliraj, M. Manjula, C. Ravichandran, New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions, Chaos Soliton. Fract., 161 (2022), 112284. https://doi.org/10.1016/j.chaos.2022.112284 doi: 10.1016/j.chaos.2022.112284
    [15] X. B. Shu, Y. J. Shi, A study on the mild solution of impulsive fractional evolution equations, Appl. Math. Comput., 273 (2016), 465–476, https://doi.org/10.1016/j.amc.2015.10.020 doi: 10.1016/j.amc.2015.10.020
    [16] M. Abouagwa, R. A. R. Bantan, W. Almutiry, A. D. Khalaf, M. Elgarhy, Mixed Caputo fractional neutral stochastic differential equations with impulses and variable delay, Fractal Fract., 5 (2021), 239. https://doi.org/10.3390/fractalfract5040239 doi: 10.3390/fractalfract5040239
    [17] M. Abouagwa, L. S. Aljoufi, R. A. R. Bantan, A. D. Khalaf, M. Elgarhy, Mixed neutral Caputo fractional stochastic evolution equations with infinite delay: existence, uniqueness and averaging principle, Fractal Fract., 6 (2022), 105. https://doi.org/10.3390/fractalfract6020105 doi: 10.3390/fractalfract6020105
    [18] S. Abbas, M. Benchohra, M. Graef, J. R. Henderson, Implicit fractional differential and integral equations existence and stability, Berlin: De Gruyter, 2018. https://doi.org/10.1515/9783110553819
    [19] R. Agarwal, D. O' Regan, S. Saker, Dynamic inequalities on time scales, Berlin: Springer, 2014.
    [20] R. P. Agarwal, U. Aksoy, E. Karapinar, I. M. Erhan, F-contraction mappings on metric-like spaces in connection with integral equations on time scales, RACSAM, 114 (2020), 147. https://doi.org/10.1007/s13398-020-00877-5 doi: 10.1007/s13398-020-00877-5
    [21] R. P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math., 35 (2013), 3–22. https://doi.org/10.1007/BF03322019 doi: 10.1007/BF03322019
    [22] R. P. Agarwal, M. R. Sidi Ammi, J. Asad, Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the comfortable sense, Adv. Differ. Equ., 2021 (2021), 162. https://doi.org/10.1186/s13662-021-03319-7 doi: 10.1186/s13662-021-03319-7
    [23] A. Ahmadhhanlu, M. Jahanshahi, On the existence of solution of initial value problem for fractional order differential equations on time scales, B. Iran. Math. Soc., 38 (2012), 241–252.
    [24] N. Benkhettou, A. M. C. Brito da Cruz, D. F. M. Torres, A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration, Signal Process., 107 (2015), 230–237. https://doi.org/10.1016/j.sigpro.2014.05.026 doi: 10.1016/j.sigpro.2014.05.026
    [25] N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Uni. Sci., 28 (2016), 93–98. https://doi.org/10.1016/j.jksus.2015.05.003 doi: 10.1016/j.jksus.2015.05.003
    [26] M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Boston: Birkhauser, 2003.
    [27] M. Bohner, S. G. Georgiev, Multivariable dynamic calculus on time scales, Berlin: Springer, 2016.
    [28] A. B. Cherif, F.Z. Ladrani, New properties of the time-scale fractional operators with application to dynamic equations, Math. Moranica, 25 (2021), 123–136.
    [29] S. G. Georgiev, Functional dynamic equations on time scales, Berlin: Springer, 2019.
    [30] S. G. Georgiev, Integral equations on time sales, Paris: Atlantis Press, 2016.
    [31] Y. C. Guo, M. Q. Chen, X. B. Shu, F. Xu, The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm, Stoch. Anal. Appl., 39 (2020), 643–666. https://doi.org/10.1080/07362994.2020.1824677 doi: 10.1080/07362994.2020.1824677
    [32] Y. Zhou, Basic theory of fractional differential equations, Singapore: World Scientific, 2014.
    [33] K. Vipin, M. Muslim, Existence and stability results of nonlinear fractional differential equations with nonlinear integral boundary condition on time scales, Appl. Appl. Math., 15 (2020), 129–145.
    [34] B. C. Damasceno, L. Barbanti, Ordinary fractional differential equations are in fact usual entire ordinary differential equations on time scales, AIP Confer. P., 1637 (2014), 279–282. https://doi.org/10.1063/1.4904589 doi: 10.1063/1.4904589
    [35] A. A. Kilbas, M. Rivero, L. Rodriguez-Germa, J. J. Trujillo, Caputo linear fractional differential equations, IFAC P., 39 (2006), 52–57. https://doi.org/10.3182/20060719-3-PT-4902.00008 doi: 10.3182/20060719-3-PT-4902.00008
    [36] A. E. Hamzaa, K. M. Oraby, Semigroups of operators and abstract dynamic equations on time scales, Appl. Math. Comput., 270 (2015), 334–348. https://doi.org/10.1016/j.amc.2015.07.110 doi: 10.1016/j.amc.2015.07.110
    [37] K. Kaliraj, M. Manjula, C. Ravichandran, K. S. Nisar, Results on neutral differential equation of sobolev type with nonlocal conditions, Chaos Soliton. Fract., 158 (2022), 112060. https://doi.org/10.1016/j.chaos.2022.112060 doi: 10.1016/j.chaos.2022.112060
    [38] A. D. Khalaf, T. Saeed, R. Abu-Shanab, W. Almutiry, M. Abouagwa, Estimating drift parameters in a sub-fractional Vasicek-type process, Entropy, 24 (2022), 594. https://doi.org/10.3390/e24050594 doi: 10.3390/e24050594
    [39] A. D. Khalaf, A. Zeb, T. Saeed, M. Abouagwa, S. Djilai, H. M. Alshehri, A special study of the mixed weighted fractional Brownian motion, Fractal Fract., 5 (2021), 192. https://doi.org/10.3390/fractalfract5040192 doi: 10.3390/fractalfract5040192
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1469) PDF downloads(133) Cited by(25)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog