Research article

On the decomposition and analysis of novel simultaneous SEIQR epidemic model

  • Received: 04 September 2022 Revised: 05 December 2022 Accepted: 13 December 2022 Published: 27 December 2022
  • MSC : 74H15, 34A07

  • In this manuscript, we are proposing a new kind of modified Susceptible Exposed Infected Quarantined Recovered model (SEIQR) with some assumed data. The novelty imposed here in the study is that we are studying simultaneously SIR, SEIR, SIQR, and SEQR pandemic models with the same data unchanged as the SEIQR model. We are taking this model a step ahead by using a non-helpful transition because it was mostly skipped in the literature. All sorts of features that are essential to study the models, such as basic reproduction number, stability analysis, and numerical simulations have been examined for this modified SEIQR model with decomposed other epidemic models.

    Citation: Kalpana Umapathy, Balaganesan Palanivelu, Renuka Jayaraj, Dumitru Baleanu, Prasantha Bharathi Dhandapani. On the decomposition and analysis of novel simultaneous SEIQR epidemic model[J]. AIMS Mathematics, 2023, 8(3): 5918-5933. doi: 10.3934/math.2023298

    Related Papers:

  • In this manuscript, we are proposing a new kind of modified Susceptible Exposed Infected Quarantined Recovered model (SEIQR) with some assumed data. The novelty imposed here in the study is that we are studying simultaneously SIR, SEIR, SIQR, and SEQR pandemic models with the same data unchanged as the SEIQR model. We are taking this model a step ahead by using a non-helpful transition because it was mostly skipped in the literature. All sorts of features that are essential to study the models, such as basic reproduction number, stability analysis, and numerical simulations have been examined for this modified SEIQR model with decomposed other epidemic models.



    加载中


    [1] H. Abboubakar, P. Kumar, V. S. Erturk, A. Kumar, A mathematical study of a tuberculosis model with fractional derivatives, Int. J. Model Simul. Sci. Comput., 12 (2021), 2150037. https://doi.org/10.1142/S1793962321500379 doi: 10.1142/S1793962321500379
    [2] D. Adak, A. Majumder, N. Bairagi, Mathematical perspective of COVID-19 pandemic: Disease extinction criteria in deterministic and stochastic models, Chaos Soliton. Fract., 2020, 110381.
    [3] F. B. Adda, J. Cresson, Fractional differential equations and the Schrodinger equation, Appl. Math. Comput., 161 (2005), 323–345. https://doi.org/10.1016/j.amc.2003.12.031 doi: 10.1016/j.amc.2003.12.031
    [4] D. Baleanu, A. Jajarmi, S. S. Sajjadi, D. Mozyrska, A new fractional model and optimal control of a tumorimmune surveillance with non-singular derivative operator, Chaos, 29 (2019), 1–15. https://doi.org/10.1063/1.5096159 doi: 10.1063/1.5096159
    [5] J. M. Carcione, J. E. Santos, C. Bagaini, J. Ba, A simulation of a COVID-19 epidemic based on a deterministic SEIR model, Front. Public Health, 8 (2020), 1–13. https://doi.org/10.3389/fpubh.2020.00230 doi: 10.3389/fpubh.2020.00230
    [6] V. Deo, A. R. Chetiya, B. Deka, G. Grover, Forecasting transmission dynamics of COVID-19 in India under containment measures–A time-dependent state-space SIR approach, Stat. Appl., 18 (2020), 157–180.
    [7] F. F. Liu, F. Y. Wei, An epidemic model with Beddington-DeAngelis functional response and environmental fluctuations, Physica A, 597 (2022), 127321. https://doi.org/10.1016/j.physa.2022.127321 doi: 10.1016/j.physa.2022.127321
    [8] F. Y. Wei, R. Xue, Stability and extinction of SEIR epidemic models with generalized nonlinear incidence, Math. Comput. Simul., 170 (2020), 1–15. https://doi.org/10.1016/j.matcom.2018.09.029 doi: 10.1016/j.matcom.2018.09.029
    [9] W. O. Kermack, A. G. A. Mckendrick, Contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [10] M. A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-nCov) with fractional derivative, Alex. Eng. J., 59 (2020), 2379–2389. https://doi.org/10.1016/j.aej.2020.02.033 doi: 10.1016/j.aej.2020.02.033
    [11] G. Lee, S. E. Yoon, K. Shin, Simple epidemic models with segmentation can be better than complex ones, Plos One, 17 (2022), 1–18. https://doi.org/10.1371/journal.pone.0262244 doi: 10.1371/journal.pone.0262244
    [12] F. Muhammad, U. S. Muhammed, A. Aqueel, M. O. Ahamed, Analysis and numerical solution of SEIR epidemic model of measles with non-integer time fractional derivatives by using Laplace Adomian decomposition method, Ain Shams Eng. J., 9 (2018), 3391–3397. https://doi.org/10.1016/j.asej.2017.11.010 doi: 10.1016/j.asej.2017.11.010
    [13] P. B. Dhandapani, D. Baleanu, T. Jayakumar, S. Vinoth, New fuzzy fractional epidemic model involving death population, Comput. Syst. Sci. Eng., 37 (2021), 331–346. https://doi.org/10.32604/csse.2021.015619 doi: 10.32604/csse.2021.015619
    [14] P. B. Dhandapani, D. Baleanu, T. Jayakumar, S. Vinoth, On stiff fuzzy IRD-14 day average transmission model of COVID-19 pandemic disease, AIMS Bioeng., 7 (2020), 208–223. https://doi.org/10.3934/bioeng.2020018 doi: 10.3934/bioeng.2020018
    [15] P. B. Dhandapani, T. Jayakumar, D. Baleanu, S. Vinoth, On a novel fuzzy fractional retarded delay epidemic model, AIMS Math. 7 (2022), 10122–10142. https://doi.org/10.3934/math.2022563 doi: 10.3934/math.2022563
    [16] R. K. Naji, R. M. Hussien, The dynamics of epidemic model with two types of infectious diseases and vertical transmission, J. Appl. Math., 2016 (2016), 1–16. https://doi.org/10.1155/2016/4907964 doi: 10.1155/2016/4907964
    [17] M. Rangasamy, C. Chesneau, C. Martin-Barreiro, V. Leiva, On a novel dynamics of SEIR epidemic models with a potential application to COVID-19, Symmetry, 14 (2022), 1436. https://doi.org/10.3390/sym14071436 doi: 10.3390/sym14071436
    [18] M. Rangasamy, N. Alessa, P. B. Dhandapani, K. Loganathan, Dynamics of a novel IVRD pandemic model of a large population over a long time with efficient numerical methods, Symmetry, 14 (2022), 1919. https://doi.org/10.3390/sym14091919 doi: 10.3390/sym14091919
    [19] S. Rekha, P. Balaganesan, J. Renuka, Homotopy perturbation method for mathematical modelling of Dengue fever, J. Phys. Conf. Ser., 1724 (2021), 1–13. https://doi.org/10.1088/1742-6596/1724/1/012056 doi: 10.1088/1742-6596/1724/1/012056
    [20] S. Rekha, P. Balaganesan, J. Renuka, Homotopy perturbation method for mathematical modeling of Listeriosis and Anthrax diseases, Ann. R.S.C.B., 25 (2021), 9787–9809.
    [21] F. A. Rihan, H. J. Alsakaji, C. Rajivganthi, Stochastic SIRC epidemic model with time-delay for COVID-19, Adv. Differ. Equ., 502 (2020), 1–20. https://doi.org/10.1186/s13662-020-02964-8 doi: 10.1186/s13662-020-02964-8
    [22] K. Saranya, V. Mohan, R. Kizek, C. Fernandez, L. Rajendran, Unprecedented homotopy perturbation method for solving nonlinear equations in the enzymatic reaction of glucose in a spherical matrix, Bioproc. Biosyst. Eng., 41 (2018), 281–294. https://doi.org/10.1007/s00449-017-1865-0 doi: 10.1007/s00449-017-1865-0
    [23] S. Thamizh Suganya, P. Balaganesan, L. Rajendran, Mathematical modeling of Bioelectrochemical wastewater treatment using microbial fuel cells, Int. J. Sci. Tech., 9 (2020), 376–380.
    [24] S. Thamizh Suganya, J. Visuvasam, P. Balaganesan, L. Rajendran, Analysis of biodegradation and microbial growth in groundwater system using new the homotopy perturbation method, Turk. J. Comput. Math. Educ., 12 (2021), 606–614. https://doi.org/10.17762/turcomat.v12i1S.1936 doi: 10.17762/turcomat.v12i1S.1936
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1650) PDF downloads(111) Cited by(4)

Article outline

Figures and Tables

Figures(15)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog