Research article Special Issues

Threshold dynamics in a periodic epidemic model with imperfect quarantine, isolation and vaccination

  • Received: 25 March 2024 Revised: 29 April 2024 Accepted: 13 May 2024 Published: 12 July 2024
  • MSC : 34C23, 34C25, 34C60, 37N25, 92D25, 92D30

  • A nonautonomous mathematical model was presented to explore the complex dynamics of disease spread over time, incorporating a time-periodic transmission parameter and imperfections in quarantine, isolation and vaccination strategies. Through a detailed examination of threshold dynamics, it was revealed that the global dynamics of disease transmission are influenced by the basic reproduction number ($ \mathcal{R}_0 $), a critical threshold that determines extinction, persistence, and the presence of periodic solutions. It was shown that the disease-free equilibrium is globally asymptotically stable if $ \mathcal{R}_0 < 1 $, while the disease persists if $ \mathcal{R}_0 > 1 $. To support and validate our analytical results, the basic reproduction number and the dynamics of the disease were estimated by fitting monthly data from two Asian countries, namely Saudi Arabia and Pakistan. Furthermore, a sensitivity analysis of the time-averaged reproduction number ($ \langle \mathcal{R}_0 \rangle $) of the associated time-varying model showed a significant sensitivity to key parameters such as infection rates, quarantine rate, vaccine coverage rate, and recovery rates, supported by numerical simulations. These simulations validated theoretical findings and explored the impact of seasonal contact rate, imperfect quarantine, isolation, imperfect vaccination, and other parameters on the dynamics of measles transmission. The results showed that increasing the rate of immunization, improving vaccine management, and raising public awareness can reduce the incidence of the epidemic. The study highlighted the importance of understanding these patterns to prevent future periodic epidemics.

    Citation: Mahmoud A. Ibrahim. Threshold dynamics in a periodic epidemic model with imperfect quarantine, isolation and vaccination[J]. AIMS Mathematics, 2024, 9(8): 21972-22001. doi: 10.3934/math.20241068

    Related Papers:

  • A nonautonomous mathematical model was presented to explore the complex dynamics of disease spread over time, incorporating a time-periodic transmission parameter and imperfections in quarantine, isolation and vaccination strategies. Through a detailed examination of threshold dynamics, it was revealed that the global dynamics of disease transmission are influenced by the basic reproduction number ($ \mathcal{R}_0 $), a critical threshold that determines extinction, persistence, and the presence of periodic solutions. It was shown that the disease-free equilibrium is globally asymptotically stable if $ \mathcal{R}_0 < 1 $, while the disease persists if $ \mathcal{R}_0 > 1 $. To support and validate our analytical results, the basic reproduction number and the dynamics of the disease were estimated by fitting monthly data from two Asian countries, namely Saudi Arabia and Pakistan. Furthermore, a sensitivity analysis of the time-averaged reproduction number ($ \langle \mathcal{R}_0 \rangle $) of the associated time-varying model showed a significant sensitivity to key parameters such as infection rates, quarantine rate, vaccine coverage rate, and recovery rates, supported by numerical simulations. These simulations validated theoretical findings and explored the impact of seasonal contact rate, imperfect quarantine, isolation, imperfect vaccination, and other parameters on the dynamics of measles transmission. The results showed that increasing the rate of immunization, improving vaccine management, and raising public awareness can reduce the incidence of the epidemic. The study highlighted the importance of understanding these patterns to prevent future periodic epidemics.



    加载中


    [1] A. Zobayer, M. S. Ullah, K. Ariful Kabir, A cyclic behavioral modeling aspect to understand the effects of vaccination and treatment on epidemic transmission dynamics, Sci. Rep., 13 (2023), 8356. https://doi.org/10.1038/s41598-023-35188-3 doi: 10.1038/s41598-023-35188-3
    [2] M. J. Plank, S. C. Hendy, R. N. Binny, G. Vattiato, A. Lustig, O. J. Maclaren, Using mechanistic model-based inference to understand and project epidemic dynamics with time-varying contact and vaccination rates, Sci. Rep., 12 (2022), 20451. https://doi.org/10.1038/s41598-022-25018-3 doi: 10.1038/s41598-022-25018-3
    [3] Y. Wei, J. Guan, Y. Zhao, F. Chen, Progress and perspective of transmission dynamics models in prevention and control of infectious diseases, In: Ye, DQ. (eds) Progress in China Epidemiology, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-19-2199-5_22
    [4] J. Tanimoto, Quarantine and isolation, In: Sociophysics Approach to Epidemics. Evolutionary Economics and Social Complexity Science, Singapore: Springer, 23 (2021). https://doi.org/10.1007/978-981-33-6481-3_5
    [5] M. A. Safi, A. B. Gumel, Mathematical analysis of a disease transmission model with quarantine, isolation and an imperfect vaccine, Comput. Math. Appl., 61 (2011), 3044–3070. https://doi.org/10.1016/j.camwa.2011.03.095 doi: 10.1016/j.camwa.2011.03.095
    [6] M. A. Safi, Mathematical analysis of the role of quarantine and isolation in epidemiology, Ph.D thesis, Department of Mathematics, University of Manitoba, 2010.
    [7] K. Dietz, The incidence of infectious diseases under the influence of seasonal fluctuations, In: Mathematical Models in Medicine Workshop, Mainz: Springer, 1976. https://doi.org/10.1016/j.camwa.2011.03.095
    [8] K. F. Nipa, L. J. Allen, The effect of demographic variability and periodic fluctuations on ddisease outbreaks in a Vector-Host epidemic model, In: Teboh-Ewungkem, M.I., Ngwa, G.A. (eds) Infectious Diseases and Our Planet. Mathematics of Planet Earth, Cham: Springer, 7 (2021), 15–35. https://doi.org/10.1007/978-3-030-50826-5_2
    [9] J. Rashidinia, M. Sajjadian, J. Duarte, C. Januário, N. Martins, On the dynamical complexity of a seasonally forced discrete SIR epidemic model with a constant vaccination strategy, Complexity, 2018 (2018), 7191487. https://doi.org/10.1155/2018/7191487 doi: 10.1155/2018/7191487
    [10] H. Sun, H. Li, Z. Zhu, Dynamics of an SIRS epidemic model with periodic infection rate on a scale-free network, J. Biolog. Sys., 30 (2022), 673–693. https://doi.org/10.1142/S0218339022500243 doi: 10.1142/S0218339022500243
    [11] W. Wang, X. Q. Zhao, Threshold dynamics for compartmental epidemic models in periodic environments, J. Dyn. Diff. Equat., 20 (2008), 699–717. https://doi.org/10.1007/s10884-008-9111-8 doi: 10.1007/s10884-008-9111-8
    [12] C. Rebelo, A. Margheri, N. Bacaër, Persistence in seasonally forced epidemiological models, J. Math. Biol., 64 (2012), 933–949. https://doi.org/10.1007/s00285-011-0440-6 doi: 10.1007/s00285-011-0440-6
    [13] T. Zhang, Z. Teng, S. Gao, Threshold conditions for a nonautonomous epidemic model with vaccination, Appl. Anal., 87 (2008), 181–199. https://doi.org/10.1080/00036810701772196 doi: 10.1080/00036810701772196
    [14] C. M. Silva, A nonautonomous epidemic model with general incidence and isolation, Math. Meth. Appl. Sci., 37 (2014), 1974–1991. https://doi.org/10.1002/mma.2950 doi: 10.1002/mma.2950
    [15] Z. Guo, F. B. Wang, X. Zou, Threshold dynamics of an infective disease model with a fixed latent period and non-local infections, J. Math. Biol.. 65 (2012), 1387–1410. https://doi.org/10.1007/s00285-011-0500-y
    [16] M. A. Ibrahim, A. Dénes, A mathematical model for Lassa fever transmission dynamics in a seasonal environment with a view to the 2017–20 epidemic in Nigeria, Nonlinear Anal.: Real World Appl., 60 (2021), 103310. https://doi.org/10.1016/j.nonrwa.2021.103310 doi: 10.1016/j.nonrwa.2021.103310
    [17] M. A. Ibrahim, A. Dénes, Stability and threshold dynamics in a seasonal mathematical model for measles outbreaks with double-dose vaccination, Mathematics, 11 (2023), 1791. https://doi.org/10.3390/math11081791 doi: 10.3390/math11081791
    [18] L. Lou, X. Q. Zhao, Threshold dynamics in a time-delayed periodic SIS epidemic model, Discrete Cont. Dyn. Sys. Ser. B, 126 (2009), 169–186. 10.3934/dcdsb.2009.12.169 doi: 10.3934/dcdsb.2009.12.169
    [19] M. A. Safi, M. Imran, A. B. Gumel, Threshold dynamics of a nonautonomous SEIRS model with quarantine and isolation, Theory Biosci., 131 (2012), 19–30. https://doi.org/10.1007/s12064-011-0148-6 doi: 10.1007/s12064-011-0148-6
    [20] D. Aldila, D. Asrianti, A deterministic model of measles with imperfect vaccination and quarantine intervention, J. Phys.: Conf. Ser., 1218 (2019), 012044. https://doi.org/10.1088/1742-6596/1218/1/012044 doi: 10.1088/1742-6596/1218/1/012044
    [21] M. Erdem, M. Safan, C. Castillo-Chavez, Mathematical analysis of an SIQR influenza model with imperfect quarantine, Bull. Math. Biol., 79 (2017), 1612–1636. https://doi.org/10.1007/s11538-017-0301-6 doi: 10.1007/s11538-017-0301-6
    [22] Z. Feng, Final and peak epidemic sizes for seir models with quarantine and isolation, Math. Biosci. Eng., 4 (2007), 675–686. https://doi.org/10.3934/mbe.2007.4.675 doi: 10.3934/mbe.2007.4.675
    [23] Z. Memon, S. Qureshi, B. R. Memon, Mathematical analysis for a new nonlinear measles epidemiological system using real incidence data from Pakistan, Eur. Phys. J. Plus, 135 (2020), 675–686. https://doi.org/10.1140/epjp/s13360-020-00392-x doi: 10.1140/epjp/s13360-020-00392-x
    [24] S. Opoku, B. Seidu, P. N. Akuka, A mathematical analysis of the impact of maternally derived immunity and double-dose vaccination on the spread and control of measles, Comput. Math. Biophys., 11 (2023), 20230106. https://doi.org/10.1515/cmb-2023-0106 doi: 10.1515/cmb-2023-0106
    [25] M. A. Ibrahim, A. Dénes, Threshold dynamics in a model for Zika virus disease with seasonality, Bull. Math. Biol., 83 (2021), 27. https://doi.org/10.1007/s11538-020-00844-6 doi: 10.1007/s11538-020-00844-6
    [26] L. Liu, X. Q. Zhao, Y. Zhou, A tuberculosis model with seasonality, Bull. Math. Biol., 72 (2010), 931–952. https://doi.org/10.1007/s11538-009-9477-8 doi: 10.1007/s11538-009-9477-8
    [27] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, New York: American Mathematical Society, 1995.
    [28] H. L. Smith, P. Waltman, The Theory of the Chemostat: Dynamics of Microbial Competition, Cambridge: Cambridge University Press, 1995. https://doi.org/10.1017/CBO9780511530043
    [29] N. Bacaër, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421–436. https://doi.org/10.1007/s00285-006-0015-0 doi: 10.1007/s00285-006-0015-0
    [30] N. Bacaër, S. Guernaoui, On the biological interpretation of a definition for the parameter $\mathcal{R}_0$ in periodic population models, J. Math. Biol., 65 (2012), 601–621. https://doi.org/10.1007/s00285-011-0479-4 doi: 10.1007/s00285-011-0479-4
    [31] N. Bacaër, J. Ripoll, R. B. de La Parra, X. Bardina, S. Cuadrado, Matemáticas y epidemias, Paris: Cassini, 2021.
    [32] C. Mitchell, C. Kribs, A comparison of methods for calculating the basic reproductive number for periodic epidemic systems, Bull. Math. Biol., 79 (2017), 1846–1869. https://doi.org/10.1007/s11538-017-0309-y doi: 10.1007/s11538-017-0309-y
    [33] D. Posny, J. Wang, Computing the basic reproductive numbers for epidemiological models in nonhomogeneous environments, Appl. Math. Comput., 242 (2014), 473–490. https://doi.org/10.1016/j.amc.2014.05.079 doi: 10.1016/j.amc.2014.05.079
    [34] M. D. McKay, R. J. Beckman, W. J. Conover, Comparison of three methods for selecting values of input variables in the analysis of output from a computer code, Technometrics, 21 (1979), 239–245. https://doi.org/10.2307/1268522 doi: 10.2307/1268522
    [35] F. Zhang, X. Q. Zhao, A periodic epidemic model in a patchy environment, J. Math. Anal. Appl., 325 (2007), 496–516. https://doi.org/10.1016/j.jmaa.2006.01.085 doi: 10.1016/j.jmaa.2006.01.085
    [36] X. Q. Zhao, Dynamical Systems in Population Biology, 2 Eds., Berlin: Springer, 2017. https://doi.org/10.1007/978-3-319-56433-3
    [37] Measles (Rubeola), Centers for disease control and prevention, 2021. Available from: https://www.cdc.gov/measles/about/index.html.
    [38] Measles, World health organization, 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/measles.
    [39] Measles Monthly Bulletin, World health organization, eastern mediterranean regional office (emro), 2021. Available from: https://www.emro.who.int/vpi/publications/measles-monthly-bulletin.html.
    [40] J. Huang, S. Ruan, X. Wu, X. Zhou, Seasonal transmission dynamics of measles in China, Theory Biosci., 137 (2018), 185–195. https://doi.org/10.1007/s12064-018-0271-8 doi: 10.1007/s12064-018-0271-8
    [41] Y. Xue, X. Ruan, Y. Xiao, Modelling the periodic outbreak of measles in mainland China, Math. Probl. Eng., 2020 (2020), 3631923. https://doi.org/10.1155/2020/3631923 doi: 10.1155/2020/3631923
    [42] J. Zhang, Z. Jin, G. Q. Sun, X. D. Sun, S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226–1251. https://doi.org/10.1007/s11538-012-9720-6 doi: 10.1007/s11538-012-9720-6
    [43] Saudi Arabia-Health, The world bank, 2021. Available from: https://data.worldbank.org/country/saudi-arabia.
    [44] Pakistan-Health, The world bank, 2021. Available from: https://data.worldbank.org/country/pakistan.
    [45] Measles Monthly Bulletin, World health organization, eastern mediterranean regional office (emro), 2021. Available from: https://www.emro.who.int/vpi/publications/measles-monthly-bulletin.html.
    [46] Immunization, Vaccines and Biologicals, Measles, World health organization (who). Available from: https://www.who.int/teams/immunization-vaccines-and-biologicals/diseases/measles.
    [47] Pakistan-Immunizatio, Gavi, 2021. Available from: https://www.gavi.org/programmes-impact/country-hub/eastern-mediterranean/pakistan.
    [48] J. Mossong, D. J. Nokes, W. J. Edmunds, M. J. Cox, S. Ratnam, C. P. Muller, Modeling the impact of subclinical measles transmission in vaccinated populations with waning immunity, Amer. J. Epidemiol., 150 (1999), 1238–1249. https://doi.org/10.1093/oxfordjournals.aje.a009951 doi: 10.1093/oxfordjournals.aje.a009951
    [49] R. Anderson, B. Grenfell, Quantitative investigations of different vaccination policies for the control of congenital rubella syndrome (crs) in the united kingdom, Epidemiol. Infect., 96 (1986), 305–333.
    [50] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [51] L. Arriola, J. M. Hyman, Sensitivity analysis for uncertainty quantification in mathematical models, In: Chowell, G., Hyman, J.M., Bettencourt, L.M.A., Castillo-Chavez, C. (eds) Mathematical and Statistical Estimation Approaches in Epidemiology, Dordrecht: Springer, 2009,195–247. https://doi.org/10.1007/978-90-481-2313-1_10
    [52] N. Bacaër, Approximation of the basic reproduction number $\mathcal{R}_0$ for vector-borne diseases with a periodic vector population, Bull. Math. Biol., 69 (2007), 1067–1091. https://doi.org/10.1007/s11538-006-9166-9 doi: 10.1007/s11538-006-9166-9
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(623) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(16)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog