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1. Introduction

In the relentless battle against infectious diseases, the development and refinement of mathematical
models plays a crucial role in understanding the dynamics of epidemics and devising effective control
strategies. The complex interplay of various factors, such as population heterogeneity, imperfect
interventions, and periodic fluctuations, requires a comprehensive approach to model formulation.
The dynamics of infectious diseases is influenced by the interaction between the pathogen and the
host population, as well as the effectiveness of the control measures implemented [1]. In real-world
scenarios, the implementation of quarantine, isolation, and vaccination strategies is often imperfect
due to compliance issues, limited resources, and the emergence of new variants [2]. Understanding
the impact of imperfect interventions on epidemic dynamics is crucial to designing robust public
health strategies [3]. Imperfect quarantine and isolation can have an impact on the spread of
infectious diseases. The use of quarantine and isolation as control measures can lead to the
elimination of the disease if its level of effectiveness is sufficiently moderate [4]. However, the
effectiveness of these measures may be influenced by other factors. For example, the level of
transmission by isolated individuals in hospitals plays an important role in determining the impact of
quarantine and isolation [5]. Furthermore, the combined use of quarantine and isolation with a
vaccination strategy can further improve disease control and elimination [6]. It is important to note
that the impact of quarantine and isolation can vary depending on the specific characteristics of the
disease and the population studied.

The periodic nature of many infectious diseases, influenced by seasonal variations, environmental
factors, or human behavior, adds an additional layer of complexity to the modeling framework [7–10].
Periodicity introduces threshold dynamics that govern the stability and persistence of epidemic
cycles [11, 12]. Investigating the interaction between threshold dynamics and imperfect interventions
is essential to understand disease transmission and control. In [13], the authors investigate the
dynamical behavior of an SIRVS (susceptible - infected - recovered - vaccinated) epidemic model
with time-dependent coefficients and give some new threshold conditions which determine whether or
not the disease will go to extinction. In their work, [14] introduces a nonautonomous SIQR
(susceptible - infected - quarantine - recovered) model that incorporates time-varying parameters and
examines the criteria for eliminating or sustaining infection within this framework. The study defines
critical thresholds for the autonomous, asymptotically autonomous and periodic scenarios, along with
the general nonautonomous model featuring various forms of disease transmission.

Threshold dynamics in a periodic mathematical model with imperfect interventions have been
studied in the context of various infectious diseases. The basic reproduction number (R0) is a key
parameter that determines the persistence or extinction of the disease. If R0 is less than one, the
disease will gradually disappear, while if R0 is greater than one, the disease will become endemic and
persist [15–18]. The research by Safi et al. [19] examines a nonautonomous SEIRS (susceptible -
exposed - infected - recovered) model that incorporates quarantine and isolation measures for a
contagious disease. It shows that the disease-free state is globally asymptotically stable if the
reproduction ratio is less than one, while the disease persists if the ratio exceeds one. The findings
suggest that the introduction of periodicity into the autonomous quarantine/isolation model does not
alter the threshold behavior of the system in terms of the elimination or persistence of the disease
within the population. In [17], a mathematical model was established that includes a seasonal
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transmission parameter and a double dose vaccination to examine how measles spreads over time.
The basic reproduction number R0 was defined, and its utility as a threshold parameter for global
dynamics and the existence of periodic solutions was demonstrated.

In this work, a nonautonomous mathematical model is developed to understand the spread of
diseases over time, considering the complexities of periodic epidemic dynamics coupled with
imperfections in quarantine, isolation, and vaccination strategies. Our model is based on previous
work, specifically those presented in [5, 6, 17, 20, 21]. Through a comprehensive exploration of
threshold dynamics, the global dynamics of disease transmission is governed by the basic
reproduction number (R0). This number serves as a threshold value to determine the extinction or
persistence of the disease, as well as the existence of periodic solutions. The following section
introduces a comprehensive periodic model encompassing quarantine, isolation, and vaccination,
revealing the presence of a disease-free equilibrium. Sections 3 to 6 are dedicated to derive the basic
reproduction number (R0) for our model. These sections elucidate that, depending on its value, the
disease-free equilibrium will either be globally stable or the disease will persist within the population.
In Section 7, we integrate our model with the measles data from Saudi Arabia and Pakistan. Through
this collaboration, we estimate various unknown parameters and determine the basic reproduction
number. Furthermore, we illustrate the sensitivity of the parameters to the average reproduction
number (⟨R0⟩). Section 8 presents numerical simulations for both scenarios, reinforcing our
theoretical findings. Subsequently, we performed numerical evaluations to examine the influence of
seasonal contact rate, imperfect quarantine, isolation, imperfect vaccination, and other significant
parameters on the transmission dynamics of measles. Section 9 contains our final discussion,
summarizing the key findings and insights from the study.

2. Periodic model formulation

In this study, we consider the division of the total human population, indicated by N(t), taking into
account quarantine for exposed individuals, isolation for those with clinical symptoms of the disease,
and vaccination. This partition was designed to analyze the dynamics of disease transmission and
includes eight distinct compartments: susceptible (S (t)), individuals who have received the first dose of
the vaccine (V1(t)), those who have received the second dose of the vaccine (V2(t)), exposed individuals
who are infected but not yet show clinical symptoms of the disease (E(t)), infected individuals who are
symptomatic (I(t)), quarantined individuals who are infected but do not display clinical symptoms of
the disease (Q(t)), hospitalized individuals (H(t)) and recovered individuals (R(t)).

Quarantine in general involves the isolation of susceptible individuals suspected of exposure to a
disease, but in this work, quarantine refers to the removal of newly-infected individuals from contact
with the general population [19, 22]. This is because quarantine of susceptible individuals is unlikely
to significantly impact disease dynamics for large total population sizes, as it only involves newly-
infected individuals detected through contact tracing or random testing. Those who remain susceptible
at the end of the quarantine period are not included in the Q class [19, 22].

Displayed in Figure 1 is the transition of individuals among compartments, while the model
equations are expressed as follows:
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dS (t)
dt
= Λ − λ(t)S (t) − (θ + µ)S (t),

dV1(t)
dt
= θS (t) − (1 − α1)λ(t)V1(t) − (σ1 + µ)V1(t),

dV2(t)
dt
= σ1V1(t) − (1 − α2)λ(t)V2(t) − (σ2 + µ)V2(t),

dE(t)
dt
= λ(t)(S (t) + (1 − α1)V1(t) + (1 − α2)V2(t)) − (ν1 + ν2 + µ)E(t),

dI(t)
dt
= ν1E(t) − γ1I(t) − κ1I(t) − (δ1 + µ)I(t),

dQ(t)
dt
= ν2E(t) − γ2Q(t) − κ2Q(t) − µQ(t),

dH(t)
dt
= κ1I(t) + κ2Q(t) − γ3H(t) − (δ2 + µ)H(t),

dR(t)
dt
= γ1I(t) + γ2Q(t) + γ3H(t) + σ2V2(t) − µR(t),

(2.1)

where
λ(t) = β(t)

τeE(t) + I(t) + τ(ε1Q(t) + ε2H(t))
N(t) − (1 − ε1)Q(t) − (1 − ε2)H(t)

,

denotes the time-dependent infection rate and N(t)− (1− ε1)Q(t)− (1− ε2)H(t) = S (t)+V1(t)+V2(t)+
I(t) + ε1Q(t) + ε2H(t) + R(t) is the total actively-mixing population.
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Figure 1. Schematic diagram of disease transmission in a population.

In the system (2.1), we assume that the effective contact rate β(t) is a continuous, positiveω-periodic
function. The human recruitment rate and the natural death rate are denoted by Λ and µ, respectively.
Susceptible individuals who have received the first dose of the vaccine transition to the vaccinated
compartment V1 at a rate of θ. Because the first dose of the disease vaccine is not very effective, people
who have had a single dose can contract the disease by coming into contact with infected people at a
rate of (1 − α1)λ(t). On the other hand, most people fall into the category of people who have received
two doses at a rate of σ1, as explained in [17, 20, 23]. Unlike [17, 20, 23], and in agreement with [24],
we assume that the second dose of the vaccine is ineffective in preventing the disease. Individuals with
two doses can contract the disease by contact with infected individuals at a rate of (1 − α2)λ(t), while
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the majority of the population transitions to the recovery class at a rate of σ2. It is important to note that
α1 = 0 or α2 = 0 indicates a vaccine that offers no protection at all, while α1 = 1 or α2 = 1 represents
a perfect vaccine, with 0 < α1, α2 < 1. Based on the insights of [19], it is important to note that,
in the context of this study, the quarantine process usually involves isolating susceptible individuals
suspected of exposure to the disease. Specifically, the quarantine class (Q) comprises newly infected
(asymptomatic) individuals, with detection usually carried out through contact tracing or random tests.
In this study, quarantine specifically refers to the separation of newly infected individuals from the
general population. Consequently, individuals who remain susceptible at the end of the quarantine
period are not considered to be part of the Q class. The parameters ε1 and ε2, both of which range
from 0 to 1, act as modifiers to measure the effectiveness of quarantine and isolation. Perfection is
achieved when ε1 = 0 = ε2, ensuring that individuals in these categories avoid contact with the general
public, thus preventing the transmission of infection. Leaky quarantine is represented by 0 < ε1, ε2 < 1.
On the contrary, when ε1 = 1 = ε2, people in quarantine and isolation are as likely as any other member
of the population to interact with the general public. We provide a complete description of the model
parameters, which is presented in Table 1.

Table 1. Description of parameters for model (2.1).

Parameters Description
Λ Recruitment rate of susceptible humans
µ Natural death rate
β(t) Periodic transmission rate of symptomatic infection
τe Relative transmissibility of exposed to infected
τ Relative transmissibility of quarantined and hospitalized to infected
α1, α2 Modification parameters for vaccine efficacy
ε1, ε2 Modification parameters for the efficacy of quarantine and isolation
θ Coverage rate of vaccine for entire population
σ1 Rate of vaccination with second dose
σ2 Progression rate from V2 to R
ν1 Progression rate from exposed to infectious class
ν2 Quarantine rate for exposed individuals
κ1, κ2 Hospitalization rate for infectious and quarantined individuals
γ1, γ2, γ2 Recovery rate for infectious, quarantined, and hospitalized individuals
δ1, δ2 Disease-induced death rate for infectious and hospitalized individuals

It is evident that any solution to the system (2.1) that begins with nonnegative initial values will also
be nonnegative. Therefore, we will first examine the bounds of the solution of this system.

Define

X =
{
(S ,V1,V2, E, I,Q,H,R) ∈ R8

+ : S + V1 + V2 + E + I + Q + H + R ≤ N
}
,

X(0) = (S (0),V1(0),V2(0), E(0), I(0),Q(0),H(0),R(0)) ∈ R8
+,

(2.2)

and let Ψ be defined as the set

Ψ B

{
(S ,V1,V2, E, I,Q,H,R) ∈ X : S + V1 + V2 + E + I + Q + H + R = N ≤

Λ

µ

}
.
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Under this definition, we introduce the following lemma.

Lemma 1. The solution to System (2.1) is both unique and bounded, given the initial value X(0) ∈ X
defined in (2.2). Moreover, the set Ψ is compact, positively invariant, and attracts all positive orbits
in X.

Proof. Consider X1 = (S ,V1,V2, E, I,Q,H,N). Building upon references [19,25,26], we introduce the
functions g1, g2, g3 ∈ (R8

+,R+) defined as follows:

g1(X1) =

0, if X1 = (0, 0, 0, 0, 0, 0, 0, 0),
I+τeE+τ(ε1Q+ε2H)

N−(1−ε1)Q−(1−ε2)H S , otherwise.

g2(X1) =

0, if X1 = (0, 0, 0, 0, 0, 0, 0, 0),
I+τeE+τ(ε1Q+ε2H)

N−(1−ε1)Q−(1−ε2)H V1, otherwise.

g3(X1) =

0, if X1 = (0, 0, 0, 0, 0, 0, 0, 0),
I+τeE+τ(ε1Q+ε2H)

N−(1−ε1)Q−(1−ε2)H V2, otherwise.
.

(2.3)

Through a change of variable where N = S +V1 +V2 + E + I +Q+H +R and from (2.3), system (2.1)
can be reformulated as follows:

dS (t)
dt
= Λ − β(t)g1(X1) − (θ + µ)S (t),

dV1(t)
dt
= θS (t) − (1 − α1)β(t)g2(X1) − (σ1 + µ)V1(t),

dV2(t)
dt
= σ1V1(t) − (1 − α2)β(t)g3(X1) − (σ2 + µ)V2(t),

dE(t)
dt
= β(t)g1(X1) + (1 − α1)β(t)g2(X1) + (1 − α2)β(t)g3(X1) − (ν1 + ν2 + µ)E(t),

dI(t)
dt
= ν1E(t) − γ1I(t) − κ1I(t) − (δ1 + µ)I(t),

dQ(t)
dt
= ν2E(t) − γ2Q(t) − κ2Q(t) − µQ(t),

dH(t)
dt
= κ1I(t) + κ2Q(t) − γ3H(t) − (δ2 + µ)H(t),

dN(t)
dt
= Λ − δ1I(t) − δ2H(t) − µN(t).

(2.4)

It is evident that g1(X1), g2(X1), and g3(X1) are continuous and globally Lipschitz in R8
+. Applying

Theorem 5.2.1 from [27] allows us to establish that, for any
(S (0),V1(0),V2(0), E(0), I(0),Q(0),H(0),N(0)) ∈ R8

+, the system (2.4) possesses a unique local
nonnegative solution (S ,V1,V2, E, I,Q,H,N).

From the total human population N(t) with a positive initial condition X(0) ∈ R8
+, we have the

equation
dN(t)

dt
= Λ − δ1I(t) − δ2H(t) − µN(t) ≤ Λ − µN(t),

indicating that the associated linear differential equation,

dN(t)
dt
= Λ − µN(t),
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has a unique equilibrium N∗ = Λ
µ

in R+. Hence, as t → ∞, the difference |N(t) − N∗| tends to zero and
N∗ becomes globally attractive in R+. Additionally, employing the comparison theorem [28] confirms
that N(t) remains bounded. Consequently, the solution of the system (2.1) exists globally over the
interval [0,∞). □

The equilibrium without the presence of the disease, known as the disease-free equilibrium in (2.1),
can be determined by solving the system below:

0 = Λ − (θ + µ)S ∗,
0 = θS ∗ − (σ1 + µ)V∗1 ,
0 = σ1V∗1 − (σ2 + µ)V∗2 ,
0 = σ2V∗2 − µR

∗.

(2.5)

Clearly, the solution to (2.5) is the unique disease-free equilibrium of system (2.1), as given by:

D0 =
(
S ∗,V∗1 ,V

∗
2 , 0, 0, 0, 0,R

∗)
=

(
S ∗,

θ

σ1 + µ
S ∗,

σ1θ

(σ1 + µ)(σ2 + µ)
S ∗, 0, 0, 0, 0,

σ1σ2θ

µ(σ1 + µ)(σ2 + µ)
S ∗

)
,

where S ∗ =
Λ

θ + µ
.

3. Basic reproduction number

For periodic epidemic compartmental models, Bacaër and Guernaou [29] provided a definition of
R0 as the spectral radius of an integral operator acting on the space of continuous periodic functions.
Later, Wang and Zhao [11] characterized R0 for such models and proved that it serves as a threshold
parameter regarding the local stability properties of the disease-free periodic solution. Rebelo et al. [12]
studied persistence in epidemiological models in a seasonal environment. Bacaër and Ait Dads [30]
gave a more biological explanation ofR0 for compartmental epidemic models with periodic parameters.
Therefore, the global dynamics of the system is characterized by the basic reproduction number (R0)
of periodic compartmental models.

Within this section, we employ the methodology introduced in [11, 12, 31] to determine the basic
reproduction number (R0) for the system (2.1). Define the vectorH = (E, I,Q,H, S ,V1,V2,R)T , where
E, I, Q, and H correspond to the infected classes, and S , V1, V2, and R denote the uninfected classes
with

F (t,H(t)) =



λ(t)(S (t) + (1 − α1)V1(t) + (1 − α2)V2(t))
0
0
0
0
0
0
0


,
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V−(t,H(t)) =



(ν1 + ν2 + µ)E(t)
γ1I(t) + κ1I(t) + (δ1 + µ)I(t)
κ2Q(t) + γ2Q(t) + µQ(t)
γ3H(t) + (δ2 + µ)H(t)
λ(t)S (t) + (θ + µ)S (t)

((1 − α1)λ(t) + σ1 + µ)V1(t)
((1 − α2)λ(t) + σ2 + µ)V2(t)

µR(t)


, V+(t,H(t)) =



0
ν1E(t)
ν2E(t)

κ1I(t) + κ2Q(t)
Λ

θS (t)
σ1V1(t)

γ1I(t) + γ2Q(t) + γ3H(t) + σ2V2(t)


.

The nonautonomous equation presented below,

H ′(t) = F (t,H(t)) −V(t,H(t)) = F (t,H(t)) +V+(t,H(t)) −V−(t,H(t)), (3.1)

is equivalent to System (2.1). The disease-free equilibrium for (3.1) isH∗ =
(
0, 0, 0, 0, S ∗,V∗1 ,V

∗
2 ,R

∗
)
.

To start the analysis, we verify that the model (2.1) satisfies the conditions (A1)–(A7) outlined in [11].
Subsequently, we determine the matrix functions 4 × 4, F(t) =

(∂Fi(t,H∗)
∂H j

)
1⩽i, j⩽4, and

V(t) =
(∂Vi(t,H∗)
∂H j

)
1⩽i, j⩽4 in the following manner:

F(t) =


τeβ(t)L∗ β(t)L∗ τϵ1β(t)L∗ τϵ2β(t)L∗

0 0 0 0
0 0 0 0
0 0 0 0

 ,
and

V(t) =


ν1 + ν2 + µ 0 0 0
−ν1 γ1 + κ1 + δ1 + µ 0 0
−ν2 0 γ2 + κ2 + µ 0
0 −κ1 −κ2 γ3 + δ2 + µ

 ,
where L∗ = S ∗+(1−α1)V∗1+(1−α2)V∗2

N∗ . Conditions (A1) through (A6) provided in [11] are easily verified, and
the disease-free subspaceH∗ is linearly asymptotically stable atHs = (0, 0, 0, 0, S ,V1,V2,R) ∈ R8

+.

Consider G(x, y) as a matrix solution to the initial value problem presented below, where x ⩾ y:

dG(x, y)
dx

= −V(x)G(x, y), G(y, y) = I, ∀x ⩾ y, (3.2)

where I is the 4 × 4 identity matrix. Thus, G(x, y) can easily be calculated as

G(x, y) =


e−(ν1+ν2+µ)(x−y) 0 0 0

−ν1
e−(ν1+ν2+µ)(x−y)−e−(γ1+κ1+δ1+µ)(x−y)

(ν1+ν2−γ1−κ1−δ1) e−(γ1+κ1+δ1+µ)(x−y) 0 0
−ν2

e−(ν1+ν2+µ)(x−y)−e−(γ2+κ2+µ)(x−y)

(ν1+ν2−γ2+κ2) 0 e−(γ2+κ2+µ)(x−y) 0
G31(x, y) −κ1G32(x, y) −κ2G33(x, y) e−(γ3+δ2+µ)(x−y)

 ,
where

G31(x, y) =
((γ1 + κ1 + δ1 − γ3 − δ2)κ2ν2 + (ν1 + ν2 − γ2 − κ2)κ1ν1)

(ν1 + ν2 − γ1 − κ1 − δ1)(ν1 + ν2 − γ2 − κ2)(ν1 + ν2 − γ3 − δ2)
e−(ν1+ν2+µ)(x−y)
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+
((ν1 + ν2 − γ1 − κ1 − δ1)κ2ν2 + (γ2 + κ2 − γ3 − δ2)κ1ν1)

(ν1 + ν2 − γ3 − δ2)(γ1 + κ1 + δ1 − γ3 − δ2)(γ2 + κ2 − γ3 − δ2)
e−(γ3+δ2+µ)(x−y)

−
κ1ν1

(ν1 + ν2 − γ1 − κ1 − δ1)(γ1 + κ1 + δ1 − γ3 − δ2)
e−(γ1+κ1+δ1+µ)(x−y)

−
κ2ν2

(ν1 + ν2 − γ2 − κ2)(γ2 + κ2 − γ3 − δ2)
e−(γ2+κ2+µ)(x−y),

G32(x, y) =
e−(γ1+κ1+δ1+µ)(x−y) − e−(γ3+δ2+µ)(x−y)

γ1 + κ1 + δ1 − γ3 − δ2
, G33(x, y) =

e−(γ2+κ2+µ)(x−y) − e−(γ3+δ2+µ)(x−y)

γ2 + κ2 − γ3 − δ2
.

Therefore, the requirement (A7) described in [11] is met, as the matrix Ψ−V(x) of (3.2) for x ⩾ 0 is
equivalent to G(x, 0). Let Bω represent the ordered Banach space of ω-periodic functions from R to R4,
equipped with the usual maximum norm ∥ · ∥∞. Additionally, define B+ω B {ϕ ∈ Bω : ϕ(t) ⩾ 0, ∀t ∈ R}
as the positive cone.

Define the linear next-generation operator (NGO) K , responsible for subsequent infections, which
maps Bω to Bω as given below:

(Kϕ)(x) =
∫ ∞

0
G(x, x − r)F(x − r)ϕ(x − r)dr, ∀ ϕ ∈ Bω, x ∈ R.

The basic reproduction number R0 for the model (2.1) can be computed as the spectral radius of K ,
denoted as R0 B ρ(K).

In order to calculate an approximate numerical value for R0, as described in [11], we define
Ψ F
λ −V(t, λ) as the fundamental matrix of the linear ω-periodic equation

x′ =
[
F(t)
λ
− V(t)

]
x, ∀t ∈ R, (3.3)

where λ is a parameter in the interval (0,∞). Additionally, without losing generality, we make the
assumption that Ψ F

λ −V(0, λ) is equivalent to the identity matrix I. It is crucial to keep in mind that
Ψ F
λ −V(ω, λ) represents the monodromy matrix of the linear ω-periodic system (3.3).

Theorem 2 ([11, Theorem 2.1]). The following assertions are valid.

(i) If ρ(Ψ F
λ −V(ω, λ)) = 1 has a positive solution λ0, then λ0 is an eigenvalue of operatorK and, hence,

R0 > 0.

(ii) If R0 > 0, then λ0 = R0 is a unique solution of ρ(Ψ F
λ −V(ω, λ)) = 1.

(iii) R0 = 0 if and only if ρ(Ψ F
λ −V(ω, λ)) < 1 for all λ > 0.

More details about the numerical method used to compute the basic reproduction number R0 (the
spectral radius of the NGO K) can be found in [32, 33].

4. Stability analysis of the disease-free equilibrium (D0) of system (2.1)

In this section, our objective is to demonstrate the local and global stability ofD0 and establish that
the disease undergoes extinction when R0 < 1.
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Consider ΨF−V(t) as a fundamental matrix of the linear ω-periodic system x′ = [F(t) − V(t)]x.
Additionally, and without loss of generality, assume that ΨF−V(0) = I, representing the identity matrix.
It is important to note thatΨF−V(ω) is the monodromy matrix of the linearω-periodic system mentioned
above. Now, we recall the following Theorem 2.2 from [11] regarding the local stability of the disease-
free equilibriumD0.

Theorem 3 ([11], Theorem 2.2). The following statements are valid:

(i) ρ(ΨF−V(ω)) < 1(> 1) ⇐⇒ R0 < 1(> 1);

(ii) ρ(ΨF−V(ω)) = 1 ⇐⇒ R0 = 1.

Building on the preceding discussion, the subsequent theorem delves into the local stability of the
disease-free equilibriumD0 of (2.1).

Theorem 4. The disease-free equilibriumD0 is locally asymptotically stable if R0 < 1 and unstable if
R0 > 1.

Proof. Consider the Jacobian matrix of (2.1) calculated atD0, represented as

J(t) =
[
F(t) − V(t) 0
A1(t) A2

]
,

where

A1(t) =


τeβ(t) S ∗

N∗ β(t) S ∗
N∗ τβ(t) S ∗

N∗ τβ(t) S ∗
N∗

τeβ(t)
(1−α1)V∗1

N∗ β(t) (1−α1)V∗1
N∗ τβ(t) (1−α1)V∗1

N∗ τβ(t) (1−α1)V∗1
N∗

τeβ(t)
(1−α2)V∗2

N∗ β(t) (1−α2)V∗2
N∗ τβ(t) (1−α2)V∗2

N∗ τβ(t) (1−α2)V∗2
N∗

0 γ1 γ2 γ3

 ,
and

A2 =


−θ − µ 0 0 0
θ −σ1 − µ 0 0
0 σ1 −σ2 − µ 0
0 0 σ2 −µ

.
Referring to [34], the local asymptotic stability of D0 is contingent on two conditions: ρ(ΨA2(ω)) < 1
and ρ(ΨF−V(ω)) < 1. Here, A2 is a constant matrix with negative eigenvalues −(θ + µ) < 0, −(σ1 +

µ) < 0, −(σ2 + µ) < 0, and −µ < 0, so ρ(ΨA2) < 1. The stability of D0 is ultimately determined
by ρ(ΨF−V(ω)). Therefore, D0 is locally asymptotically stable if ρ(ΨF−V(ω)) < 1 and unstable if
ρ(ΨF−V(ω)) > 1. This completes the proof using Theorem 3. □

Theorem 5. If R0 < 1, then the disease-free equilibriumD0 of (2.1) is globally asymptotically stable.

Proof. Extending our analysis to local stability in Theorem 4, if R0 < 1, the disease-free equilibrium
H∗ is proven to be locally asymptotically stable. However, to establish global attractiveness, it is
essential to confirm the fulfillment of requirements (A1) through (A7) as outlined in [12], discussed
in Section 3. Furthermore, note that H∗ =

(
0, 0, 0, 0, S ∗,V∗1 ,V

∗
2 ,R

∗
)

stands as the unique equilibrium
of (3.1) within the set of disease-free statesHs.
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The first three equations of (2.1) yield the following system:

S ′(t) = Λ − λ(t)S (t) − (θ + µ)S (t),
V ′1(t) = θS (t) − (1 − α1)λ(t)V1(t) − (σ1 + µ)V1(t),
V ′2(t) = σ1V1(t) − (1 − α2)λ(t) − (σ2 + µ)V2(t).

Considering the nonnegativity constraints E(t) ≥ 0, I(t) ≥ 0, Q(t) ≥ 0, and H(t) ≥ 0 established in
Lemma 1, we can deduce the following inequalities:

S ′(t) ≤ Λ − (θ + µ)S (t),
V ′1(t) ≤ θS (t) − (σ1 + µ)V1(t),
V ′2(t) ≤ σ1V1(t) − (σ2 + µ)V2(t).

These inequalities imply:

lim sup
t→∞

S (t) ≤
Λ

θ + µ
= S ∗,

lim sup
t→∞

V1(t) ≤
θS ∗

σ1 + µ
=

θΛ

(θ + µ)(σ1 + µ)
= V∗1 ,

lim sup
t→∞

V2(t) ≤
σ1V∗1
σ2 + µ

=
σ1θΛ

(θ + µ)(σ1 + µ)(σ2 + µ)
= V∗2 .

Consequently, for any arbitrary positive m, there exists t(m) > 0 such that S (t) ≤ S ∗+m, V1(t) ≤ V∗1+m,
and V2(t) ≤ V∗2 + m for all t > t(m).

We define q(m) B min{ S ∗+(1−α1)V∗1+(1−α2)V∗2
S ∗+m+(1−α1)(V∗1+m)+(1−α2)(V∗2+m) }. From the system in (2.1), for t > t(m), the

following inequalities can be derived:

E′(t) ≤ β(t)(τeE(t) + I(t) + τ(ε1Q(t) + ε2H(t)))
1

q(m)
− (ν1 + ν2 + µ)E(t),

I′(t) ≤ ν1E(t) − γ1I(t) − κ1I(t) − (δ1 + µ)I(t),
Q′(t) ≤ ν2E(t) − κ2Q(t) − γ2Q(t) − µQ(t),
H′(t) ≤ κ1I(t) + κ2Q(t) − γ3H(t) − (δ2 + µ)H(t),

(4.1)

and system (4.1) can be reformulated as

Y′(t) ⩽
( F(t)
q(m)

− V(t)
)
Y(t), ∀t ⩾ t(m), (4.2)

with Y(t) = (E(t), I(t),Q(t),H(t)). In the limit as t approaches infinity, Y(t) tends to zero, signifying
the eventual extinction of the disease. Using ([12], Theorem 2), it follows that H∗ achieves global
asymptotic stability (GAS) due to its GAS behavior within the disease-free subspaceHs. □

5. Persistence of the infective compartments

In this subsection, we employ the methodology introduced by [12] to showcase the persistence of
infective compartments within the system (2.1) when R0 > 1.
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Theorem 6. If R0 > 1, the dynamical system described by (2.1) displays persistent behavior regarding
the variables E, I, Q, and H.

Proof. Given the persistence of the sum E + I + Q, we can establish the persistence of each infectious
variable E, I, and Q, ultimately resulting in the persistence of variable H. Let ε be a positive value
such that lim inft→+∞

(
E + I + Q

)
⩾ m. Consequently, for large values of t, it can be deduced that

E ⩾ m
3 − I−Q. Obtaining expressions for I′ and Q′ from the equations in (2.1), we derive the following

inequalities:

I′(t) ≥ ν1
m
3
− ν1Q(t) − (ν1 + γ1 + κ1 + δ1 + µ)I(t),

Q′(t) ≥ ν2
m
3
− ν2I(t) − (ν2 + κ2 + γ2 + µ)Q(t).

Consequently, we can infer that

I(t) ≥
ν1m

3(ν1 + γ1 + κ1 + δ1 + µ)
C κi(m),

Q(t) ≥
ν2m

3(ν2 + κ2 + γ2 + µ)
C κq(m).

(5.1)

Upon substituting the inequality (5.1) into the equation for H′ in (2.1), we derive the inequality

H′(t) ≥ κ1κi(m) + κ2κq(m) − (γ3 + δ2 + µ)H(t),

from which we deduce

H(t) ≥
κ1κi(m) + κ2κq(m)
γ3 + δ2 + µ

C κh(m).

Define η(m) B max{ S ∗+(1−α1)V∗1+(1−α2)V∗2
S ∗−4m+(1−α1)(V∗1−4m)+(1−α2)(V∗2−4m) }. For sufficiently large t ≥ t(m), from the equations

of (2.1), we have

E′(t) ≥ β(t)(τeE(t) + I(t) + τ(ε1Q(t) + ε2H(t)))
1
η(m)

− (ν1 + ν2 + µ)E(t),

I′(t) ≥ ν1E(t) − γ1I(t) − κ1I(t) − (δ1 + µ)I(t),
Q′(t) ≥ ν2E(t) − κ2Q(t) − γ2Q(t) − µQ(t),
H′(t) ≥ κ1I(t) + κ2Q(t) − γ3H(t) − (δ2 + µ)H(t).

(5.2)

The system (5.2) can be expressed as

Ỹ′(t) ≥
( F(t)
η(m)

− V(t)
)
Ỹ(t), ∀t ⩾ t(m), (5.3)

with Ỹ(t) =
(
Ẽ(t), Ĩ(t), Q̃(t), H̃(t)

)
. Therefore, the assumptions of ([12], Theorem 4) are satisfied,

establishing the persistence of the system (2.1) with respect to E, I, Q, and H. □
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6. Existence of positive periodic solutions

Define

U B Ψ,

U0 B {(S ,V1,V2, E, I,Q,H,R) ∈ U : E > 0, I > 0, Q > 0, H > 0} ,

and

∂U0 B U \U0 = {(S ,V1,V2, E, I,Q,H,R) ∈ U : E = 0 or I = 0 or Q = 0 or H = 0} .

Consider the Poincaré map Q : R8
+ → R

8
+ associated with (2.1). Then, for q0 ∈ R8

+, the map is given
by Q(q0) = u(ω, q0), where u(t, q0) represents the unique solution of (2.1) with the initial condition
q0 ∈ U.

Lemma 7. For R0 > 1, there exists χ > 0 such that, for any X(0) ∈ U0 defined in (2.2) with ∥X(0) −
D0∥ ⩽ χ, the following holds:

lim sup
m→∞

d (Qm(X(0)),D0) ⩾ χ.

Proof. Given R0 > 1, as indicated by Theorem 3, we ascertain ρ(ΨF−V(ω)) > 1. Thus, it is possible to
choose a sufficiently small ζ > 0 to ensure ρ(ΨF−V−Pζ (ω)) > 1. The matrix function Pζ(t), sized 4 × 4,
is defined by

Pζ(t) =


τec(t) c(t) τϵ1c(t) τϵ2c(t)

0 0 0 0
0 0 0 0
0 0 0 0

 ,
where c(t) = β(t)(ζ + (1 − α1)ζ + (1 − α2)ζ).

In what follows, we claim
lim sup

m→∞
d (Qm(X(0)),D0) ⩾ χ. (6.1)

Assume, for the sake of contradiction, that equation (6.1) is false. Then, there exists X(0) ∈ U0 such
that

lim sup
m→∞

d (Qm(X(0)),D0) < χ. (6.2)

For simplicity, let us suppose that

d (Qm(X(0)),D0) < χ, ∀m ≥ 0.

Owing to the continuous dependency of the solutions on the initial values, we obtain

∥u(s,Qm(X(0)) − u(s,D0)∥ < ζ, ∀m ≥ 0, s ∈ [0, ω] .

Let t ⩾ 0 be expressed as t = mω + s, where s ∈ [0, ω) and m =
[ t
ω

]
, representing the largest integer

less than or equal to t
ω

. Consequently, we can derive

∥u (t, X(0)) − u (t,D0) ∥ = ∥u (s,Qm(X(0))) − u(s,D0)∥ < ζ,
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for all t ⩾ 0. This inequality implies S ∗ − ζ ≤ S (t) ≤ S ∗ + ζ, V∗1 − ζ ≤ V1(t) ≤ V∗1 + ζ, V∗2 − ζ ≤ V2(t) ≤
V∗2 + ζ, 0 ≤ E(t) ≤ ζ, 0 ≤ I(t) ≤ ζ, 0 ≤ Q(t) ≤ ζ, and 0 ≤ H(t) ≤ ζ. Given that ∥X(0) − D0∥ ⩽ χ, we
can derive the following:

E′(t) ≥ β(t)
(
τeE(t) + I(t) + τ(ε1Q(t) + ε2H(t))

)
b(ζ) − (ν1 + ν2 + µ)E(t),

I′(t) ≥ ν1E(t) − γ1I(t) − κ1I(t) − (δ1 + µ)I(t),
Q′(t) ≥ ν2E(t) − κ2Q(t) − γ2Q(t) − µQ(t),
H′(t) ≥ κ1I(t) + κ2Q(t) − γ3H(t) − (δ2 + µ)H(t),

where b(ζ) = S ∗−ζ+(1−α1)(V∗1−ζ)+(1−α2)(V∗2−ζ)
N∗ . To aid our analysis, we consider the following linear system

E′(t) = β(t)
(
τeE(t) + I(t) + τ(ε1Q(t) + ε2H(t))

)
b(ζ) − (ν1 + ν2 + µ)E(t),

I′(t) = ν1E(t) − γ1I(t) − κ1I(t) − (δ1 + µ)I(t),
Q′(t) = ν2E(t) − κ2Q(t) − γ2Q(t) − µQ(t),
H′(t) = κ1I(t) + κ2Q(t) − γ3H(t) − (δ2 + µ)H(t).

(6.3)

According to [35, Lemma 2.1], we can establish the existence of a positive, ω-periodic function
p(t), making (E(t), I(t),Q(t),H(t)) = eξt p(t) a solution to (6.3), where ξ = 1

ω
ln ρ(ΨF−V+Pζ (ω)) > 0.

Given that R0 > 1 and ρ(ΨF−V−Pζ (ω)) > 1, it follows that if (E(0), I(t),Q(0),H(0)) > (0, 0, 0, 0), then
(E(t), I(t),Q(t),H(t)) → ∞ as t → ∞. Applying the comparison principle [28, Theorem B.1], we
deduce E(0) > 0, I(0) > 0, Q(0) > 0, H(0) > 0, limt→∞ E(t) = ∞, limt→∞ I(t) = ∞, limt→∞ Q(t) = ∞,
and limt→∞ H(t) = ∞. However, this contradicts conditions E(t) < ζ, I(t) < ζ, Q(t) < ζ, H(t) < ζ, and
Eq (6.2). Consequently, Eq (6.1) holds true, and this concludes the proof. □

Theorem 8. For R0 > 1, there exists at least one positive periodic solution to system (2.1).

Proof. To establish the uniform persistence of Q with respect to (U0, ∂U0), we can
apply [36, Theorem 3.1.1]. This, in turn, implies the uniform persistence of the solution to (2.1) with
respect to (U0, ∂U0). To begin, let us establish that U0 and ∂U0 are positively invariant with respect
to the system (2.1). For X(0) ∈ U0, solving (2.1) for all t > 0, we obtain

S (t) = e
∫ t

0 −(λ(s)+θ+µ) ds

[
S (0) + Λ

∫ t

0
e
∫ s

0 (λ(r)+θ+µ) dr ds
]
> 0, (6.4)

V1(t) = e
∫ t

0 −((1−α1)λ(s)+σ1+µ) ds

[
V1(0) + θ

∫ t

0
S (r)e

∫ r
0 ((1−α1)λ(s)+σ1+µ) ds dr

]
> 0, (6.5)

V2(t) = e
∫ t

0 −((1−α2)λ(s)+σ2+µ) ds

[
V2(0) + σ1

∫ t

0
V1(r)e

∫ r
0 ((1−α2)λ(s)+σ2+µ) ds dr

]
> 0, (6.6)

E(t) = e−(ν1+ν2+µ)t
[
E(0) +

∫ t

0
a(s)λ(s)e(ν1+ν2+µ)s ds

]
> 0, (6.7)

I(t) = e−(γ1+κ1+δ1+µ)t
[
I(0) + ν1

∫ t

0
E(s)e(γ1+κ1+δ1+µ)s ds

]
> 0, (6.8)
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Q(t) = e−(γ2+κ2+µ)t
[
Q(0) + ν2

∫ t

0
E(s)e(γ2+κ2+µ)s ds

]
> 0, (6.9)

H(t) = e−(γ3+δ2+µ)t
[
H(0) +

∫ t

0
(κ1I(s) + κ2Q(s))e(γ3+δ2+µ)s ds

]
> 0, (6.10)

R(t) = e−µt
[
R(0) +

∫ t

0
(γ1I(s) + γ2Q(s) + γ3H(s) + σ2V2(s))eµs ds

]
> 0, (6.11)

where a(t) = S (t) + (1 − α1)V1(t) + (1 − α2)V2(t). Therefore,U0 is confirmed as a positively invariant
set. Furthermore, considering the positive invariance of U and the fact that ∂U0 is relatively closed
withinU, we conclude that ∂U0 is also positively invariant. Furthermore, according to Lemma 1, it is
established that the system (2.1) is point dissipative.

Let M∂ be defined as the set of {X(0) ∈ ∂U0 : Qm(X(0)) ∈ ∂U0, ∀m ⩾ 0} .We aim to establish that

M∂ =
{(

S (0),V1(0),V2(0), E(0), I(0),Q(0),H(0),R(0)
)

: S > 0,V1 > 0,V2 > 0,R > 0
}
.

It is evident that M∂ includes the set
{(

S (0),V1(0),V2(0), E(0), I(0),Q(0),H(0),R(0)
)

: S > 0,V1 >

0,V2 > 0,R > 0
}
. To complete the proof, we need to show that M∂ ⊂

{(
S ,V1,V2, 0, 0, 0, 0,R

)
: S >

0,V1 > 0,V2 > 0,R > 0
}
, for any initial condition X(0) ∈ ∂U0, E(nω) = 0 or I(nω) = 0 or Q(nω) = 0

or H(nω) = 0, for all n ⩾ 0.
Suppose, for the sake of contradiction, that there exists an integer n1 ⩾ 0 such that E(n1ω) > 0

and I(n1ω) > 0. Substituting t = n1ω for the initial time t = 0 into (6.4)–(6.11), we obtain S (t) > 0,
V1(t) > 0, V2(t) > 0, E(t) > 0, I(t) > 0, Q(t) > 0, H(t) > 0, and R(t) > 0. However, this contradicts the
positive invariance of ∂U0.

Establishing weak uniform persistence with respect to (U0, ∂U0) is ensured by Lemma 7. The
presence of a global attractor for Q is guaranteed by Lemma 1. This implies that D0 serves as an
isolated invariant set withinU and W s(D0) ∩U0 = ∅. All solutions within M∂ converge to D0, and it
is evident thatD0 is acyclic in M∂. Applying [36, Theorem 1.3.1 and Remark 1.3.1], we can therefore
conclude that Q exhibits uniform (strong) persistence with respect to (U0, ∂U0). Consequently, there
exists an ε > 0 such that

lim inf
t→∞

(
E(t), I(t),Q(t),H(t)

)T ⩾
(
ε, ε, ε, ε

)T

for all X(0) ∈ U0. Invoking [36, Theorem 1.3.6], we determine the existence of a fixed point X̄(0) ∈
U0 for Q. Consequently, system (2.1) has at least one periodic solution u(t, X̄(0)), where X̄(0) =
(S̄ (0), V̄1(0), V̄2(0), Ē(0), Ī(0), Q̄(0), H̄(0), R̄(0)) ∈ U0. To establish that S̄ (0) is positive, consider the
scenario where S̄ (0) = 0. In this case, it is inferred that S̄ (0) > 0 for all t > 0. However, by exploiting
the periodicity of the solution, a contradiction arises with S̄ (0) = S̄ (nω) = 0. □

7. Model calibration and sensitivity analysis

In order to verify and strengthen our analytical results, we apply our seasonal compartmental
mathematical model to real measles data from two Asian countries. Measles, an infectious disease,
presents substantial public health and economic challenges throughout the world. Despite the
limitations of testing, quarantine, and isolation measures it has been effective in controlling the spread
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of diseases [37, 38]. These measures play a crucial role in reducing the risk of infection and
preventing the future prevalence of the disease. Vaccination is essential for the management of
infectious diseases, but many vaccines are imperfect, with partial protective effects and trade-offs
between transmission and recovery [37, 38]. The efficacy of a vaccine and the population turnover
rate play crucial roles in disease eradication. The results of vaccination games depend on factors such
as the dynamics of disease transmission, the cost of infection, and the efficacy of the vaccine. It is
important to consider the imperfections of vaccines in disease models, especially for diseases with
high basic reproduction numbers.

Within this section, our focus turns to investigating the spread of measles as a case study in two
different countries: Saudi Arabia from August 2018 to August 2021 and Pakistan from January 2019
to December 2021, as documented by the World Health Organization (WHO) [39], using our
established model. The simulation results presented aim to illustrate the performance of our model
with periodic parameters in capturing seasonal fluctuation data. With reference to [7, 17, 40–42], we
assume that the transmission rate β(t) follows a time-periodic pattern with a period of 12 months. This
is mathematically expressed as β(t) = β0 ·

(
a + b sin

(
c + 2πt

12

))
. Here, a and b function as adjustable

parameters, c denotes the amplitude of the forcing, and β0 signifies the baseline value of the
time-dependent contact rate.

7.1. Parameters estimation and curve fitting to measles data from Saudi Arabia and Pakistan

The World Bank report on Saudi Arabia [43] in 2021 indicates a total population of 36, 408, 820 with
a life expectancy at birth of 77 years. This results in a monthly birth rate of approximately Λ = µ×N =
39, 403, where µ is determined as 1/(12 × 77). Similarly, World Bank data for Pakistan [44] reveals
a total population of 231, 402, 117 in 2021, with a life expectancy at birth of 66 years. Applying the
same calculation, the estimated monthly human birth population in Pakistan is approximately 292, 174,
with µ calculated as 1/(12× 66). A single administration of the MMR (Measles, Mumps, and Rubella)
vaccine demonstrates an efficacy of around 93% in preventing measles, while two doses of the vaccine
exhibits an efficacy of approximately 97%, as reported by both the WHO [45] and the Centers for
Disease Control and Prevention (CDC) [46]. Consequently, the assumed values for the efficacy of
the vaccine are denoted as α1 = 0.93 for a single dose and α1 = 0.97 for two doses. Applying
Latin hypercube sampling alongside the least squares method, we aim to estimate the parameters of
the model (2.1) to obtain the optimal fit with the given data. This sampling technique allows for the
simultaneous evaluation of variance in multiple parameter values, as outlined in [34].

Fitting our model (2.1) to confirmed measles cases in Saudi Arabia from August 2018 to
August 2021 and in Pakistan from January 2019 to December 2021 allowed us to obtain estimates for
the parameters of the measles model. Although certain parameter values were drawn from existing
literature to inform our initial estimates, the remaining parameters were determined through the
process of fitting the model to the observed data.

Figure 2 presents the fit of the model with data on measles (cumulative cases and new cases) from
Saudi Arabia between 2018 and 2021, showing a reasonably good fit and a high goodness of fit
R2 = 0.95961. Using the method established in [32], we numerically estimated the current basic
reproduction number as R0 ≈ 0.585887 < 1, signifying the extinction of the disease in Saudi Arabia.
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Figure 2. Best-fitting results of model (2.1) to the data from Saudi Arabia for newly infected
cases (left) and cumulative infected cases (right) between 2018 and 2021, using parameters
from Table 2 (Saudi Arabia).

Table 2. Parameters for model (2.1) providing the best fit.

Parameters Values Values Units Sources
Pakistan Saudi Arabia

Λ 292174 39403 Persons Month−1 [44, 47]
µ 0.00126263 0.00108225 Month−1 [44, 47]
β0 0.476 0.484 Person−1 Month−1 Fitted
a 1.14 2.36 – Fitted
b 1.99 6.78 – Fitted
c 8.88 4.82 – Fitted
τe 0 0 Month−1 Assumed
τ 0.841 0.469 Month−1 Fitted
α1 0.93 0.93 – [45, 46]
α2 0.97 0.97 – [45, 46]
ϵ1 0.743 0.816 – Fitted
ϵ2 0.699 0.611 – Fitted
σ1, σ2 0.047, 0.028 0.047, 0.028 Month−1 [48]
θ 0.000154 0.000154 Month−1 Fitted
ν1 0.308 0.268 Month−1 [37, 38]
ν2 0.352 0.264 Month−1 [37, 38]
κ1 0.2 0.226 Month−1 Fitted
κ2 0.252 0.22 Month−1 Fitted
γ1 0.1 0.29 Month−1 [37, 38]
γ2 0.3 0.518 Month−1 [37, 38]
γ3 0.1 0.344 Month−1 [37, 38]
δ1, δ2 0.0365, 0.0465 0.0365, 0.0465 Month−1 [49]
R0 4.05938 0.585887 – Estimated

On the contrary, Figure 3 shows the fit of the model with Pakistan’s measles data between 2019
and 2021, also showing a reasonably good fit and a high goodness of fit R2 = 0.972413, indicating its
ability to capture key patterns of incidence of measles epidemics during 2019-2021. Once again, we
estimate R0 ≈ 4.05938 > 1, which reveals the persistence of the disease in Pakistan. This demonstrates
that our model (2.1) is capable of reproducing the two types of outcomes observed in the measles
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epidemic in Asia.
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Figure 3. Best-fitting results of model (2.1) to the data from Pakistan for cumulative infected
cases (left) and newly infected cases (right) between 2019 and 2021, using parameters from
Table 2 (Pakistan).

7.2. Sensitivity analysis of the time–average reproduction number

Performing a sensitivity analysis on the basic reproductive number R0, our aim is to quantify the
variations in the parameters of the model given in Eq (2.1). This analysis helps identify parameters that
significantly influence both the basic reproduction number and disease transmission dynamics. Given
that our main focus lies in determining the basic reproduction number (R0) of the periodic model (2.1),
which lacks an explicit expression for R0 defined as the spectral radius of a linear operator, we will
employ the following remark to derive a formula for the time–average reproduction number (⟨R0⟩) of
the associated nonautonomous system (see [32] for more details).

Remark 9. In accordance with the notation provided in [32], the integral average of a continuous
function f (t), which exhibits periodicity with a period of ω, can be defined as ⟨ f ⟩ B 1

ω

∫ ω
0

f (t) dt.

By applying the findings derived from the study conducted by [50], we obtain

⟨F⟩ =


τe⟨β⟩L∗ ⟨β⟩L∗ τϵ1⟨β⟩L∗ τϵ2⟨β⟩L∗

0 0 0 0
0 0 0 0
0 0 0 0

 ,
and

V =


ν1 + ν2 + µ 0 0 0
−ν1 γ1 + κ1 + δ1 + µ 0 0
−ν2 0 γ2 + κ2 + µ 0
0 −κ1 −κ2 γ3 + δ2 + µ

 ,
where L∗ = S ∗+(1−α1)V∗1+(1−α2)V∗2

N∗ . Hence, we get

⟨R0⟩ = ρ(⟨F⟩V−1) = ⟨RE⟩ + ⟨RI⟩ + ⟨RQ⟩ + ⟨RH⟩, (7.1)

where

⟨RE⟩ =
⟨β⟩τeL∗

µ + ν1 + ν2
, ⟨RI⟩ =

⟨β⟩ν1L∗

(γ1 + δ1 + κ1 + µ)(µ + ν1 + ν2)
, ⟨RQ⟩ =

⟨β⟩ϵ1ν2τL∗

(γ2 + κ2 + µ)(µ + ν1 + ν2)
,
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⟨RH⟩ =
⟨β⟩ϵ2τL∗

(γ3 + δ2 + µ)(µ + ν1 + ν2)

(
κ1ν1

γ1 + δ1 + κ1 + µ
+

κ2ν2

γ2 + κ2 + µ

)
.

The use of sensitivity indices is a common practice in sensitivity analysis, as elucidated in [51].
The normalized forward sensitivity index for a variable concerning a parameter is determined by
calculating the ratio between the relative change in the variable and the relative change in the
parameter. Specifically, the normalized forward sensitivity index of ⟨R0⟩ with respect to a parameter x
is defined as

Υ⟨R0⟩
x =

x
⟨R0⟩

×
∂⟨R0⟩

∂x
.

We conducted a sensitivity analysis for the time-averaged reproduction number ⟨R0⟩, as defined in
Eq (7.1). Our investigation, as depicted in Figure 4, reveals that ⟨R0⟩ exhibits heightened sensitivity to
variations in the infection rate (⟨β⟩), relative transmissibility (τ and τe), and recovery rates (γ1 and γ3).
Turning our attention to Figure 5, we present the sensitivity indices for ⟨RE⟩, ⟨RI⟩, ⟨RQ⟩, and ⟨RH⟩.
This visualization allows for a comprehensive understanding of the factors that influence these specific
reproduction numbers, providing a nuanced perspective on their sensitivities to parameters such as
infection rate, relative transmissibility, and recovery rates.
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Figure 4. Sensitivity analysis for ⟨R0⟩.
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(b) Sensitivity Analysis for ⟨RI⟩.
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(c) Sensitivity Analysis for ⟨RQ⟩.
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(d) Sensitivity Analysis for ⟨RH⟩.

Figure 5. Sensitivity analysis for ⟨RE⟩, ⟨RI⟩, ⟨RQ⟩, and ⟨RH⟩.
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By setting the time-varying transmission rate to a constant value, β(t) = β0, one can derive a formula
for the basic reproduction number of the autonomous version of system (2.1). Referring to (7.1), we
obtain

Ra
0 =

β0τeL∗

µ + ν1 + ν2
+

β0ν1L∗

(γ1 + δ1 + κ1 + µ)(µ + ν1 + ν2)
+

β0ϵ1ν2τL∗

(γ2 + κ2 + µ)(µ + ν1 + ν2)
,

β0ϵ2τL∗

(γ3 + δ2 + µ)(µ + ν1 + ν2)

(
κ1ν1

γ1 + δ1 + κ1 + µ
+

κ2ν2

γ2 + κ2 + µ

)
.

Figure 6 depicts the curves of the basic reproduction number Ra
0 of the autonomous version of

system (2.1), the time-averaged reproduction number ⟨R0⟩ and the the basic reproduction number R0

plotted in relation to certain parameters of the system (2.1). Specifically, these parameters include
the average transmission rate (⟨β⟩), relative transmissibility (τ and τe), quarantine rate for exposed
individuals (ν2), recovery rate for infectious individuals (γ1), and vaccine coverage rate (θ). This visual
representation of the curve in relation to these system parameters improves our understanding of how
they collectively influence the potential for disease transmission.
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Figure 6. The curves of the basic reproduction number Ra
0 of the autonomous model, the

time-averaged reproduction number ⟨R0⟩, and the basic reproduction number R0 are plotted
with respect to some of the system (2.1) parameters, namely, β0, τ, τe, ν2, γ1, and θ.

The calculations show that Ra
0 > ⟨R0⟩ ≥ R0, suggesting that Ra

0 and ⟨R0⟩ overestimate the risk of
disease transmission. It is worth noting that several papers have addressed the issue of underestimation
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and overestimation of the average basic reproduction number. For instance, it was demonstrated in [11,
17,25] that R0 > [R0], whereas in [26], the authors provided an example where R0 < [R0]. More details
can also be found in [11, 52].

8. Numerical simulations

This section is dedicated to presenting numerical simulations. The aim is to both illustrate and
validate the theoretical findings discussed earlier. Through these simulations, we provide visual
evidence that demonstrates the alignment between our time-periodic model and the observed seasonal
fluctuations.

8.1. Extinction and persistence

It is clear from the exposition in Section 4 until Section 6 that the parameter R0 plays a significant
role in determining whether the disease will persist in the population, as elucidated by Theorems 5
and 8. Theorem 8 asserts that if R0 > 1, the dynamical system (2.1) possesses a positive ω-periodic
solution. To show the persistence of the disease and the existence of the periodic solution, we set the
parameter values as follows: a = 0.9, β0 = 0.312, b = 8.6, c = 1.7, α1 = 0.93, α2 = 0.5, γ1 = 0.1,
γ2 = 0.3, γ3 = 0.1, δ1 = 0.0365, δ2 = 0.0465, ϵ1 = 0.523, ϵ2 = 0.474, θ = 0.000154, κ1 = 0.231,
κ2 = 0.203, ν1 = 0.166, ν2 = 0.178, σ1 = 0.047, σ2 = 0.028, τe = 0.556, and τ = 0.523. To
further elaborate on the profound implications of this result, Figures 7–9 offer vivid illustrations of the
long-term behavior and the enduring presence of measles, along with the existence of periodic positive
solutions when R0 ≈ 1.12776 > 1. Consequently, disease compartments not only persist, but also
evolve into an endemic state within the population, characterized by recurring annual outbreaks.

Figures 10 and 11 provide visual representations that effectively corroborate the theoretical findings.
These findings show that the disease-free equilibrium D0 demonstrates global asymptotic stability
when R0 = 0.474236 < 1. As a result, it can be inferred that the disease can be eliminated if R0 < 1.
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Figure 7. Persistence of measles when R0 = 1.12776 > 1.
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Figure 8. The existence of positive periodic solutions when R0 = 1.12776 > 1.

Figure 9. The existence of positive periodic solutions when R0 = 1.12776 > 1.
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Figure 10. Extinction of measles when β0 = 0.131 and R0 = 0.474236 < 1.
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Figure 11. Global asymptotic stability ofD0 when β0 = 0.131 and R0 = 0.474236 < 1.

8.2. Examining the impact of imperfect quarantine and isolation

Imperfect quarantine and isolation can significantly impact the spread of measles. It is crucial to
acknowledge that the effects of quarantine and isolation can vary based on the specific characteristics
of the disease and the population studied. In this study, we investigate the influence of imperfect
quarantine and isolation on the spread of measles in Pakistan, using parameter values fitted to the
measles data presented in Table 2.

To predict and estimate the impact of quarantine and isolation on future measles outbreaks in
Pakistan, simulations were started using parameters fitted up to month 35, with subsequent
adjustments. Different values of the quarantine efficacy modification parameter, ϵ1, are illustrated in
Figure 12, while the isolation efficacy modification parameter, ϵ2, is shown in Figure 13. The results
indicate that the imperfect implementation of quarantine and isolation, particularly when ϵ2 = 1 = ϵ2,
may lead to a substantial increase in the number of measles infectious populations. On the contrary,
the perfect implementation of quarantine with ϵ1 = 0 decreases the number of infectious individuals
without causing extinction. Perfect isolation, observed when ϵ2 = 0, leads to a significant decrease in
the number of infectious individuals, leading to extinction. These findings underscore the importance
of implementing perfect quarantine and isolation measures.
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Figure 12. Variations in the infectious population under different values of the quarantine
efficacy modification parameter, ϵ1, using the parameter values listed in Table 2 (Pakistan).
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Figure 13. Variations in the infectious population under different values of the isolation
efficacy modification parameter, ϵ2, using the parameter values listed in Table 2 (Pakistan).

8.3. Examining the impact of imperfect vaccination

The impact of incomplete first- and second-dose vaccination on measles is a significant concern for
public health. Incomplete coverage, suboptimal vaccine efficacy, and deviations from recommended
dose schedules can undermine the effectiveness of vaccination efforts. As seen in Figure 14, when the
vaccination coverage rate (θ) improves, the impact of the measles epidemic decreases. This can be a
challenge to achieve in countries like Pakistan.
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Figure 14. Variations in the infectious population under different values of the vaccine
coverage rate, θ, using the parameter values listed in Table 2 (Pakistan).

While the effectiveness of a vaccine is crucial in managing the spread of diseases, its impact can
vary depending on the basic reproduction number of the disease. Diseases with lower basic
reproduction numbers may show minimal differences in outcomes between perfect and imperfect
vaccines. In contrast, diseases with higher basic reproduction numbers, such as measles, pose greater
challenges when faced with an imperfect vaccine. The presence of imperfections in vaccine efficacy
can cause increased difficulties in achieving effective disease control measures.

To address the challenge of measles control, the government could prioritize improving the efficacy
of vaccines (α1 and α2), as illustrated in Figures 15 and 16. At the same time, it is crucial to ensure
accessibility for individuals in poverty. In particular, achieving a high coverage rate (θ) for the vaccine,
coupled with elevated efficacy rates (α1 and α2), proves paramount. A higher efficacy rate plays a
crucial role in decreasing the number of infectious cases, highlighting its importance in alleviating the
impact of the measles epidemic.
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Figure 15. Variations in the infectious population under different values of the first dose
vaccine efficacy parameter, α1, using the parameter values listed in Table 2 (Pakistan).
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Figure 16. Variations in the infectious population under different values of the second dose
vaccine efficacy parameter, α2, using the parameter values listed in Table 2 (Pakistan).

9. Discussion

This study delves into the intricacies of a nonautonomous mathematical model designed to
elucidate the transmission dynamics of infectious diseases over time. By incorporating a seasonal
transmission parameter and imperfections in quarantine, isolation, and vaccination strategies, the
model builds on previous works such as [17, 19] to explore threshold dynamics that govern disease
persistence or elimination. Through a comprehensive analysis of the basic reproduction number (R0),
the research establishes its pivotal role as a threshold parameter, delineating the conditions under
which the disease-free equilibrium is globally stable or the disease persists. The complexity of the
model lies in its integration of time-dependent coefficients and the interplay of quarantine, isolation,
and vaccination measures, allowing a nuanced understanding of the dynamics of the disease. This
study differs from [17], which employed a mathematical model with a seasonal transmission
parameter and a double-dose vaccination to examine the spread of measles over time, assuming that
only the first dose of the vaccine was imperfect. In contrast, our study assumes imperfections in both
the first and second doses of the vaccine. Additionally, we incorporate the impact of imperfect
interventions, specifically quarantine, isolation, and vaccination.

Using real-world measles data from two Asian countries, our seasonal compartmental
mathematical model validates and supports our analytical results. The research focuses on examining
measles dynamics in Saudi Arabia and Pakistan, incorporating essential factors such as vaccination,
time-varying transmission rates, and imperfections in control strategies. By calibrating the model
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with real-world data, the dynamics of the disease are successfully captured. Key parameters such as
vaccine efficacy (α1 and α2) and time-dependent transmission rates were crucial to accurately
reproduce observed patterns and estimate critical parameters. Numerical simulations highlighted the
importance of the basic reproduction number (R0) in determining the persistence of the disease.
Measles demonstrated persistence when R0 > 1 and tended toward extinction when R0 < 1.
Sensitivity analysis emphasized the importance of effective quarantine, isolation, and vaccination
strategies in the control of infectious populations. Our sensitivity analysis of the time-averaged
reproduction number, ⟨R0⟩, in a periodic model revealed a significant sensitivity to key parameters
such as infection rate, relative transmissibility, and recovery rates. The formula derived for ⟨R0⟩

allowed for a comprehensive understanding of its contributions from exposed, infectious, quarantined,
and hospitalized individuals. Visualizations of the sensitivity indices provided information on the
influence of specific parameters on different reproduction numbers, helping to prioritize interventions
as shown in Figures 4 and 5. The graphical representation of the curves of the basic reproduction
number Ra

0 of the autonomous model, the time-averaged reproduction number ⟨R0⟩, and the basic
reproduction number R0 in relation to the system parameters further improved our understanding of
its impact on the potential for disease transmission as shown in Figure 6. In general, this analysis
provides valuable information to inform interventions and guide future research in infectious disease
modeling.

The numerical simulations conducted in this study serve to validate and illustrate the theoretical
insights discussed earlier on the dynamics of measles in a population. The visual evidence presented
in Figures 7, 9, 10, and 11 aligns with the theoretical findings, emphasizing the pivotal role of the
basic reproduction number (R0) in determining the long-term behavior of measles. When R0

exceeds 1, the simulations demonstrate the persistence of measles in the population, accompanied by
the existence of periodic positive solutions. In contrast, when R0 falls below 1, the disease-free
equilibrium is globally asymptotically stable, leading to the extinction of measles. These results
provide valuable information on the conditions under which measles can establish and persist within a
population or face elimination. Examining imperfect quarantine, isolation, and vaccination further
illuminates the practical implications for disease control. Simulations indicate that the effective
implementation of quarantine and isolation measures is crucial to curtailing the spread of measles,
highlighting the sensitivity of the model to variations in the parameters of efficacy modification.
Furthermore, the impact of imperfect vaccination, considering coverage rates and vaccine efficacy,
underscores the importance of these factors in mitigating the burden of measles. These results are
important for understanding the variations in the infectious population due to the
overestimation/underestimation of the disease transmission risk provided by the basic reproduction
numbers of the autonomous system as shown in Figure 6.

Looking forward, future research should explore the long-term impact of vaccination campaigns
in dynamic epidemiological landscapes. Incorporating real-time data and refining models based on
ongoing observations, considering the time delay between the first and second doses, as well as the time
to arrive in the recovered state after receiving the second dose of the vaccine, will improve predictive
accuracy. Addressing uncertainties in parameter estimates and evaluating the effectiveness of new
vaccines are crucial for future research.
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