Research article

A realistic model for the periodic dynamics of the hand-foot-and-mouth disease

  • Received: 23 August 2021 Accepted: 10 November 2021 Published: 17 November 2021
  • MSC : 93A30, 97Mxx

  • In this paper, an SEIQRS model with a periodic vaccination strategy is studied for the dynamics of the Hand-Foot-and-Mouth Disease (HFMD). This model incorporates a seasonal variation in the disease transmission rate $ \beta (t) $. Our model has a unique disease free periodic solution (DFPS). The basic reproductive number $ R_{0} $ and its lower and upper bounds, $ R_{0}^{inf} $ and $ R_{0}^{sup} $ respectively, are defined. We show that the DFPS is globally asymptotically stable when $ R_{0}^{sup} < 1 $ and unstable if $ R_{0}^{inf} > 1 $. Computer simulations of our model have been conducted using a novel periodic function of the contact rate. This novel function imitates the seasonality in the observed, multi-peaks pattern, data. Clear and good matching between real data and the obtained simulation results are shown. The obtained simulation results give a good prediction and possible control of the disease dynamics.

    Citation: I. A. Moneim, G. A. Mosa. A realistic model for the periodic dynamics of the hand-foot-and-mouth disease[J]. AIMS Mathematics, 2022, 7(2): 2585-2601. doi: 10.3934/math.2022145

    Related Papers:

  • In this paper, an SEIQRS model with a periodic vaccination strategy is studied for the dynamics of the Hand-Foot-and-Mouth Disease (HFMD). This model incorporates a seasonal variation in the disease transmission rate $ \beta (t) $. Our model has a unique disease free periodic solution (DFPS). The basic reproductive number $ R_{0} $ and its lower and upper bounds, $ R_{0}^{inf} $ and $ R_{0}^{sup} $ respectively, are defined. We show that the DFPS is globally asymptotically stable when $ R_{0}^{sup} < 1 $ and unstable if $ R_{0}^{inf} > 1 $. Computer simulations of our model have been conducted using a novel periodic function of the contact rate. This novel function imitates the seasonality in the observed, multi-peaks pattern, data. Clear and good matching between real data and the obtained simulation results are shown. The obtained simulation results give a good prediction and possible control of the disease dynamics.



    加载中


    [1] Hand, Foot, and Mouth Disease (HFMD). Available from: https://www.cdc.gov/hand-foot-mouth/index.html.
    [2] J. Wang, T. Hu, D. Sun, S. Ding, M. J. Carr, W. Xing, et al., Epidemiological characteristics of hand, foot, and mouth disease in Shandong, China, 2009-2016, Sci Rep 7, 8900 (2017). doi: 10.1038/s41598-017-09196-z.
    [3] K. Kaminska, G. Martinetti, R. Lucchini, G. Kaya, C. Mainetti, Coxsackievirus A6 and hand, foot, and mouth disease: three case reports of familial child-to-immunocompetent adult transmission and a literature review, Case Rep. Dermatol., 5 (2013), 203–209. doi: 10.1159/000354533. doi: 10.1159/000354533
    [4] Q. Y. Mao, Y. Wang, L. Bian, M. Xu, Zh. Liang, EV71 vaccine, a new tool to control outbreaks of hand, foot and mouth disease (HFMD), Expert Rev. Vacc., 15 (2016), 599–606. doi: 10.1586/14760584.2016.1138862. doi: 10.1586/14760584.2016.1138862
    [5] B. Yang, F. Liu, Q. Liao, P. Wu, Zh. Chang, J. Huang, et al., Epidemiology of hand, foot and mouth disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine, Euro Surveill., 22 (2017), 1–10. doi: 10.2807/1560-7917.ES.2017.22.50.16-00824. doi: 10.2807/1560-7917.ES.2017.22.50.16-00824
    [6] F. Gou, X. Liu, J. He, D. Liu, Y. Cheng, H. Liu, et al., Different responses of weather factors on hand, foot and mouth disease in three different climate areas of Gansu, China, BMC Infect. Dis., 18 (2018), 15. doi: 10.1186/s12879-017-2860-4. doi: 10.1186/s12879-017-2860-4
    [7] J. Jia, F. Kong, X. Xin, J. Liang, H. Xin, L. Dong, et al., Epidemiological Characteristics of Hand, Foot, and Mouth Disease Outbreaks in Qingdao, 2009-2018, Iran J Public Health, 50 (2021), 999–1008. doi:10.18502/ijph.v50i5.6117. doi: 10.18502/ijph.v50i5.6117
    [8] P. Wang, H. Zhao, F. You, H. Zhou, W. B. Goggins, Seasonal modeling of hand, foot, and mouth disease as a function of meteorological variations in Chongqing, China Int. J. Biometeorol, 61 (2017), 1411–1419. doi: 10.1007/s00484-017-1318-0. doi: 10.1007/s00484-017-1318-0
    [9] C. X. Dai, Z. Wang, W. M. Wang, Y. Q. Li, K. F. Wang, Epidemics and underlying factors of multiple-peak pattern on hand, foot and mouth disease in Wenzhou, China, Math. Biosci. Eng., 16 (2019), 2168–2188. doi: 10.3934/mbe.2019106. doi: 10.3934/mbe.2019106
    [10] Y. L. Hii, J. Rocklov, N. Ng, Short term effects of weather on hand, foot and mouth disease, PLoS ONE, 6 (2011), 1–6. doi: 10.1371/journal.pone.0016796. doi: 10.1371/journal.pone.0016796
    [11] W. Dong, X. Li, P. Yang, H. Liao, X. Wang, Q. Wang, The effects of weather factors on hand, foot and mouth disease in Beijing, Sci. Rep., 6 (2016), 1–9. doi: 10.1038/srep19247. doi: 10.1038/srep19247
    [12] L. Sun, H. Lin, J. Lin, J. He, A. Deng, M. Kang, et al., Evaluating the transmission routes of hand, foot, and mouth disease in Guangdong, China, Am. J. Infect. Control., 44 (2016), e13–e14. doi: 10.1016/j.ajic.2015.04.202. doi: 10.1016/j.ajic.2015.04.202
    [13] Y. H. Xie, V. Chongsuvivatwong, Y. Tan, Zh. Zh. Tang, V. Sornsrivichai, E. B. McNeil, Important roles of public playgrounds in the transmission of hand, foot, and mouth disease, Epidemiol. Infect., 143 (2015), 1432–1441. doi: 10.1017/S0950268814002301. doi: 10.1017/S0950268814002301
    [14] Y. C. Wang, F. C. Sung, Modeling the infections for Enteroviruses in Taiwan, Institute of Environmental Health, China Medical University College of Public Health, Taipei, 2004.
    [15] F. C. S. Tiing, J. Labadin, A simple deterministic model for the spread of hand, foot and mouth disease (HFMD) in Sarawak, 2008 Second Asia International Conference on Modelling and Simulation, (2008), 947–952. doi: 10.1109/AMS.2008.139.
    [16] N. Roy, Mathematical modeling of hand-foot-mouth disease: quarantine as a control measure, Int. J. Adv. Sci. Eng. Technol. Res., 1 (2012), 1–11.
    [17] Y. Ma, M. Liu, Q. Hou, J. Zhao, Modelling seasonal HFMD with the recessive infection in Shandong, China, Math. Biosci. Eng., 10 (2013), 1159–1171. doi: 10.3934/mbe.2013.10.1159. doi: 10.3934/mbe.2013.10.1159
    [18] J. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear Dynam., 64 (2011), 89–95. doi: 10.1007/s11071-010-9848-6. doi: 10.1007/s11071-010-9848-6
    [19] J. Y. Yang, Y. Chen, F. Q. Zhang, Stability analysis and optimal control of a hand-foot-mouth disease (HFMD) model, J. Appl. Math. Comput., 41 (2013), 99–117. doi: 10.1007/s12190-012-0597-1. doi: 10.1007/s12190-012-0597-1
    [20] G. P. Samanta, Analysis of a delayed hand-foot-mouth disease epidemic model with pulse vaccination, Syst. Sci. Control Eng., 2 (2014), 61–73. doi: 10.1080/21642583.2014.880827. doi: 10.1080/21642583.2014.880827
    [21] R. Viriyapong, S. Wichaino, Mathematical modeling of hand, foot and mouth disease in the Northern Thailand, Far East J. Math. Sci., 100 (2016), 805–820. doi: 10.17654/MS100050805. doi: 10.17654/MS100050805
    [22] S. Sharma, G. P. Samanta, Analysis of a hand-foot-mouth disease model, Int. J. Biomath., 10 (2017), 1750016. doi: 10.1142/S1793524517500164. doi: 10.1142/S1793524517500164
    [23] Y. Zhu, B. Xu, X. Lian, W. Lin, Z. Zhou, W. Wang, A hand-foot-and-mouth disease model with periodic transmission rate in Wenzhou, China, Abstr. Appl. Anal., 2014 (2014), 1–11. doi: 10.1155/2014/234509. doi: 10.1155/2014/234509
    [24] J. Ma, Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci. Eng., 3 (2006), 161–172. doi: 10.3934/mbe.2006.3.161. doi: 10.3934/mbe.2006.3.161
    [25] I. A. Moneim, D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of epidemics with seasonally varying contact rate, Math. Biosci. Eng., 2 (2005), 591–611. doi: 10.3934/mbe.2005.2.591. doi: 10.3934/mbe.2005.2.591
    [26] J. Zhang, Z. Jin, G. Q. Sun, X. D. Sun, S. Ruan, Modeling seasonal rabies epidemics in China, Bull. Math. Biol., 74 (2012), 1226–1251. doi: 10.1007/s11538-012-9720-6. doi: 10.1007/s11538-012-9720-6
    [27] J. Wang, Y. Xiao, R. A. Cheke, Modelling the effects of contaminated environments in mainland China on seasonal HFMD infections and the potential benefit of a pulse vaccination strategy, Discrete Cont. Dyn-B, 24 (2019), 5849–5870. doi: 10.3934/dcdsb.2019109. doi: 10.3934/dcdsb.2019109
    [28] Z. Ding, Y. Li, Y. Cai, Y. Dong, W. Wang, Optimal Control Strategies of HFMD in Wenzhou, China, Complexity, 2020 (2020), 1–5. doi: 10.1155/2020/5902698. doi: 10.1155/2020/5902698
    [29] I. A. Moneim, An SEIR Model with Infectious Latent and aPeriodic Vaccination Strategy, Math. Model. Anal., 26 (2021), 236–252. doi: 10.3846/mma.2021.12945. doi: 10.3846/mma.2021.12945
    [30] I. A. Moneim, Modeling and simulation of the spread of H1N1 flu with periodic vaccination, Int. J. Biomath., 9 (2016), 1650003. doi: 10.1142/S1793524516500030. doi: 10.1142/S1793524516500030
    [31] I. A. Moneim, D. Greenhalgh, Threshold and stability results for an SIRSepidemic model with a general periodic vaccination strategy, J. Biol. Syst., 13 (2005), 131–150. doi: 10.1142/S0218339005001446. doi: 10.1142/S0218339005001446
    [32] T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations, Academic Press, New York, 1985.
    [33] W. Wang, XQ. Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, J. Dyn. Diff. Equat., 20 (2008), 699–717. doi: 10.1007/s10884-008-9111-8. doi: 10.1007/s10884-008-9111-8
    [34] N. Bacaer, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J. Math. Biol., 53 (2006), 421–436. doi: 10.1007/s00285-006-0015-0. doi: 10.1007/s00285-006-0015-0
    [35] D. Greenhalgh, I. A. Moneim, SIRS epidemic model and simulations using different types of seasonal contact rate, Systems Analysis Modelling Simulation, 43 (2003), 573–600. doi: 10.1080/023929021000008813. doi: 10.1080/023929021000008813
    [36] I. A. Moneim, Seasonally varying epidemics with and without latent period: a comparative simulation study, Math. Med. Biol., 24 (2007), 1–15. doi:10.1093/imammb/dql023. doi: 10.1093/imammb/dql023
    [37] I. A. Moneim, H. A. Khalil1, Modelling and Simulation of the Spread of HBV Disease with Infectious Latent, Appl. Math., 6 (2015), 745–753. doi: 10.4236/am.2015.65070. doi: 10.4236/am.2015.65070
    [38] Y. Wang, J. Cao, Global dynamics of a network epidemic model for waterborne diseases spread, Appl. Math. Comput., 237 (2014), 474–488. doi: 10.1016/j.amc.2014.03.148. doi: 10.1016/j.amc.2014.03.148
    [39] R. Pastor Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), 925–979. doi: 10.1103/RevModPhys.87.925. doi: 10.1103/RevModPhys.87.925
    [40] Y. Wang, J. Cao, Final size of network epidemic models: properties and connections, Sci. China Inf. Sci., 64 (2021), 179201. doi: 10.1007/s11432-019-2656-2. doi: 10.1007/s11432-019-2656-2
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1788) PDF downloads(100) Cited by(0)

Article outline

Figures and Tables

Figures(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog