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Abstract: In this paper, an SEIQRS model with a periodic vaccination strategy is studied for the
dynamics of the Hand-Foot-and-Mouth Disease (HFMD). This model incorporates a seasonal variation
in the disease transmission rate β(t). Our model has a unique disease free periodic solution (DFPS).
The basic reproductive number R0 and its lower and upper bounds, Rin f

0 and Rsup
0 respectively, are

defined. We show that the DFPS is globally asymptotically stable when Rsup
0 < 1 and unstable if

Rin f
0 > 1. Computer simulations of our model have been conducted using a novel periodic function

of the contact rate. This novel function imitates the seasonality in the observed, multi-peaks pattern,
data. Clear and good matching between real data and the obtained simulation results are shown. The
obtained simulation results give a good prediction and possible control of the disease dynamics.
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1. Introduction

Hand-foot-and-mouth disease (HFMD) is a disease that mainly affects children younger than five
years of age. Symptoms start within three to six days of contact according to the Center for Disease
Control and Prevention (CDC), an initial fever and generalized malaise followed by painful sores in
the mouth that blister and ulcerate [1].

HFMD causes a major public health problem, especially in Asia. Although most cases of HFMD
are mild, there are some severe cases that may develop heart and lung failure and probably leads
to death [1–3]. In the last decade, many severe HFMD outbreaks have occurred in East Asia and
Southeast Asia. A vaccine for HFMD was approved and applied in China in 2016. However, several
HFMD outbreaks occurred recently [4, 5]. This guides the decision makers to focus more on effective
prevention and control strategies.

A distinct seasonal pattern in tropical and subtropical regions with more than two peaks may occur
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within a year [6–8]. Many research studies have confirmed that climatological changes in humidity and
temperature have an important effect on the incidence of HFMD despite the inconsistent results from
different studies [9–11]. Another factor that affects the variations in the number of HFMD incidences
is the opening and closing of the daycare centers or schools [12, 13].

Many previous efforts have been done to study the dynamics of HFMD. A number of these studies
used models without any vaccination. For example, [14] and [15] used an SIR model to analyze
the epidemic of HFMD in Taiwan and Malaysia respectively and they found that the disease spread
quite rapidly and the number of susceptible persons is the only controllable parameter. Moreover,
some studies for the dynamical behaviors of HFMD considered more complicated models including
SEIQR models with and without vaccination [16–23]. For example, Zhu [23] used a SEIQR with
sinusoidal periodic contact rate, to investigate the spread of seasonal HFMD in Wenzhou and he found
that HFMD becomes an endemic disease in Wenzhou. Some other previous studies [17, 18, 24–28]
used the sinusoidal function of period one year (β(t) = β0 + βsin(ωt + φ)) for simulating the seasonal
varying transmission rate. Unfortunately, they failed to simulate the one year multi-peaks pattern which
appeared in the reported data of HFMD.

However, our study focuses on analysing and simulating the effect of the above factors and clarify
their relations with the observed multi-peaks,(in a one year) pattern. We study an SEIQRS model
and consider these factors in the dynamics of HFMD. We try to determine the effect of the periodic
transmission and vaccination rates on the spread of HFMD.

In this paper, we formulate an SEIQRS model with seasonal contact rate and periodic vaccination
strategy. We find that this model has no disease free equilibrium point. But a disease free periodic
solution (DFPS) is possible for this model. The reproduction number R0 is derived. An upper bound
Rsup

0 and a lower bound Rin f
0 of the reproduction number R0 are derived as well. This DFPS is globally

asymptotically stable if Rsup
0 < 1 and unstable when Rin f

0 > 1.
In our simulation we use a novel form of periodic contact and vaccination rates with period one

year as follows:

β(t) =

{
β10 + β11e−β12(mod(t,52))2

0 < mod(t, 52) ≤ 26;
β20 + β21e−β22(mod(t,52)−26)2

26 < mod(t, 52) ≤ 52.

and

r(t) =

{
ρ10 + ρ11e−ρ12(mod(t,52))2

0 < mod(t, 52) ≤ 26;
ρ20 + ρ21e−ρ22(mod(t,52)−26)2

26 < mod(t, 52) ≤ 52.

We designed these functions to fit the multi-peaks pattern of the real data. Our new form of periodic
functions shows a nicer fitting with the real data, compared with the previous simulation results [23].
These more realistic simulations give a wider insight to the future of the spread of the HFMD. We
plot and compare our obtained simulation results with both previous works and real data. On the other
hand, our simulation results confirm our analytical results obtained in this paper.

2. The model

In the paper, we shall study a more realistic SEIQRS model with periodic vaccination and loss of
immunity. Periodic vaccination gives a more applicable realistic strategy to control the dynamics of
the disease.
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We assume that the population is mixed uniformly and homogeneously with a constant population
size A. The population number A is divided into five groups, S (t), E(t), I(t), Q(t), and R(t) which
represent the susceptible, exposed, infected, quarantined, and recovered individuals respectively.
Figure 1 illustrates the flowchart of the dynamics of the spread of HFMD. This figure describes the
flow of inputs/outputs into each of the five compartments of our model. A proportion of the
susceptible individuals who have received the vaccine move to the recovered group, the rest get
infected and join the latent period or died for any reason. on the other hand, there is a flux of
newborns entering the susceptible class. The latent population in their latency period do not show any
symptom. Some of the latent died naturally but after about 3 ∼ 7 days the latent individuals become
infectious. A part of the infectious people will be hospitalized for treatment and isolated then they get
recovered or died. Another proportion of those infectious moves to the recovery class, while some
have died. Finally, some of the recovered lose their immunity and join the susceptibles again, another
proportion died.

Figure 1. Flowchart of the dynamics of HFMD.

The model parameters are defined and listed as follows :

Parameter Definition
β(t) The annual periodic transmission rate
r(t) The time dependent annual periodic vaccination rate
c1 The progression rate of the recovered (by losing immunity).
1
c2

The average incubation period
c3 The quarantine rate
c4 The infectious recovery rate
c5 The quarantined recovery rate
ξ The natural birth and death rate

Note that, β(t) and r(t) are time dependent bounded seasonally varied functions with period one
year and all parameter values are non negative. Using our assumptions and following [9,18,19] we can
write our S EIQRS model as a set of five coupled non-linear ordinary differential equations as follows:

dS (t)
dt

= ξA − β(t)I(t)S (t) − (ξ + r(t)) S (t) + c1R(t), (2.1)
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dE(t)
dt

= β(t)I(t)S (t) − (ξ + c2) E(t), (2.2)

dI(t)
dt

= c2E(t) − (ξ + c3 + c4) I(t), (2.3)

dQ(t)
dt

= c3I(t) − (ξ + c5) Q(t), (2.4)

and
dR(t)

dt
= r(t)S (t) + c4I(t) + c5Q(t) − (ξ + c1) R(t), (2.5)

with S (t) + E(t) + I(t) + Q(t) + R(t) = A.

Equations (2.1)–(2.5) represent a nonlinear first order system of differential equations that describes
the spread of HFMD disease.

The disease transmission rate β(t) and the vaccination rate r(t) are nonconstant, positive, and
bounded periodic functions. These periodic functions β(t) and r(t) are designed to imitate the seasonal
variation in the reported cases for HFMD infectious disease due to climatological changes or opening
and closing schools [12, 13].

As we assume that, the vaccination rate r(t) is a nonconstant function therefore, the system (2.1)–
(2.5) could not have any equilibrium point. On the other hand, a disease free periodic solution (DFPS)
is still possible when E(t) = I(t) = Q(t) = 0.

Define the region D ⊆ R5 where,

D = {(S , E, I,Q,R) ∈ [0, A]5 : S + E + I + Q + R = A}.

The five dimensional set D, is obviously positively invariant, as the right-hand side of the system
(2.1)–(2.5) is differentiable.

3. Disease free periodic solution (DFPS)

In our model, the vaccination rate r(t) is a periodic function, this force the system (2.1)–(2.5) to
have no equilibrium point. On the other hand we expect that, there is a disease free periodic solution
(DFPS) for the system (2.1)–(2.5) at (Ŝ (t), 0, 0, 0, R̂(t)). Similar to [29–31] this DFPS is given by

dS
dt

= Aξ − (ξ + r(t)) S (t) + c1R(t)

= A(ξ + c1) − (ξ + r(t) + c1)S .
(3.1)

with the initial condition S (t0) ∈ R+, integrating equation (3.1) we get,

S (t) =

S (t0) + A(ξ + c1)
∫ t
t0

e

(
(ξ+c1)(κ−t0)+

∫ κ
t0

r(τ)dτ
)
dκ


e

(
(ξ+c1)(t−t0)−

∫ t
t0

r(τ)dτ
) (3.2)

So,
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S (t0+(n+1)T ) =

S (t0+nT )+A(ξ+c1)
∫ t0+T
t0

e

(
(ξ+c1)(κ−t0)+

∫ κ
t0

r(τ)dτ
)
dκ


e

(
(ξ+c1)T+

∫ t0+T
t0

r(τ)dτ
) (3.3)

Equation (3.3) represents a recurrence relation between the susceptibles at times (t0 + nT ; n =

1, 2, ....). Now define the mapping G such that

G(S n) = S n+1

where S n = S (t0 + nT ). If S n1 , S n2 we have that,

|G(S n1) −G(S n2)| ≤ |S n1 − S n2| exp(−ξT ).

Therefore, the mapping G is a contraction mapping and it has a unique fixed point S ∗ [32]. Moreover
S ∗; is depending on t0; such that,

S ∗(t0) =
A(ξ + c1)

∫ t0+T

t0
e
(
(ξ+c1)(κ−t0)+

∫ κ
t0

r(τ)dτ
)
dκ

e
(
(ξ+c1)T+

∫ t0+T
t0

r(τ)dτ
)
− 1

. (3.4)

Hence, S ∗(t0 + T ) = S ∗(t0). So, S ∗ is a periodic function of t. From (3.4), we have that, S ∗(t0) is
continuously differentiable with respect to t0. On the other hand, we have

∫ t

t0
e
(
(ξ+c1)(κ−t0)+

∫ κ
t0

r(τ)dτ
)
dκ 6

∫ t

t0
e
(
(ξ+c1)(κ−t0)+

∫ κ
t0

r(τ)dτ
)
(ξ + c1 + r(κ))dκ

ξ + c1 + rmin

=
e(ξ+c1)(t−t0)+

∫ t
t0

r(τ)dτ
− 1

ξ + c1 + rmin
,

(3.5)

where rmin = mint∈[0,T ] r(t) . Substituting (3.4) and (3.5) into (3.2), we obtain

S ∗(t) 6

A(ξ+c1)
ξ+c1+rmin

(
1 + (e(ξ+c1)(t−t0)+

∫ t
t0

(r(τ))dτ
− 1)

)
e(ξ+c1)(t−t0)+

∫ t
t0

r(τ)dτ

=
A(ξ + c1)

ξ + c1 + rmin
< A

Hence, Ŝ (t) = S ∗(t), Ê(t) = Î(t) = Q̂(t) = 0, and R̂(t) = R∗(t) = A − S ∗(t) is a disease-free periodic
solution of the system (2.1)–(2.5).

4. The basic reproduction number

The basic reproduction number R0 is defined as the average number of new cases produced by a
single infected individual entered into a pure susceptible population. Now, we can drive a form of
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the basic reproduction number R0 of the system (2.1)–(2.5) using a similar scenario to [33, 34]. By
linearizing the system (2.1)–(2.5) around (Ŝ (t), 0, 0, 0, R̂(t)), we find that:

dE(t)
dt

= β(t)I(t)Ŝ (t) − (ξ + c2) E(t), (4.1)

dI(t)
dt

= c2E(t) − (ξ + c3 + c4) I(t), (4.2)

and
dQ(t)

dt
= c3I(t) − (ξ + c5) Q(t), (4.3)

which can be written in the matrix form as:

dx
dt

= (F(t) − V)x

where,

x =


E
I
Q

 , F(t) =


0 β(t)Ŝ (t) 0
0 0 0
0 0 0

 and V =


c2 + ξ 0 0
−c2 c3 + c4 + ξ 0
0 −c3 c5 + ξ


Now, let y(t) = β(t)Ŝ (t) . Note that y(t) is a nonzero positive periodic function with period T , so

y(t) = 1
T

∫ T

0
β(τ)Ŝ (τ)dτ is average of Y(t) over the time T . Now, arguing similar to [33], we can obtain

the value of the basic reproduction number R0 as follows:

R0 =
1
T

∫ T

0

c2β(τ)Ŝ (τ)dτ
(ξ + c2)(ξ + c3 + c4)

=
c2y(t)

(ξ + c2)(ξ + c3 + c4)

(4.4)

where Ŝ (t) is a periodic solution of period T and it is the only disease free solution of the system of
differential equations (2.1)–(2.5).

Now, we can define Rsup
0 as an upper bound and Rin f

0 a lower one for the value R0 respectively where,

Rsup
0 =

c2

(ξ + c2)(ξ + c3 + c4)
sup

t∈[0,T ]

∫ T

0

(ξ + c2)β(t − φ)Ŝ (t − φ)e−(ξ+c2)φdφ
1 − e−(ξ+c2)T (4.5)

and

Rin f
0 =

c2

(ξ + c2)(ξ + c3 + c4)
inf

t∈[0,T ]

∫ T

0

(ξ + c2)β(t − φ)Ŝ (t − φ)e−(ξ+c2)φdφ
1 − e−(ξ+c2)T (4.6)

5. Stability of the (DFPS)

In this section, we extend the results obtained by [29–31]. We show first that if Rsup
0 < 1 the DFPS

(Ŝ (t), 0, 0, 0, R̂(t)) is globally asymptotically stable. In another section we shall prove that the DFPS is
unstable when Rin f

0 > 1.
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5.1. Stability of the DFPS when Rsup
0 < 1

Now, we show that the DFPS is globally asymptotically stable when Rsup
0 < 1. We use an argument

similar to that used in the proof of Theorem 1 [31] with some modifications to fit our SEIQRS model.

Lemma 1.
lim sup

t→∞
(S (t) − Ŝ (t)) ≤ 0.

Proof
From Equation (2.1)

dS
dt

= ξA − β(t)S I − (ξ + r(t))S + c1R,

≤ A(ξ + c1) − (ξ + r(t) + c1)S .

As (Ŝ (t), 0, 0, 0, R̂(t)) is a solution of the system (2.1)–(2.5) when E(t) = I(t) = Q(t) = 0 then
arguing similar to [31] we deduce that,

lim sup
t→∞

(S (t) − Ŝ (t)) ≤ 0,

and the proof of Lemma 1 is completed.

Now we go directly to the first main result which is the global stability of the disease free solution
when Rsup

0 < 1. Theorem 1 proves that DFPS is globally asymptotically stable (GAS) when Rsup
0 < 1.

Following Theorem 1 in [31], we give proof of the next Theorem.

Theorem 1. The DFPS, (Ŝ , 0, 0, 0, R̂) is GAS if Rsup
0 < 1,

Proof
From Equations (2.3) and (2.4) we have

dI(t)
dt

= c2E(t) − (ξ + c3 + c4) I(t),

and

dQ(t)
dt

= c3I(t) − (ξ + c5) Q(t),

arguing similar to [31] and [35] we can easily find that

I∞ ≤
c2E∞

(ξ + c3 + c4)
.

and

Q∞ ≤
c3I∞

(ξ + c5)
≤

c3c2E∞

(ξ + c5) (ξ + c3 + c4)
.

The idea behind this proof is simple as that, from Lemma 1 we have that, given ε > 0 there exists t1

such that S (t) ≤ Ŝ (t) + ε , I(t) ≤ I∞ + ε and Q(t) ≤ Q∞ + ε for all t ≥ t1.
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Using Eq (2.2), E(t) can be bounded above, then we use this upper bound to show that E∞ = 0. Now
similar to Theorem 1 [31], suppose that E∞ > 0. By integrating Eq (2.2) we have that for t ≥ t0 > t1,

E(t) ≤ E(t0)e−(ξ+c2)(t−t0) + (I∞ + ε)e−(ξ+c2)t
∫ t

t0
β(η)(Ŝ (η) + ε)e(ξ+c2)ηdη. (5.1)

Now, recall that, y(η) = β(η)Ŝ (η). Therefore,

e−(ξ+c2)t
∫ t

t0
y(η)e(ξ+c2)ηdη =

∫ t−t0

0
y(t − u)e−(ξ+c2)udu (5.2)

Suppose that (k + 1)T ≥ t − t0 ≥ kT, then we have,∫ t−t0

0
y(t − u)e−(ξ+c2)udu =

∫ T

0
y(t − u)e−(ξ+c2)udu

(
1 + e−(ξ+c2)T + e−(µ+σ)2T + · · ·

+e−(ξ+c2)(k−1)T
)

+

∫ t−t0

kT
y(t − u)e−(ξ+c2)udu

≤

∫ T

0
y(t − u)e−(ξ+c2)udu

(
1 + e−(ξ+c2)T + e−(ξ+c2)2T + · · ·

+e−(ξ+c2)kT
)

<

∫ T

0

y(t − ζ)e−(ξ+c2)ζdζ
1 − e−(ξ+c2)T

(5.3)

So, for t ≥ t0 we find that

E(t) ≤ E (t0) e−(ξ+c2)(t−t0) +
I∞ + ε

ξ + c2

∫ T

0

(ξ + c2)β(t − ζ)(Ŝ (t − ζ) + ε)e−(ξ+c2)ζdζ
1 − e−(ξ+c2)T

≤ Ae−(ξ+c2)(t−t0) +
I∞ + ε

ξ + c2

(
sup

t∈[0,T ]

∫ T

0

(ξ + c2)y(t − ζ)e−(ξ+c2)ζdζ
1 − e−(ξ+c2)T

+ε

∫ T

0

(ξ + c2)β(t − ζ)e−(ξ+c2)ζdζ
1 − e−(ξ+c2)T

) (5.4)

Choose t2 > t0 large enough so that for t ≥ t2; Ae−(ξ+c2)(t−t0) < ε: Then for t ≥ t2,

E(t) ≤ Rsup
0 E∞ + ε

(
1 + sup

t∈[0,T ]

∫ T

0

y(t − ζ)e−(ξ+c2)ζdζ
1 − e−(ξ+c2)T +

(
I∞ + ε

ξ + c2

)
βmax

)
, (5.5)

where βmax = supu∈[0,T ]β(u). Now choose ε small enough so that,

ε

(
1 + sup

t∈[0,T ]

∫ T

0

y(t − ζ)e−(ξ+c2)ζdζ
1 − e−(ξ+c2)T +

(
I∞ + ε

ξ + c2

)
βmax

)
< ψE∞, (5.6)

where Rsup
0 + ψ < 1 and ψ > 0. Hence for t ≥ t2, we find that E(t) ≤

(
Rsup

0 + ψ
)

E∞. Thus, 0 ≤ E∞ ≤(
Rsup

0 + ψ
)

E∞. then , E∞ = 0. Hence also I∞ = 0 this leads to Q∞ = 0 Moreover E(t) → 0, I(t) → 0
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and Q(t)→ 0 as t → ∞. Finally we go to show that (S (t) − Ŝ (t))→ 0 and (R(t) − R̂(t))→ 0 as t → ∞.
As R̂(t) is a solution of Eq (2.5) when E(t) = I(t) = Q(t) = 0, we find that,

d(R − R̂)
dt

= r(t)(S − Ŝ ) + c4I + c5Q − (ξ + c1)(R − R̂). (5.7)

Given ε1 > 0 using Lemma 1, there exists t3 such that E(t) + I(t) + Q(t) ≤ ε1 and S (t) ≤ S (t) + ε1

for all t ≥ t3. So for t ≥ t3

d(R − R)
dt

≤ (rmax + c4 + c5) ε1 − (ξ + c1)(R − R̂)

where rmax = supu∈[0,T ] r(u). By integrating this inequality, we have that

(R(t) − R̂(t)) ≤ (R(t3) − R̂(t3))e−(ξ+c1)(t−t3) + ε1

(
rmax + c4 + c5

ξ + c1

) (
1 − e−(ξ+c1)(t−t3)

)
≤ Ae−(ξ+c1)(t−t3) + ε1

(
rmax + c4 + c5

ξ + c1

)
Now we can show that, given ε2 > 0, there exists t4 such that R(t) − R̂(t) ≤ ε2 for t ≥ t4. Therefore,

S (t) = A−R(t)−Q(t)− I(t)−E(t) ≥ A−R̂(t)−ε1−ε2 for t ≥ t4. From Lemma 1,we find that S (t)→ Ŝ (t)
as t → ∞. Since R(t) = A − S (t) − I(t) − Q(t) − E(t), then we must have, R(t) → A − Ŝ (t) = R̂(t) at
t → ∞. This completes the proof of Theorem 1. Thus if Rsup

0 < 1, then DFPS is GAS.

5.2. Instability of the DFPS when Rin f
0 > 1

Here Rin f
0 is a lower bound for R0. We use an argument consisting of a mixture of those used

in [30], [36], and [37]. So, we can show that if Rin f
0 > 1 the (DFPS) is not stable and the disease will

fire up.
The first case when the infection is not present initially, I(0) = E(0) = Q(0) = 0 and S + R = A,

then by Theorem 1, the system (2.1)–(2.5) tends to the DFPS as t → ∞ whatever the value of R0. The
second case is that, all of E(0) > 0, I(0) > 0, and Q(0) > 0 we shall prove that DFPS is unstable by
using an argument similar to [30] and [31].

Theorem 2. If Rin f
0 > 1, then the DFPS is unstable.

Proof
In this case, we suppose that the DFPS is stable when Rin f

0 > 1 and we get a contradiction with
our assumption. So if (S , E, I,Q,R) starts near (Ŝ , 0, 0, 0, R̂) we have that (S , E, I,Q,R) must stay
near (Ŝ , 0, 0, 0, R̂) for the time being large. Therefore (S , E, I,Q,R) → (Ŝ , 0, 0, 0, R̂) as t → ∞. So,
given ε = (1/2)(1 − (1/Rin f

0 )) > 0 there exists t1 > 0 such that |S (t) − Ŝ | ≤ εŜ , |E(t) − 0| ≤ ε,

|I(t)−0| ≤ ε,|Q(t)−0| ≤ ε and |R(t)− R̂| ≤ ε for all t ≥ t1. Choose ε1 > 0 such that (Rin f
0 +1)(1−ε1) > 2.

From Eq (4.6) recall Rin f
0 ,

Rin f
0 =

c2

(ξ + c2)(ξ + c3 + c4)
inf

t∈[0,T ]

∫ T

0

(ξ + c2)y(t − φ)e−(ξ+c2)φdφ
1 − e−(ξ+c2)T ,
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Therefore, there exists an integer k such that

c2

(ξ + c2)(ξ + c3 + c4)
inf

t∈[0,T ]

∫ T

0
(ξ + c2)y(t − φ)e−(ξ+c2)φdφ

(
1 + e−(ξ+c2)T + e−(ξ+c2)2T +

· · · + e−(ξ+c2)(k−1)T
)
> Rin f

0 (1 − ε1).
(5.8)

Choose t2 ≥ t1 such that, E(t2) ≥ E(0)e−(ξ+c2)t2 > 0, I(t2) ≥ I(0)e−(ξ+c3+c4)t2 > 0 and Q(t2) ≥
Q(0)e−(ξ+c5)t2 > 0 as E(0) > 0, I(0) > 0 and Q(0) > 0. Now define ε2 and η as follows:

0 < ε2 < min
{

1
2

I(t2)e−(ξ+c3+c4)kT ,
(ξ + c5)

2c3
Q(t2)e−(ξ+c5)kT ,

c2

2(ξ + c3 + c4)
E(t2)e−(ξ+c2)kT

}
,

η = inf
{
φ ≥ 0 : I(t2 + δ) ≥ ε2,Q(t2 + δ) ≥

c3

(ξ + c5)
ε2andE(t2 + δ) ≥

ξ + c3 + c4

c2
ε2, forδ ∈ [0, φ]

}
.

By continuity η > 0 and if η < ∞ then I(t2 + η) = ε2, Q(t2 + η) = (c3/(ξ + c5))ε2 or E(t2 + η) =

((ξ + c3 + c4)/c2)ε2. This leads to a contradiction.
Now from Eq (2.3) and by the definition of ε2 we find that,

I(t2 + η) = I(t2)e−(ξ+c3+c4)η + e−(ξ+c3+c4)(t2+η)
∫ t2+η

t2
c2E(χ)e(ξ+c3+c4)χdχ,

≥ I(t2)e−(ξ+c3+c4)η + ε2

(
1 − e−(ξ+c3+c4)η

)
> ε2,

similarly, from Eq (2.4) we find that,

Q(t2 + η) = Q(t2)e−(ξ+c5)η + e−(ξ+c5)(t2+η)
∫ t2+η

t2
c3I(χ)e(ξ+c5)χdχ,

≥ Q(t2)e−(ξ+c5)η + ε2

(
1 − e−(ξ+c5)η

)
>

c3

(ξ + c5)
ε2,

but on the other hand from Eq (2.2) we find that

E(t2 + η) ≥ E(t2)e−(ξ+c2)η + e−(ξ+c2)(t2+η)
∫ t2+η

t2
β(χ)S (χ)I(χ)e(ξ+c2)χdχ,

≥ E(t2)e−(ξ+c2)η + e−(ξ+c2)(t2+η)ε2(1 − ε)
∫ t2+η

t2
y(χ)e(ξ+c2)χdχ. (5.9)

Now

e−(ξ+c2)(t2+η)
∫ t2+η

t2
y(χ)e(ξ+c2)χdχ =

∫ t2+η

t2
y(χ)e−(ξ+c2)(t2+η−χ)dχ,

=

∫ η

0
y(t2 + η − φ)e−(ξ+c2)φdφ.
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If η ≤ kT then

E(t2 + η) ≥ E(t2)e−(ξ+c2)kT >
(ξ + c3 + c4)

c2
ε2.

If η ≥ kT then∫ η

0
y(t0 + η − φ)e−(ξ+c2)φ]dφ=

∫ T

0
y(t0 + η − φ)e−(ξ+c2)φdφ

(
1 + e−(ξ+c2)T + e−(ξ+c2)2T + · · ·

+e−(ξ+c2)(k−1)T
)

+

∫ η

kT
e−(ξ+c2)φdφ,

≥ inf
t∈[0,T ]

∫ T

0
y(t − φ)e−(ξ+c2)φdφ

(
1+e−(ξ+c2)T + e−(ξ+c2)2T + · · ·

+e−(ξ+c2)(k−1)T
)
,

>
ξ + c3 + c4

c2
Rin f

0 (1 − ε1), using Eq (5.8).

As Rin f
0 > 1 and ε =

(Rin f
0 −1)

2Rin f
0

> 0 then using Eq (5.9)

E(t2 + η) ≥ E(t2)e−(ξ+c2)η + ε2
1
2

 1

Rin f
0

+ 1

 ξ + c3 + c4

c2
Rin f

0 (1 − ε1),

= E(t2)e−(ξ+c2)η +
(ξ + c3 + c4)

2c2
ε2(Rin f

0 + 1)(1 − ε1),

>
(ξ + c3 + c4)

c2
ε2, as (Rin f

0 + 1)(1 − ε1) > 2.

Hence η < ∞ leads to a contradiction so η = ∞ and I(t2 + δ) ≥ ε2, Q(t2 + δ) ≥ (c3/(ξ + c5))ε2 and
E(t2 + δ) ≥ ((ξ + c3 + c4)/c2)ε2 for all δ ≥ 0. This contradicts the fact that the trajectory tends to the
DFPS. Hence the DFPS cannot be stable for Rin f

0 > 1, and the proof is completed.
These results prove that the disease free solution for our SEIQRS model represented by the system

(2.1)–(2.5) with a nonconstant periodic transmission and vaccination rates r(t) in [0,T ], is globally
asymptotically stable if Rsup

0 < 1 and not stable if Rin f
0 > 1. from these results we deduce that,

sup
t∈[0,T ]

∫ T

0

y(t − φ)e−(ξ+c2)φdφ
1 − e−(ξ+c2)T <

ξ + c3 + c4

c2
, (5.10)

is the sufficient condition to keep the DFPS globally asymptotically stable.
The obtained results, for our SEIQRS model with nonconstant periodic vaccination rate r(t), extend

the corresponding results obtained by [30], [31] , [37], and [35]. These results are original for an
SEIQRS model with periodicity in the transmission and vaccination rates.

6. Simulation results

Now we look numerically at the behavior of the system (2.1)–(2.5). The software package
Mathematica12 is used to solve our system of nonlinear ordinary differential equations (2.1)–(2.5).

AIMS Mathematics Volume 7, Issue 2, 2585–2601.



2596

Real data about HFMD in Egypt dose not available. So we use data taken from the district of
Wenzhou China (Table 1 [23]). We choose Wenzhou China as a subtropical area that is similar to the
climate of Egypt. Simulations are performed using parameters from the literature [23]. We compare
our simulation results with the reported data of HFMD in Wenzhou from March 2010, to December
2013. Also, we compare our results with the simulation results of [23].

The parameters estimated in [23] are used in our simulation to give a fair comparison with their
results. The parameters are set to the following values:

Parameter value
c1 0.015.
1
c2

0.571
c3 0.007177
c4 0.875
c5 0.4375
ξ 0.00642

As stated before our novel periodic transmission rate β(t) is designed to fit the yearly multi-peaks
pattern in the reported data. Recall β(t) as follows:

β(t) =

{
β10 + β11e−β12(mod(t,52))2

0 < mod(t, 52) ≤ 26;
β20 + β21e−β22(mod(t,52)−26)2

26 < mod(t, 52) ≤ 52; .

By using the least-square fitting of the numbers of I(t), we can estimate the values of βi j : i, j =

0, 1, 2.

Previous Simulation

Our simulation
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Figure 2. Plots the number of infected I(t), the
dotted curve is the previous numerical simulation
[23], the dashed curve is the simulation results of
our model and the solid one is the reported real data
from Wenzhou China during the period from 2010
to 2013 (Table 1 [23]), against time (t) in weeks
when R0 ≤ 1.
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Figure 3. Plots the Infected population I(t)
against time (t) in weeks for a long time (2000
weeks) , when R0 is very close to one in value, for
the same parameter set used in Figure (2).

Figure 2 shows that our simulation results are often closer to the real data than the results obtained
by [23]. Clear multiple peaks, within a year, are appeared in our simulation which gives a good fitting
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to the real data. These results show that our model is more realistic than [23]. In Figure 2 we use
the parameters’ values of the transmission periodic function which are estimated from the least square
fitting of I(t) during the period from 2010 to 2013, as follows: β10 = 0.64, β11 = 0.665, β12 =0.0035,
β20 = 0.63, β21 = 0.445, β22 = 0.0017.

Figure 3 shows that there is a decrease in the height of the peaks of the number of infected persons
I(t) over time. However, this solution has a one year multi-peaks similar to those of the reported real
data. Figure 3 predicts that the number of the new HFMD cases will fluctuate around a decreasing
level.

Previous Simulation

Our simulation

Real Data
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Figure 4. Plots the number of infected I(t), the
dotted curve is the previous numerical simulation
[23], the dashed curve is the simulation results of
our model and the solid one is the reported data
from Wenzhou China during the period from 2011
to 2012 (Table 1 [23]), against time (t) in weeks
when R0 > 1.
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Figure 5. Plots the Infected population I(t)
against time (t) in weeks, for 2000 weeks, when
R0 > 1 and for the same parameter set used in
Figure (4).

Figure 4 plots the number of infected against time in weeks when R0 > 1. This figure shows that our
simulation results are always very close to the reported data. Our simulation results give a more precise
fitting than the results of [23]. Our model produces a multi-peaks, in one period, solution while the
model in [23] has a mono peak carve. In Figure 4 the parameters of the transmission periodic function
are given estimated values from the least square fitting of I(t) from 2011 to 2012, as follows: β10 =

0.49, β11 = 0.94, β12 = 0.0031, β20 = 0.36, β21 = 0.70, β22 =0.00065.
Figure 5 shows that there is a stable endemic periodic solution of our model, with a period of one

year, when the basic reproductive number (R0 > 1). This means that the HFMD will take off and
becomes endemic when R0 is larger enough than one in value.

Now, when we apply the vaccination strategy of the form:

r(t) =

{
ρ10 + ρ11e−ρ12(mod(t,52))2

0 < mod(t, 52) ≤ 26;
ρ20 + ρ21e−ρ22(mod(t,52)−26)2

26 < mod(t, 52) ≤ 52; .

Where the parameters of the vaccination function r(t) are given the following values: ρ10 = 0.00098,
ρ11 = 0.00188, ρ12 = 0.0031, ρ20 = 0.00072, ρ21 = 0.0014, ρ22 = 0.00065. In this case, we find that the
susceptibles and the infected populations tend to the DFPS as shown in Figure 5.
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(a)
without vaccination
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Figure 6. Plots our approximate solution for (a) the infected population I(t) and (b) the
susceptibles respectively against the time (t) in weeks, when R0 > 1. The dotted carves are
without vaccination while soled ones are with vaccination

Figure 6 (a) shows that in the absence of vaccination the HFMD fire up when R0 > 1. While
applying our vaccination strategy forces the disease to die out and (b) show that without vaccination
the susceptible population stays high enough to provide a flow of new case which give the disease the
chance to persist in the population. On the other hand, applying our vaccination strategy forces the
susceptibles to be small enough to fluctuate close to the DFPS and keep R0 to be less than one.

7. Conclusions

We study an SEIQRS model for the dynamics of HFMD. Our model introducing a seasonality
in both the contact and vaccination rates. In section 1 we give a brief introduction to the dynamics
of HFMD as a public health problem. In section 2 we formulate our model and define the model
parameters. The exitance of the DFPS is proved in section 3 and the formula of the basic reproduction
number R0 is derived in section 4. We define an upper bound of Rsup

0 and a lower bound Rin f
0 in this

section as well. We use these lower and upper bounds to prove that, the disease free periodic solution
DFPS, is globally asymptotically stable when Rsup

0 < 1 and unstable if Rin f
0 > 1. Section 5 contains

the stability results. We use our novel form of periodic contact and vaccination rates during all of our
simulations in section 6. Previous works used a sinusoidal form of periodic transmission rate which
is failed to simulate the yearly multi-peaks pattern in the reported data. We claim that our suggested
transmission periodic function forces our model to have a multi-peaks pattern. This result gives our
model more realistic behaviours and produces more accurate simulation results. Our simulation results
are original for this kind of periodic functions.

Future work

In our study, the population is assumed to be homogeneously mixed and has a constant size. This
assumption is unrealistic, so in future work, one can use network epidemic models to simulate the fact
that, peoples have different chances to catch the disease [38–40]. Another future work is to study the
behaviour of the endemic solution when the reproduction number R0 > 1.

AIMS Mathematics Volume 7, Issue 2, 2585–2601.



2599

Acknowledgments

This project is funded by the Academy of Scientific Research and Technology (ASRT), Egypt,
Grant No(6739), (ASRT) is the 2nd affiliation of this research.

Conflict of interest

The authors declare that they have no competing interests.

References

1. Hand, Foot, and Mouth Disease (HFMD). Available from:
https://www.cdc.gov/hand-foot-mouth/index.html.

2. J. Wang, T. Hu, D. Sun, S. Ding, M. J. Carr, W. Xing, et al., Epidemiological characteristics
of hand, foot, and mouth disease in Shandong, China, 2009-2016, Sci Rep 7, 8900 (2017). doi:
10.1038/s41598-017-09196-z.

3. K. Kaminska, G. Martinetti, R. Lucchini, G. Kaya, C. Mainetti, Coxsackievirus A6 and hand, foot,
and mouth disease: three case reports of familial child-to-immunocompetent adult transmission
and a literature review, Case Rep. Dermatol., 5 (2013), 203–209. doi: 10.1159/000354533.

4. Q. Y. Mao, Y. Wang, L. Bian, M. Xu, Zh. Liang, EV71 vaccine, a new tool to control
outbreaks of hand, foot and mouth disease (HFMD), Expert Rev. Vacc., 15 (2016), 599–606. doi:
10.1586/14760584.2016.1138862.

5. B. Yang, F. Liu, Q. Liao, P. Wu, Zh. Chang, J. Huang, et al., Epidemiology of hand, foot and mouth
disease in China, 2008 to 2015 prior to the introduction of EV-A71 vaccine, Euro Surveill., 22
(2017), 1–10. doi: 10.2807/1560-7917.ES.2017.22.50.16-00824.

6. F. Gou, X. Liu, J. He, D. Liu, Y. Cheng, H. Liu, et al., Different responses of weather factors on
hand, foot and mouth disease in three different climate areas of Gansu, China, BMC Infect. Dis.,
18 (2018), 15. doi: 10.1186/s12879-017-2860-4.

7. J. Jia, F. Kong, X. Xin, J. Liang, H. Xin, L. Dong, et al., Epidemiological Characteristics of Hand,
Foot, and Mouth Disease Outbreaks in Qingdao, 2009-2018, Iran J Public Health, 50 (2021),
999–1008. doi:10.18502/ijph.v50i5.6117.

8. P. Wang, H. Zhao, F. You, H. Zhou, W. B. Goggins, Seasonal modeling of hand, foot, and mouth
disease as a function of meteorological variations in Chongqing, China Int. J. Biometeorol, 61
(2017), 1411–1419. doi: 10.1007/s00484-017-1318-0.

9. C. X. Dai, Z. Wang, W. M. Wang, Y. Q. Li, K. F. Wang, Epidemics and underlying factors of
multiple-peak pattern on hand, foot and mouth disease in Wenzhou, China, Math. Biosci. Eng., 16
(2019), 2168–2188. doi: 10.3934/mbe.2019106.

10. Y. L. Hii, J. Rocklov, N. Ng, Short term effects of weather on hand, foot and mouth disease, PLoS
ONE, 6 (2011), 1–6. doi: 10.1371/journal.pone.0016796.

11. W. Dong, X. Li, P. Yang, H. Liao, X. Wang, Q. Wang, The effects of weather factors on hand, foot
and mouth disease in Beijing, Sci. Rep., 6 (2016), 1–9. doi: 10.1038/srep19247.

AIMS Mathematics Volume 7, Issue 2, 2585–2601.

https://www.cdc.gov/hand-foot-mouth/index.html


2600

12. L. Sun, H. Lin, J. Lin, J. He, A. Deng, M. Kang, et al., Evaluating the transmission routes of hand,
foot, and mouth disease in Guangdong, China, Am. J. Infect. Control., 44 (2016), e13–e14. doi:
10.1016/j.ajic.2015.04.202.

13. Y. H. Xie, V. Chongsuvivatwong, Y. Tan, Zh. Zh. Tang, V. Sornsrivichai, E. B. McNeil, Important
roles of public playgrounds in the transmission of hand, foot, and mouth disease, Epidemiol. Infect.,
143 (2015), 1432–1441. doi: 10.1017/S0950268814002301.

14. Y. C. Wang, F. C. Sung, Modeling the infections for Enteroviruses in Taiwan, Institute of
Environmental Health, China Medical University College of Public Health, Taipei, 2004.

15. F. C. S. Tiing, J. Labadin, A simple deterministic model for the spread of hand, foot and mouth
disease (HFMD) in Sarawak, 2008 Second Asia International Conference on Modelling and
Simulation, (2008), 947–952. doi: 10.1109/AMS.2008.139.

16. N. Roy, Mathematical modeling of hand-foot-mouth disease: quarantine as a control measure, Int.
J. Adv. Sci. Eng. Technol. Res., 1 (2012), 1–11.

17. Y. Ma, M. Liu, Q. Hou, J. Zhao, Modelling seasonal HFMD with the recessive infection in
Shandong, China, Math. Biosci. Eng., 10 (2013), 1159–1171. doi: 10.3934/mbe.2013.10.1159.

18. J. Liu, Threshold dynamics for a HFMD epidemic model with periodic transmission rate, Nonlinear
Dynam., 64 (2011), 89–95. doi: 10.1007/s11071-010-9848-6.

19. J. Y. Yang, Y. Chen, F. Q. Zhang, Stability analysis and optimal control of a hand-foot-mouth
disease (HFMD) model, J. Appl. Math. Comput., 41 (2013), 99–117. doi: 10.1007/s12190-012-
0597-1.

20. G. P. Samanta, Analysis of a delayed hand-foot-mouth disease epidemic model with pulse
vaccination, Syst. Sci. Control Eng., 2 (2014), 61–73. doi: 10.1080/21642583.2014.880827.

21. R. Viriyapong, S. Wichaino, Mathematical modeling of hand, foot and mouth disease in the
Northern Thailand, Far East J. Math. Sci., 100 (2016), 805–820. doi: 10.17654/MS100050805.

22. S. Sharma, G. P. Samanta, Analysis of a hand-foot-mouth disease model, Int. J. Biomath., 10
(2017), 1750016. doi: 10.1142/S1793524517500164.

23. Y. Zhu, B. Xu, X. Lian, W. Lin, Z. Zhou, W. Wang, A hand-foot-and-mouth disease model
with periodic transmission rate in Wenzhou, China, Abstr. Appl. Anal., 2014 (2014), 1–11. doi:
10.1155/2014/234509.

24. J. Ma, Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Biosci.
Eng., 3 (2006), 161–172. doi: 10.3934/mbe.2006.3.161.

25. I. A. Moneim, D. Greenhalgh, Use of a periodic vaccination strategy to control the spread of
epidemics with seasonally varying contact rate, Math. Biosci. Eng., 2 (2005), 591–611. doi:
10.3934/mbe.2005.2.591.

26. J. Zhang, Z. Jin, G. Q. Sun, X. D. Sun, S. Ruan, Modeling seasonal rabies epidemics in China,
Bull. Math. Biol., 74 (2012), 1226–1251. doi: 10.1007/s11538-012-9720-6.

27. J. Wang, Y. Xiao, R. A. Cheke, Modelling the effects of contaminated environments in mainland
China on seasonal HFMD infections and the potential benefit of a pulse vaccination strategy,
Discrete Cont. Dyn-B, 24 (2019), 5849–5870. doi: 10.3934/dcdsb.2019109.

AIMS Mathematics Volume 7, Issue 2, 2585–2601.



2601

28. Z. Ding, Y. Li, Y. Cai, Y. Dong, W. Wang, Optimal Control Strategies of HFMD in Wenzhou,
China, Complexity, 2020 (2020), 1–5. doi: 10.1155/2020/5902698.

29. I. A. Moneim, An SEIR Model with Infectious Latent and aPeriodic Vaccination Strategy, Math.
Model. Anal., 26 (2021), 236–252. doi: 10.3846/mma.2021.12945.

30. I. A. Moneim, Modeling and simulation of the spread of H1N1 flu with periodic vaccination, Int.
J. Biomath., 9 (2016), 1650003. doi: 10.1142/S1793524516500030.

31. I. A. Moneim, D. Greenhalgh, Threshold and stability results for an SIRSepidemic model
with a general periodic vaccination strategy, J. Biol. Syst., 13 (2005), 131–150. doi:
10.1142/S0218339005001446.

32. T. A. Burton, Stability and periodic solutions of ordinary and functional differential equations,
Academic Press, New York, 1985.

33. W. Wang, XQ. Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic
Environments, J. Dyn. Diff. Equat., 20 (2008), 699–717. doi: 10.1007/s10884-008-9111-8.

34. N. Bacaer, S. Guernaoui, The epidemic threshold of vector-borne diseases with seasonality, J.
Math. Biol., 53 (2006), 421–436. doi: 10.1007/s00285-006-0015-0.

35. D. Greenhalgh, I. A. Moneim, SIRS epidemic model and simulations using different types
of seasonal contact rate, Systems Analysis Modelling Simulation, 43 (2003), 573–600. doi:
10.1080/023929021000008813.

36. I. A. Moneim, Seasonally varying epidemics with and without latent period: a comparative
simulation study, Math. Med. Biol., 24 (2007), 1–15. doi:10.1093/imammb/dql023.

37. I. A. Moneim, H. A. Khalil1, Modelling and Simulation of the Spread of HBV Disease with
Infectious Latent, Appl. Math., 6 (2015),745–753. doi: 10.4236/am.2015.65070.

38. Y. Wang, J. Cao, Global dynamics of a network epidemic model for waterborne diseases spread,
Appl. Math. Comput., 237 (2014), 474–488. doi: 10.1016/j.amc.2014.03.148.

39. R. Pastor Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex
networks, Rev. Mod. Phys., 87 (2015), 925–979. doi: 10.1103/RevModPhys.87.925.

40. Y. Wang, J. Cao, Final size of network epidemic models: properties and connections, Sci. China
Inf. Sci., 64 (2021), 179201. doi: 10.1007/s11432-019-2656-2.

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 7, Issue 2, 2585–2601.

http://creativecommons.org/licenses/by/4.0

	Introduction
	The model
	Disease free periodic solution (DFPS)
	The basic reproduction number
	Stability of the (DFPS)
	 Stability of the DFPS when R0sup<1
	Instability of the DFPS when  R0inf >1

	Simulation results
	Conclusions

