Research article Special Issues

Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number

  • Received: 22 August 2022 Revised: 09 November 2022 Accepted: 10 November 2022 Published: 29 November 2022
  • MSC : 03B52, 03E72

  • In this paper, the use of the Fermatean fuzzy number (FFN) in a significant research problem of disaster decision-making by defining operational laws and score function is demonstrated. Generally, decision control authorities need to brand suitable and sensible disaster decisions in the direct conceivable period as unfitting decisions may consequence in enormous financial dead and thoughtful communal costs. To certify that a disaster comeback can be made, professionally, we propose a new disaster decision-making (DDM) technique by the Fermatean fuzzy Schweizer-Sklar environment. First, the Fermatean fuzzy Schweizer-Sklar operators are employed by decision-makers to rapidly analyze their indefinite and vague assessment information on disaster choices. Then, the DDM technique based on the FFN is planned to identify highly devastating disaster choices and the best available choices. Finally, the proposed regret philosophy DDM technique is shown functional to choose the ideal retort explanation for a communal fitness disaster in Pakistan. The dominance and realism of the intended technique are further defensible through a relative study with additional DDM systems.

    Citation: Aliya Fahmi, Rehan Ahmed, Muhammad Aslam, Thabet Abdeljawad, Aziz Khan. Disaster decision-making with a mixing regret philosophy DDAS method in Fermatean fuzzy number[J]. AIMS Mathematics, 2023, 8(2): 3860-3884. doi: 10.3934/math.2023192

    Related Papers:

  • In this paper, the use of the Fermatean fuzzy number (FFN) in a significant research problem of disaster decision-making by defining operational laws and score function is demonstrated. Generally, decision control authorities need to brand suitable and sensible disaster decisions in the direct conceivable period as unfitting decisions may consequence in enormous financial dead and thoughtful communal costs. To certify that a disaster comeback can be made, professionally, we propose a new disaster decision-making (DDM) technique by the Fermatean fuzzy Schweizer-Sklar environment. First, the Fermatean fuzzy Schweizer-Sklar operators are employed by decision-makers to rapidly analyze their indefinite and vague assessment information on disaster choices. Then, the DDM technique based on the FFN is planned to identify highly devastating disaster choices and the best available choices. Finally, the proposed regret philosophy DDM technique is shown functional to choose the ideal retort explanation for a communal fitness disaster in Pakistan. The dominance and realism of the intended technique are further defensible through a relative study with additional DDM systems.



    加载中


    [1] Q. Ding, Y. M. Wang, M. Goh, An extended TODIM approach for group emergency decision making based on bidirectional projection with hesitant triangular fuzzy sets, Comput. Ind. Eng., 151 (2021), 106959. https://doi.org/10.1016/j.cie.2020.106959 doi: 10.1016/j.cie.2020.106959
    [2] B. Batool, S. S. Abosuliman, S. Abdullah, S. Ashraf, EDAS method for decision support modeling under the Pythagorean probabilistic hesitant fuzzy aggregation information, J. Amb. Intell. Hum. Comput., 2021. https://doi.org/10.1007/s12652-021-03181-1 doi: 10.1007/s12652-021-03181-1
    [3] L. X. Hou, L. X. Mao, H. C. Liu, L. Zhang, Decades on emergency decision-making: A bibliometric analysis and literature review, Complex Intell. Syst., 7 (2021), 2819–2832. https://doi.org/10.1007/s40747-021-00451-5 doi: 10.1007/s40747-021-00451-5
    [4] A. O. Almagrabi, S. Abdullah, M. Shams, Y. D. Al-Otaibi, S. Ashraf, A new approach to q-linear Diophantine fuzzy emergency decision support system for COVID19, J. Amb. Intell. Hum. Comput., 2022. https://doi.org/10.1007/s12652-021-03281-y doi: 10.1007/s12652-021-03281-y
    [5] Y. Rong, Y. Liu, Z. Pei, A novel multiple attribute decision-making approach for evaluation of emergency management schemes under picture fuzzy environment, Int. J. Mach. Learn. Cyb., 2021. https://doi.org/10.1007/s13042-021-01280-1 doi: 10.1007/s13042-021-01280-1
    [6] H. Li, J. Y. Guo, M. Yazdi, A. Nedjati, K. A. Adesina, Supportive emergency decision-making model towards sustainable development with fuzzy expert system, Neural Comput. Appl., 33 (2021), 15619–15637. https://doi.org/10.1007/s00521-021-06183-4 doi: 10.1007/s00521-021-06183-4
    [7] W. Xue, Z. Xu, X. Mi, Z. Ren, Dynamic reference point method with probabilistic linguistic information based on the regret theory for public health emergency decision-making, Econ. Res.-Ekon. Istraz., 2021. https://doi.org/10.1080/1331677X.2021.1875254 doi: 10.1080/1331677X.2021.1875254
    [8] X. Sha, C. C. Yin, Z. Xu, S. Zhang, Probabilistic hesitant fuzzy TOPSIS emergency decision-making method based on the cumulative prospect theory, J. Intell. Fuzzy Syst., 40 (2021), 4367–4383. https://doi.org/10.3233/JIFS-201119 doi: 10.3233/JIFS-201119
    [9] Y. Sun, J. Mi, J. Chen, W. Liu, A new fuzzy multi-attribute group decision-making method with generalized maximal consistent block and its application in emergency management, Knowl. Based Syst., 215 (2021), 106594. https://doi.org/10.1016/j.knosys.2020.106594 doi: 10.1016/j.knosys.2020.106594
    [10] X. D. Liu, J. Wu, S. T. Zhang, Z. W. Wang, H. Garg, Extended cumulative residual entropy for emergency group decision-making under probabilistic hesitant fuzzy environment, Int. J. Fuzzy Syst., 2021. https://doi.org/10.1007/s40815-021-01122-w doi: 10.1007/s40815-021-01122-w
    [11] J. Zhan, B. Sun, X. Zhang, PF-TOPSIS method based on CPFRS models: An application to unconventional emergency events, Comput. Ind. Eng., 139 (2020), 106192. https://doi.org/10.1016/j.cie.2019.106192 doi: 10.1016/j.cie.2019.106192
    [12] X. F. Ding, H. C. Liu, H. Shi, A dynamic approach for emergency decision making based on prospect theory with interval-valued Pythagorean fuzzy linguistic variables, Comput. Ind. Eng., 131 (2019), 57–65. https://doi.org/10.1016/j.cie.2019.03.037 doi: 10.1016/j.cie.2019.03.037
    [13] X. Xu, L. Wang, X. Chen, B. Liu, Large group emergency decision-making method with linguistic risk appetites based on criteria mining, Knowl. Based Syst., 182 (2019), 104849. https://doi.org/10.1016/j.knosys.2019.07.020 doi: 10.1016/j.knosys.2019.07.020
    [14] X. F. Ding, H. C. Liu, An extended prospect theory-VIKOR approach for emergency decision making with 2-dimension uncertain linguistic information, Soft Comput., 23 (2019), 12139–12150. https://doi.org/10.1007/s00500-019-04092-2 doi: 10.1007/s00500-019-04092-2
    [15] X. F. Ding, H. C. Liu, A new approach for emergency decision-making based on zero-sum game with Pythagorean fuzzy uncertain linguistic variables, Int. J. Intell. Syst., 34 (2019), 1667–1684. https://doi.org/10.1002/int.22113 doi: 10.1002/int.22113
    [16] F. Herrera, L. Martínez, A 2-tuple fuzzy linguistic representation model for computing with words, IEEE T. Fuzzy Syst., 8 (2000), 746–752. https://doi.org/10.1109/91.890332 doi: 10.1109/91.890332
    [17] H. C. Liu, P. Li, J. X. You, Y. Z. Chen, A novel approach for FMEA: Combination of interval 2-tuple linguistic variables and grey relational analysis, Qual. Reliab. Eng. Int., 31 (2015), 761–772. https://doi.org/10.1002/qre.1633 doi: 10.1002/qre.1633
    [18] H. C. Liu, J. X. You, X. Y. You, Evaluating the risk of healthcare failure modes using interval 2-tuple hybrid weighted distance measure, Comput. Ind. Eng., 78 (2014), 249–258. https://doi.org/10.1016/j.cie.2014.07.018 doi: 10.1016/j.cie.2014.07.018
    [19] Y. Zhang, G. Wei, Y. Guo, C. Wei, TODIM method based on cumulative prospect theory for multiple attribute group decision-making under 2-tuple linguistic Pythagorean fuzzy environment, Int. J. Intell. Syst., 36 (2021), 2548–2571. https://doi.org/10.1002/int.22393 doi: 10.1002/int.22393
    [20] A. Labella, B. Dutta, L. Martínez, An optimal Best-Worst prioritization method under a 2-tuple linguistic environment in decision making, Comput. Ind. Eng., 155 (2021), 107141. https://doi.org/10.1016/j.cie.2021.107141 doi: 10.1016/j.cie.2021.107141
    [21] Z. Wang, R. M. Rodríguez, Y. M. Wang, L. Martínez, A two-stage minimum adjustment consensus model for large scale decision making based on reliability modeled by two-dimension 2-tuple linguistic information, Comput. Ind. Eng., 151 (2021), 106973. https://doi.org/10.1016/j.cie.2020.106973 doi: 10.1016/j.cie.2020.106973
    [22] W. Wang, G. Tian, T. Zhang, N. H. Jabarullah, F. Li, A. M. Fathollahi-Fard, et al., Scheme selection of design for disassembly (DFD) based on sustainability: A novel hybrid of interval 2-tuple linguistic intuitionistic fuzzy numbers and regret theory, J. Clean. Prod., 281 (2021), 124724. https://doi.org/10.1016/j.jclepro.2020.124724 doi: 10.1016/j.jclepro.2020.124724
    [23] S. Faizi, W. Sałabun, S. Nawaz, A. U. Rehman, J. Wątróbski, Best-Worst method and Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets, Expert Syst. Appl., 181 (2021), 115088. https://doi.org/10.1016/j.eswa.2021.115088 doi: 10.1016/j.eswa.2021.115088
    [24] H. Zhang, C. C. Li, Y. Liu, Y. Dong, Modeling personalized individual semantics and consensus in comparative linguistic expression preference relations with self-confidence: An optimization-based approach, IEEE T. Fuzzy Syst., 29 (2021), 627–640. https://doi.org/10.1109/TFUZZ.2019.2957259 doi: 10.1109/TFUZZ.2019.2957259
    [25] E. Herrera-Viedma, I. Palomares, C. C. Li, F. J. Cabrerizo, Y. Dong, F. Chiclana, et al., Revisiting fuzzy and linguistic decision making: Scenarios and challenges for making wiser decisions in a better way, IEEE T. Syst. Man. Cyb. Syst., 51 (2021), 191–208. https://doi.org/10.1109/TSMC.2020.3043016 doi: 10.1109/TSMC.2020.3043016
    [26] H. Liang, C. Li, Y. Dong, F. Herrera, Linguistic opinions dynamics based on personalized individual semantics, IEEE T., Fuzzy Syst., 29 (2020), 2453–2466. https://doi.org/10.1109/TFUZZ.2020.2999742 doi: 10.1109/TFUZZ.2020.2999742
    [27] S. Abdullah, O. Barukab, M. Qiyas, M. Arif, S. A. Khan, Analysis of decision support system based on 2-tuple spherical fuzzy linguistic aggregation information, Appl. Sci., 10 (2020), 276. https://doi.org/10.3390/app10010276 doi: 10.3390/app10010276
    [28] S. Ashraf, S. Abdullah, M. Aslam, M. Qiyas, M. A. Kutbi, Spherical fuzzy sets and its representation of spherical fuzzy t-norms and t-conorms, J. Intell. Fuzzy Syst., 36 (2019), 6089–6102. https://doi.org/10.3233/JIFS-181941 doi: 10.3233/JIFS-181941
    [29] P. Liu, Z. Ali, T. Mahmood, Novel complex t-spherical fuzzy 2-tuple linguistic Muirhead mean aggregation operators and their application to multi-attribute decision-making, Int. J. Comput. Intell. Syst., 14 (2021), 295–331. https://doi.org/10.2991/ijcis.d.201207.003 doi: 10.2991/ijcis.d.201207.003
    [30] L. Wang, Y. M. Wang, L. Martínez, A group decision method based on prospect theory for emergency situations, Inf. Sci., 2017,418–419. https://doi.org/10.1016/j.ins.2017.07.037 doi: 10.1016/j.ins.2017.07.037
    [31] B. Sun, W. Ma, An approach to evaluation of emergency plans for unconventional emergency events based on soft fuzzy rough set, Kybernetes, 45 (2016), 461–473. https://doi.org/10.1108/K-03-2014-0055 doi: 10.1108/K-03-2014-0055
    [32] M. Nassereddine, A. Azar, A. Rajabzadeh, A. Afsar, Decision making application in collaborative emergency response: A new PROMETHEE preference function, Int. J. Disast. Risk Re., 38 (2019), 101221. https://doi.org/10.1016/j.ijdrr.2019.101221 doi: 10.1016/j.ijdrr.2019.101221
    [33] L. Wang, R. M. Rodríguez, Y. M. Wang, A dynamic multi-attribute group emergency decision making method considering experts' hesitation, Int. J. Comput. Intell. Syst., 11 (2018), 163–182. https://doi.org/10.2991/ijcis.11.1.13 doi: 10.2991/ijcis.11.1.13
    [34] G. Loomes, R. Sugden, Regret theory: An alternative theory of rational choice under uncertainty, Econ. J., 92 (1982), 805–824. https://doi.org/10.2307/2232669 doi: 10.2307/2232669
    [35] J. Zhu, B. Shuai, G. Li, K. S. Chin, R. Wang, Failure mode and effect analysis using regret theory and PROMETHEE under linguistic neutrosophic context, J. Loss Prevent. Proc., 64 (2020), 104048. https://doi.org/10.1016/j.jlp.2020.104048 doi: 10.1016/j.jlp.2020.104048
    [36] L. Wang, Y. P. Hu, H. C. Liu, H. Shi, A linguistic risk prioritization approach for failure mode and effects analysis: A case study of medical product development, Qual. Reliab. Eng. Int., 35 (2019), 1735–1752. https://doi.org/10.1002/qre.2472 doi: 10.1002/qre.2472
    [37] K. W. Shen, X. K. Wang, D. Qiao, J. Q. Wang, Extended Z-MABAC method based on regret theory and directed distance for regional circular economy development program selection with Z-information, IEEE T. Fuzzy Syst., 28 (2020), 1851–1863. https://doi.org/10.1109/TFUZZ.2019.2923948 doi: 10.1109/TFUZZ.2019.2923948
    [38] M. K. Ghorabaee, E. K. Zavadskas, L. Olfat, Z. Turskis, Multicriteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26 (2015), 435–451. https://doi.org/10.15388/Informatica.2015.57 doi: 10.15388/Informatica.2015.57
    [39] Y. J. Ping, R. Liu, W. Lin, H. C. Liu, A new integrated approach for engineering characteristic prioritization in quality function deployment, Adv. Eng. Inform., 45 (2020), 101099. https://doi.org/10.1016/j.aei.2020.101099 doi: 10.1016/j.aei.2020.101099
    [40] R. Liu, X. Mou, H. C. Liu, New model for occupational health and safety risk assessment based on combination weighting and uncertain linguistic information, ⅡSE T. Occup. Erg. Hum., 8 (2021), 175–186. https://doi.org/10.1080/24725838.2021.1875519 doi: 10.1080/24725838.2021.1875519
    [41] D. Vukasović, D. Gligović, S. Terzić, Z. Stević, P. Macura, A novel fuzzy MCDM model for inventory management in order to increase business efficiency, Technol.Econ. Dev. Econ., 27 (2021), 386–401. https://doi.org/10.3846/tede.2021.14427 doi: 10.3846/tede.2021.14427
    [42] D. Panchal, P. Chatterjee, D. Pamucar, M. Yazdani, A novel fuzzy-based structured framework for sustainable operation and environmental friendly production in coal-fired power industry, Int. J. Intell. Syst., 2021. https://doi.org/10.1002/int.22507 doi: 10.1002/int.22507
    [43] B. Karatop, B. Taşkan, E. Adar, C. Kubat, Decision analysis related to the renewable energy investments in Turkey based on a fuzzy AHP-EDAS-fuzzy FMEA approach, Comput. Ind. Eng., 151 (2021), 106958. https://doi.org/10.1016/j.cie.2020.106958 doi: 10.1016/j.cie.2020.106958
    [44] L. X. Mao, R. Liu, X. Mou, H. C. Liu, New approach for quality function deployment using linguistic Z-numbers and EDAS method, Informatica, 32 (2021), 565–582. https://doi.org/10.15388/21-INFOR455 doi: 10.15388/21-INFOR455
    [45] L. Yu, K. K. Lai, A distance-based group decision-making methodology for multi-person multi-criteria emergency decision support, Decis. Support Syst., 51 (2011), 307–315. https://doi.org/10.1016/j.dss.2010.11.024 doi: 10.1016/j.dss.2010.11.024
    [46] Y. Ju, A. Wang, Emergency alternative evaluation under group decision makers: A method of incorporating DS/AHP with extended TOPSIS, Expert Syst. Appl., 39 (2012), 1315–1323. https://doi.org/10.1016/j.eswa.2011.08.012 doi: 10.1016/j.eswa.2011.08.012
    [47] Y. Ju, A. Wang, T. You, Emergency alternative evaluation and selection based on ANP, DEMATEL, and TL-TOPSIS, Nat. Hazards, 75 (2015), 347–379. https://doi.org/10.1007/s11069-014-1077-8 doi: 10.1007/s11069-014-1077-8
    [48] Y. Feng, Q. Zhang, Multi-attribute group decision making of internet public opinion emergency with interval intuitionistic fuzzy number, Int. J. Adv. Eng. Manag. Sci., 2 (2016), 43–48.
    [49] Y. Liu, Z. P. Fan, Y. Zhang, Risk decision analysis in emergency response: A method based on cumulative prospect theory, Comput. Oper. Res., 42 (2014), 75–82. https://doi.org/10.1016/j.cor.2012.08.008 doi: 10.1016/j.cor.2012.08.008
    [50] X. Xu, B. Pan, Y. Yang, Large-group risk dynamic emergency decision method based on the dual influence of preference transfer and risk preference, Soft Comput., 22 (2018), 7479–7490. https://doi.org/10.1007/s00500-018-3387-3 doi: 10.1007/s00500-018-3387-3
    [51] L. Wang, Z. X. Zhang, Y. M. Wang, A prospect theory-based interval dynamic reference point method for emergency decision making, Expert Syst, Appl., 42 (2015), 9379–9388. https://doi.org/10.1016/j.eswa.2015.07.056 doi: 10.1016/j.eswa.2015.07.056
    [52] Z. X. Zhang, L. Wang, Y. M. Wang, An emergency decision making method based on prospect theory for different emergency situations, Int. J. Disast. Risk Sci., 9 (2018), 407–420. https://doi.org/10.1007/s13753-018-0173-x doi: 10.1007/s13753-018-0173-x
    [53] X. Peng, H. Garg, Algorithms for interval-valued fuzzy soft sets in emergency decision making based on WDBA and CODAS with new information measure, Comput. Ind. Eng., 119 (2018), 439–452. https://doi.org/10.1016/j.cie.2018.04.001 doi: 10.1016/j.cie.2018.04.001
    [54] S. Ashraf, S. Abdullah, Emergency decision support modeling for COVID-19 based on spherical fuzzy information, Int. J. Intell. Syst., 35 (2020), 1601–1645. https://doi.org/10.1002/int.22262 doi: 10.1002/int.22262
    [55] X. F. Ding, L. Zhang, H. C. Liu, Emergency decision making with extended axiomatic design approach under picture fuzzy environment, Expert Syst., 37 (2020), e12482. https://doi.org/10.1111/exsy.12482 doi: 10.1111/exsy.12482
    [56] A. Tversky, D. Kahneman, Advances in prospect theory: Cumulative representation of uncertainty, J. Risk Uncertain., 5 (1992), 297–323. https://doi.org/10.1007/BF00122574 doi: 10.1007/BF00122574
    [57] J. Quiggin, Regret theory with general choice sets, J. Risk Uncertain., 8 (1994), 153–165. https://doi.org/10.1007/BF01065370 doi: 10.1007/BF01065370
    [58] J. Chai, S. Xian, S. Lu, Z-uncertain probabilistic linguistic variables and its application in emergency decision making for treatment of COVID-19 patients, Int. J. Intell. Syst., 36 (2021), 362–402. https://doi.org/10.1002/int.22303 doi: 10.1002/int.22303
    [59] H. Li, M. Yazdi, Advanced decision-making methods and applications in system safety and reliability problems, Springer, 2022.
    [60] Y. Mohammad, Linguistic methods under fuzzy information in system safety and reliability analysis, Springer, 2022.
    [61] Y. Mohammad, Acquiring and sharing tacit knowledge in failure diagnosis analysis using intuitionistic and pythagorean assessments, J. Fail. Anal. Prev., 19 (2019), 369–386. https://doi.org/10.1007/s11668-019-00599-w doi: 10.1007/s11668-019-00599-w
    [62] M. Akram, G. Ali, J. C. R. Alcantud, A. Riaz, Group decision-making with Fermatean fuzzy soft expert knowledge, Artif. Intell. Rev., 2022, 1–41. https://doi.org/10.1007/s10462-021-10119-8 doi: 10.1007/s10462-021-10119-8
    [63] M. Akram, U. Amjad, J. C. R. Alcantud, G. Santos-García, Complex Fermatean fuzzy N-soft sets: A new hybrid model with applications, J. Amb. Intell. Hum. Comput., 2022, 1–34. https://doi.org/10.1007/s12652-021-03629-4 doi: 10.1007/s12652-021-03629-4
    [64] G. Shahzadi, A. Luqman, M. M. Ali Al-Shamiri, The extended MOORA method based on Fermatean fuzzy information, Math. Probl. Eng., 2022. https://doi.org/10.1155/2022/7595872
    [65] M. Akram, S. M. U. Shah, M. M. A. Al-Shamiri, S. A. Edalatpanah, Extended DEA method for solving multi-objective transportation problem with Fermatean fuzzy sets, AIMS Math., 8 (2023), 924–961. https://doi.org/10.3934/math.2023045 doi: 10.3934/math.2023045
    [66] M. Akram, G. Muhammad, T. Allahviranloo, G. Ali, A solving method for two-dimensional homogeneous system of fuzzy fractional differential equations, AIMS Math., 8 (2023), 228–263. https://doi.org/10.3934/math.2023011 doi: 10.3934/math.2023011
    [67] M. Akram, Z. Niaz, 2-Tuple linguistic Fermatean fuzzy decision-making method based on COCOSO with CRITIC for drip irrigation system analysis, J. Comput. Cogn. Eng., 2022. https://doi.org/10.47852/bonviewJCCE2202356 doi: 10.47852/bonviewJCCE2202356
    [68] M. Akram, G. Ali, J. C. R. Alcantud, A. Riaz, Group decision-making with Fermatean fuzzy soft expert knowledge, Artif. Intell. Rev., 2022, 1–41. https://doi.org/10.1007/s10462-021-10119-8 doi: 10.1007/s10462-021-10119-8
    [69] M. Akram, U. Amjad, J. C. R. Alcantud, G. Santos-García, Complex Fermatean fuzzy N-soft sets: A new hybrid model with applications, J. Amb. Intell. Hum. Comput., (2022), 1–34. https://doi.org/10.1007/s12652-021-03629-4 doi: 10.1007/s12652-021-03629-4
    [70] J. C. R. Alcantud, G. Santos-García, M. Akram, OWA aggregation operators and multi-agent decisions with N-soft sets, Expert Syst. Appl., 203 (2022), 117430. https://doi.org/10.1016/j.eswa.2022.117430 doi: 10.1016/j.eswa.2022.117430
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1356) PDF downloads(87) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(19)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog