Research article

A study of Wiener-Hopf dynamical systems for variational inequalities in the setting of fractional calculus

  • Received: 02 August 2022 Revised: 27 September 2022 Accepted: 13 October 2022 Published: 08 November 2022
  • MSC : 49J40, 46T99, 47H05

  • In this paper, we consider a new fractional dynamical system for variational inequalities using the Wiener Hopf equations technique. We show that the fractional Wiener-Hopf dynamical system is exponentially stable and converges to its unique equilibrium point under some suitable conditions. We also discuss some special cases, which can be obtained from our main results.

    Citation: Kamsing Nonlaopon, Awais Gul Khan, Muhammad Aslam Noor, Muhammad Uzair Awan. A study of Wiener-Hopf dynamical systems for variational inequalities in the setting of fractional calculus[J]. AIMS Mathematics, 2023, 8(2): 2659-2672. doi: 10.3934/math.2023139

    Related Papers:

  • In this paper, we consider a new fractional dynamical system for variational inequalities using the Wiener Hopf equations technique. We show that the fractional Wiener-Hopf dynamical system is exponentially stable and converges to its unique equilibrium point under some suitable conditions. We also discuss some special cases, which can be obtained from our main results.



    加载中


    [1] A. Baiocchi, A. Capelo, Variational and quasi-variational inequalities, New York: John Wiley and Sons, 1984.
    [2] J. Dong, D. Zhang, A. Nagurney, A projected dynamical systems model of general financial equilibrium with stability analysis, Math. Comput. Model., 24 (1996), 35–44. https://doi.org/10.1016/0895-7177(96)00088-X doi: 10.1016/0895-7177(96)00088-X
    [3] T. S. Du, J. G. Liao, L. Z. Chen, M. U. Awan, Properties and Riemann-Liouville fractional Hermite-Hadamard inequalities for the generalized (α, m)-preinvex functions, J. Inequal. Appl., 306 (2016). https://doi.org/10.1186/s13660-016-1251-5
    [4] P. Dupuis, A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 7–42. https://doi.org/10.1007/BF02073589 doi: 10.1007/BF02073589
    [5] T. L. Friesz, D. Bernstein, N. J. Mehta, R. L. Tobin, S. Ganjalizadeh, Day-to-day dynamic network disequilibria and idealized traveler information systems, Oper. Res., 42 (1994), 1120–1136. https://doi.org/10.1287/opre.42.6.1120 doi: 10.1287/opre.42.6.1120
    [6] T. L. Friesz, D. Bernstein, R. Stough, Dynamic systems, variational inequalities and control theoretic models for predicting time-varying urban network flows, Transport. Sci., 30 (1996), 14–31. https://doi.org/10.1287/trsc.30.1.14 doi: 10.1287/trsc.30.1.14
    [7] A. A. Khan, M. Sama, Optimal control of multivalued quasi variational inequalities, Nonlinear Anal.-Theo., 75 (2012), 1419–1428. https://doi.org/10.1016/j.na.2011.08.005 doi: 10.1016/j.na.2011.08.005
    [8] A. A. Kilbas, M. H. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [9] A. S. Kravchuk, P. J. Neittaanmki, Variational and quasi-variational inequalities in mechanics, Berlin: Springer, 2007.
    [10] Q. Liu, J. Cao, A recurrent neural network based on projection operator for extended general variational inequalities, IEEE. T. Syst. Man Cy. B, 40 (2010), 928–938. https://doi.org/10.1109/TSMCB.2009.2033565 doi: 10.1109/TSMCB.2009.2033565
    [11] Q. Liu, Y. Yang, Global exponential system of projection neural networks for system of generalized variational inequalities and related nonlinear minimax problems, Neurocomputing, 73 (2010), 2069–2076. https://doi.org/10.1016/j.neucom.2010.03.009 doi: 10.1016/j.neucom.2010.03.009
    [12] Y. Li, Y. Q. Chen, I. Podlubny, Mittag-Leffler stability of fractional order nonlinear dynamic systems, Automatica, 45 (2009), 1965–1969. https://doi.org/10.1016/j.automatica.2009.04.003 doi: 10.1016/j.automatica.2009.04.003
    [13] Y. Li, Y. Q. Chen, I. Podlubny, Stability of fractional-order nonlinear dynamic systems: Lyapunov direct nethod and generalized Mittag-Leffler stability, Comput. Math. Appl., 59 (2010), 1810–1821. https://doi.org/10.1016/j.camwa.2009.08.019 doi: 10.1016/j.camwa.2009.08.019
    [14] A. Nagurney, A. D. Zhang, Projected dynamical systems and variational inequalities with applications, Boston: Kluwer Academic, 1996.
    [15] C. Niculescu, L. E. Persson, Convex functions and their applications: a contemporary approach, Berlin: Springer, 2006.
    [16] M. A. Noor, A Wiener-Hopf dynamical system for variational inequalities, New Zealand J. Math., 31 (2002), 173–182.
    [17] M. A. Noor, Implicit dynamical systems and quasi variational inequalities, Appl. Math. Comput., 134 (2003), 69–81. https://doi.org/10.1016/S0096-3003(01)00269-7 doi: 10.1016/S0096-3003(01)00269-7
    [18] M. A. Noor, Auxiliary principle technique for extended general variational inequalities, Banach J. Math. Anal., 2 (2008), 33–39.
    [19] M. A. Noor, K. I. Noor, Some new classes of quasi split feasibility problems, Appl. Math. Inform. Sci., 7 (2013), 1547–1552. http://dx.doi.org/10.12785/amis/070439 doi: 10.12785/amis/070439
    [20] M. A. Noor, K. I. Noor, A. G. Khan, Some iterative schemes for solving extended general quasi variational inequalities, Appl. Math. Inform. Sci., 7 (2013), 917–925.
    [21] M. A. Noor, K. I. Noor, A. G. Khan, Dynamical systems for quasi variational inequalities, Ann. Funct. Anal., 6 (2015), 193–209.
    [22] M. A. Noor, K. I. Noor and A. G. Khan, Fractional projected dynamical system for quasi variational inequalities, U. Polithe. Buch. Ser. A, 80 (2018), 99–112.
    [23] M. A. Noor, K. I. Noor, B. B. Mohsen, M. T. Rassias, A. Raigorodskii, General preinvex functions and variational-like inequalities, In: Approximation and computation in science and engineering, Berlin: Springer, 2022.
    [24] M. A. Noor, K. I. Noor, M. T. Rassias, New trends in general variational inequalities, Acta Appl. Math., 170 (2020), 981–1064. https://doi.org/10.1007/s10440-020-00366-2 doi: 10.1007/s10440-020-00366-2
    [25] M. A. Noor, K. I. Noor, M. T. Rassias, Strongly biconvex functions and bivariational inequalities, In: Mathematical analysis, optimization, approximation and applications, Singapore: World Scientific Publishing Company, 2021.
    [26] I. Petras, Fractioanl-order nonlinear systems: modeling, analysis and simulation, New York: Springer, 2011.
    [27] I. Podlubny, Fractional differential equations, San Siego: Academic Press, 1999.
    [28] Y. Shehu, Iterative methods for fixed points and equilibrium problems, Ann. Funct. Anal., 1 (2010), 121–132. https://doi.org/10.15352/afa/1399900594 doi: 10.15352/afa/1399900594
    [29] P. Shi, Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math. Soc., 111 (1991), 339–346.
    [30] G. Stampacchia, Formes bilineaires coercivites sur les ensembles convexes, C. R. Acad. Scz. Paris, 258 (1964), 4413–4416.
    [31] Z. B. Wu, Y. Z. Zou, Global fractional-order projective dynamical systems, Commun. Nonlinear Sci., 19 (2014), 2811–2819. https://doi.org/10.1016/j.cnsns.2014.01.007 doi: 10.1016/j.cnsns.2014.01.007
    [32] Y. Xia, J. Wang, On the stability of globally projected dynamical systems, J. Optim. Theory Appl., 106 (2000), 129–150.
    [33] J. Yu, C. Hu, H. J. Jiang, $\alpha $-stability and $\alpha $-synchronization for fractional-order neural networks, Neural Networks, 35 (2012), 82–87. https://doi.org/10.1016/j.neunet.2012.07.009 doi: 10.1016/j.neunet.2012.07.009
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1363) PDF downloads(103) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog