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1. Introduction

In modern analysis theory of inequalities has played a significant role due to its wide range of
applications both in pure and applied sciences. Variational inequalities are one of the most
significant and intensively studied inequalities. Recently these inequalities have appeared as an
interesting and dynamic field of pure and applied sciences. Variational techniques are being used to
study a wide class of problems with ‘applications in industry, structural engineering,
mathematical finance, economics, optimization, transportation, and optimization problems,
see [1, 9–11, 18, 21, 23–25, 30] and references therein. This has motivated researchers to introduce and
study several classes of variational inequalities. Stampacchia [30] has studied that the minimum of
differentiable convex functions on a convex set can be characterized by variational inequalities.

Using the fixed-point formulation of the variational inequalities, Dupuis and Nagurney [4]
introduced and considered the projected dynamical systems in which the right hand side of the
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ordinary differential equation is a projection operator associated with variational inequalities. The
innovative and novel feature of a projected dynamical system is that its set of stationary points
corresponds to the set of solutions of the corresponding variational inequality problem. Hence,
equilibrium and nonlinear problems arising in various branches in pure and applied sciences, which
can be formulated in the setting of the variational inequalities, can be studied in the more general
setting of dynamical systems. It has been shown [5,6,10,11,14,16,17,32] that the dynamical systems
are useful in developing some efficient numerical techniques for solving variational inequalities and
related optimization problems. In recent years, much attention has been given to study the globally
asymptotic stability of these projected dynamical systems. Xia and Wang [32] have shown that the
projected dynamical systems can be used effectively in designing neural network for solving
variational inequalities.

Zeng et al. [31] have investigated the fractional dynamical systems associated with linear variational
inequalities. They have investigated the criteria for the asymtotically stability of the equilibrium points.
Noor et al. [22] have also suggested and analyzed fractional implicit dynamical systems for linear quasi
variational inequalities by extending and modifying their techniques. In this paper, we propose and
consider a fractional Wiener-Hopf dynamical system associated with the variational inequalities. We
show that the fractional Wiener-Hopf dynamical system is exponentially stable and converges to its
unique equilibrium point. Some special cases are discussed. Our results are more general than the
results of Zeng et al. [31]. The ideas and techniques of this paper may inspire the interested readers for
further research in this area.

2. Formulation and basic results

Let H be a real Hilbert space, whose norm and inner product are denoted by ∥·∥ and ⟨·, ·⟩ ,
respectively. Let K be any closed and convex set in H.

For given operator T : H → H, consider a problem of finding u ∈ K such that

⟨T u, v − u⟩ ≥ 0, ∀v ∈ K. (2.1)

The inequality of type (2.1) is called the variational inequality. This problem was introduced and
studied by Stampacchia [30]. For the recent applications, numerical algorithms, sensitivity analysis,
dynamical systems and formulations of variational inequalities, see [1–29, 33] and the references
therein.

Definition 2.1. A nonlinear operator T : H → H is said to be monotone, if

⟨T u − T v, u − v⟩ ≥ 0, ∀u, v ∈ H.

Definition 2.2. A nonlinear operator T : H → H is said to be pseudomonotone, if

⟨T u, v − u⟩ ≥ 0, implies ⟨T v, v − u⟩ ≥ 0, ∀u, v ∈ H.

Definition 2.3. A nonlinear operator T : H → H is said to be Lipschitz continuous, if there exists a
constant β > 0 such that

∥T u − T v∥ ≤ β ∥u − v∥ , ∀u, v ∈ H.
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It is well known that monotonicity implies pseudomonotonicity, but not conversely.

Lemma 2.4. [16] Let K be a closed and convex set in H. Then for a given z ∈ H, u ∈ K satisfies

⟨u − z, v − u⟩ ≥ 0, ∀v ∈ K, (2.2)

if and only if
u = PK [z] ,

where PK is the projection of H onto a closed and convex set K in H.

It is well known that the projection operator PK is non-expensive, that is

∥PK [u] − PK [v]∥ ≤ ∥u − v∥ , ∀u, v ∈ H.

Using Lemma 2.4, one can show that Problem (2.1) is equivalent to the fixed point problem.

Lemma 2.5. [16] Let K be a closed and convex set in a real Hilbert space H. The function u ∈ K is a
solution of Problem (2.1) , if and only if, u ∈ K satisfies the relation

u = PK
[
u − ρT u

]
, (2.3)

where ρ > 0 is a constant.

From Lemma 2.5, it follows that Problem (2.1) is equivalent to a fixed point Problem (2.3). This
equivalent formulation plays an important role in developing several iterative methods,
see [17, 19, 20].

We now define a residue vector R (u) as:

R (u) = u − PK
[
u − ρT u

]
. (2.4)

It is clear from Lemma 2.5 that Problem (2.1) has a solution u ∈ K, if and only if, u ∈ K is a zero of
the equation

R (u) = 0.

It is well known that the variational inequalities are also equivalent to Wiener Hopf equations.
The Wiener Hopf equations technique has been used to develop some efficient and powerful iterative
methods for solving variational inequalities and complementarity problems. We now use the Wiener
Hopf equations technique to suggest and analyze another dynamical system.

Let QK = I − PK , where I is the identity operator and PK is the projection of H onto the closed and
convex set K. For given nonlinear operator T : H → H, consider a problem of finding z ∈ H such that

TPK [z] + ρ−1QK [z] = 0. (2.5)

Problem (2.5) is called Wiener Hopf equations associated with the variational inequalities (2.1) . This
problem was introduced and studied by Shi [29]. It is well known that Problems (2.1) and (2.5) are
equivalent. For the sake of completeness, we recall this result without proof.
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Lemma 2.6. [16] The Problem (2.1) has a solution u ∈ K, if and only if, Problem (2.5) has a solution
z ∈ H, where

u = PK [z] , (2.6)

z = u − ρT u, (2.7)

where ρ > 0 is a constant.

Using Lemma 2.6, the Wiener-Hopf Eq (2.5) can be written as

u − ρT u − PK
[
u − ρT u

]
+ ρTPK

[
u − ρT u

]
= 0, (2.8)

which is equivalent to
R (u) − ρT u + ρTPK

[
u − ρT u

]
= 0. (2.9)

Thus it is clear from Lemma 2.6 that u ∈ K is a solution of Problem (2.1) , if and only if, u ∈ K satisfies
the Eq (2.9).

We now suggest a new dynamical system:

Dαωu (ω) = γ
{
−R (u) − ρTPK

[
u − ρT u

]
+ ρT u

}
, u (ω0) = u0 ∈ K, (2.10)

where 0 < α < 1 and γ is a constant, associated with Problem (2.1). The dynamical system of
type (2.10) is called fractional Wiener-Hopf dynamical system related to the Problem (2.1).

We now discuss some special cases of Problem (2.10).

(1) If α = 1, then the fractional Wiener-Hopf dynamical System (2.10) reduces to following
dynamical system:

du
dt
= γ

{
PK

[
u − ρT u

]
− ρTPK

[
u − ρT u

]
+ ρT u − u

}
, (2.11)

u (ω0) = u0 ∈ K,

which was introduced and considered by Noor [16].
(2) In the affine case, that is, if T u = Au + b, where A = ai j is a real n × n matrix and b = b j is an

n-dimensional vector, then the System (2.10) reduces to:

Dαωu (ω) = γ
{
PK

[
u − ρAu − ρb

]
− ρAPK

[
u − ρAu − ρb

]
+ ρAu − u

}
, (2.12)

u (ω0) = u0 ∈ K,

which is called linear fractional Wiener-Hopf dynamical system.

We also need the following well-known fundamental results and concepts.

Definition 2.7. [8] The fractional integral (Riemann-Liouville integral) with order α ∈ R+ of
continuous function u (ω) is defined as:

Iαω0
u (ω) =

1
Γ (α)

ω∫
ω0

(ω − τ)α−1 u (τ) dτ, ω > ω0,

where Γ denotes the Euler gamma function.
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Definition 2.8. [8] The Caputo derivative with order α ∈ R+ of continuous function
u (ω) ∈ Cn ([ω0,+∞] ,R) is defined as:

Dαω0
u (ω) = In−α

ω0
u(n) (ω) =

1
Γ (α)

ω∫
ω0

(ω − τ)n−α−1 u(n) (τ) dτ, ω > ω0,

where n is positive integer such that n − 1 < α < n and Γ denotes the Euler gamma function.

Definition 2.9. [31] The point u∗ is said to be an equilibrium point of the fractional projected
dynamical System (2.4), if u∗ satisfies the following

PK
[
u∗ (ω) − ρT u∗ (ω)

]
− u∗ (ω) = 0.

Definition 2.10. [33] The dynamical system (2.4) is said to be α-exponentially stable with degree λ if,
for any two solutions u (ω) and v (ω) of (2.4) with different initial values by u0 and v0 satisfies

∥u (ω) − v (ω)∥ ≤ η ∥u0 − v0∥ e−λω
α

, ∀ω ≥ ω0,

where η > 0 is a constant.

Lemma 2.11. (Gronwall’s Lemma [17]) Let u and v be real valued non-negative continuous functions
with domain {ω : ω ≥ ω0} and let α (ω) = α0 |ω − ω0|, where α0 is a monotone increasing function. If,
for ω ≥ ω0,

u (ω) ≤ α (ω) +

ω∫
ω0

u (s) v (s) ds,

then

u (ω) ≤ α (ω) · exp


ω∫
ω0

v (s) ds

 .
Lemma 2.12. [8] Let n is a positive integer such that n − 1 < α < n. If u (ω) ∈ Cn [a, b], then

Iαω Dαωu (ω) = u (ω) −
n−1∑
k=0

u(k) (a)
k!

(ω − a)k .

In particular, if 0 < α ≤ 1 and u (ω) ∈ C1 [a, b]

Iαω Dαωu (ω) = u (ω) − u (a) . (2.13)

Lemma 2.13. [33] Let u (ω) be a continuous function on [0,+∞) and satisfies

Dαωu (ω) ≤ θ.u (ω) , (2.14)

where 0 < α < 1 and θ is a constant. Then

u (ω) ≤ u (0) . exp
(
θ.ωα

Γ (α + 1)

)
.
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Proof. For a nonnegative continuous function h (ω), relation (2.14) can be written as:

Dαωu (ω) + h (ω) = θ.u (ω) . (2.15)

By taking the fractional integral of order α of (2.15), we have

Iαω Dαωu (ω) + Iαh (ω) = Iαθ.u (ω) . (2.16)

Using Lemma 2.12, we have
Iαω Dαωu (ω) = u (ω) − u (0) . (2.17)

Since h (ω) is a nonnegative continuous function, therefore by the definition of fractional integral we
have

Iαωh (ω) =
1
Γ (α)

ω∫
0

(ω − τ)α−1 h (τ) dτ ≥ 0, ω > 0, (2.18)

and

Iαωθ.u (ω) =
θ

Γ (α)

ω∫
0

(ω − τ)α−1 u (τ) dτ, ω > 0. (2.19)

Combining (2.16)–(2.19), we have

u (ω) − u (0) + 0 ≤
θ

Γ (α)

ω∫
0

(ω − τ)α−1 u (τ) dτ, ω > 0,

which implies

u (ω) ≤ u (0) +
θ

Γ (α)

ω∫
0

(ω − τ)α−1 u (τ) dτ, ω > 0

≤ u (0) . exp

 θΓ (α)

ω∫
0

(ω − τ)α−1 dτ


= u (0) . exp

(
θ.ωα

Γ (α + 1)

)
,

where we have used Lemma 2.11. This is the desired result. □

Lemma 2.14. [12, 31] Consider the system

Dαωu (ω) = g (ω, u (ω)) , ω > ω0, (2.20)

with initial condition u (ω0), where 0 < α ≤ 1 and g : [ω0,∞) × Ω → H, Ω ⊂ H. If g (ω, u (ω))
satisfies the locally Lipschitz condition with respect to u, then there exists a unique solution of (2.20)
on [ω0,∞) ×Ω.

Lemma 2.15. [12] For the real valued continuous function g (ω, u (ω)), defined in (2.20), we have∥∥∥Iαωg (ω, u (ω))
∥∥∥ ≤ Iαω ∥g (ω, u (ω))∥, where α ≥ 0 and ∥·∥ denotes an arbitrary norm.
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3. Main results

In this section we study the main properties of the dynamical system (2.10) and analyze the global
stability of the systems.

Theorem 3.1. Let the operatorT is Lipschitz continuous with constant β > 0. If γ > 0, then there exists
a unique solution u (ω) ∈ H of Problem (2.10) with u (ω0) = u0, that is defined for all ω ∈ [ω0,∞).

Proof. Let

G (u (ω)) = γ
{
PK

[
u (ω) − ρT u (ω)

]
− ρTPK

[
u (ω) − ρT u (ω)

]
+ ρT u (ω) − u (ω)

}
.

To prove that G (u (ω)) is Lipschitz continuous for all u (ω) , v (ω) ∈ H, we have to consider
∥G (u (ω)) −G (v (ω))∥

= γ
∥∥∥PK

[
u (ω) − ρT u (ω)

]
− ρTPK

[
u (ω) − ρT u (ω)

]
+ ρT u (ω) − u (ω)

− PK
[
v (ω) − ρT v (ω)

]
+ ρTPK

[
v (ω) − ρT v (ω)

]
− ρT v (ω) + v (ω)

∥∥∥
≤ γ

∥∥∥PK
[
u (ω) − ρT u (ω)

]
− PK

[
v (ω) − ρT v (ω)

]∥∥∥ + γρ ∥T u (ω) − T v (ω)∥

+γρ
∥∥∥TPK

[
u (ω) − ρT u (ω)

]
− TPK

[
v (ω) − ρT v (ω)

]∥∥∥ + γ ∥u (ω) − v (ω)∥
≤ γ ∥u (ω) − v (ω) − ρ (T u (ω) − T v (ω))∥ + γρβ ∥u (ω) − v (ω)∥
+γρβ ∥u (ω) − v (ω) − ρ (T u (ω) − T v (ω))∥ + γ ∥u (ω) − v (ω)∥

≤ 2γ ∥u (ω) − v (ω)∥ + 3γρβ ∥u (ω) − v (ω)∥ + γρ2β2 ∥u (ω) − v (ω)∥
= γ

(
2 + 3ρβ + ρ2β2

)
∥u (ω) − v (ω)∥ ,

where we have used Lipschitz continuity of operator T with constant β > 0. This implies that operator
G (u) is a Lipschitz continuous in H. Thus from Lemma 2.14, it is clear that there exists a unique
solution u (ω) of Problem (2.10) . Let [ω0,∞) be its maximal interval of existence; we show that T1 =

∞. Consider∥∥∥Dαωu (ω)
∥∥∥ = ∥G (u (ω))∥

= γ
∥∥∥PK

[
u (ω) − ρT u (ω)

]
− ρTPK

[
u (ω) − ρT u (ω)

]
+ ρT u (ω) − u (ω)

∥∥∥
≤ γ

∥∥∥PK
[
u (ω) − ρT u (ω)

]
− u (ω)

∥∥∥ + γρβ ∥∥∥PK
[
u (ω) − ρT u (ω)

]
− u (ω)

∥∥∥
= γ (1 + ρβ)

∥∥∥PK
[
u (ω) − ρT u (ω)

]
− PK [u (ω)]

+PK [u (ω)] − PK [u∗] + PK [u∗] − u (ω)∥
≤ γ (1 + ρβ)

{∥∥∥PK
[
u (ω) − ρT u (ω)

]
− PK [u (ω)]

∥∥∥
+ ∥PK [u (ω)] − PK [u∗]∥ + ∥PK [u∗] − u (ω)∥}

≤ γ (1 + ρβ) {∥u (ω) − ρT u (ω) − u (ω)∥ + ∥u (ω) − u∗∥

+ ∥PK [u∗]∥ + ∥u (ω)∥}
≤ γ (1 + ρβ) {(2 + ρβ) ∥u (ω)∥ + ∥u∗∥ + ∥PK [u∗]∥}
= γ (1 + ρβ) {∥u∗∥ + ∥PK [u∗]∥} + γ (1 + ρβ) (2 + ρβ) ∥u (ω)∥
= k1 + k2 ∥u (ω)∥ , (3.1)
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where we have used the Lipschitz continuity of operator T , with constant β > 0.
Taking the fractional integral of (3.1), we have

Iαω
∥∥∥Dαωu (ω)

∥∥∥ ≤ Iαω {k1 + k2 ∥u (ω)∥}

=
k1

Γ (α)

ω∫
ω0

(ω − τ)α−1 dτ +
k2

Γ (α)

ω∫
ω0

(ω − τ)α−1
∥u (τ)∥ dτ

=
k1 (ω − ω0)α

Γ (α + 1)
+

k2

Γ (α)

ω∫
ω0

(ω − τ)α−1
∥u (τ)∥ dτ,

using Lemma 2.12 and Lemma 2.15, we have

∥u (ω) − u (ω0)∥ ≤
k1 (ω − ω0)α

Γ (α + 1)
+

k2

Γ (α)

ω∫
ω0

(ω − τ)α−1
∥u (τ)∥ dτ.

From which by using Lemma 2.11, we obtain

∥u (ω)∥ ≤
{
∥u (ω0)∥ +

k1 (ω − ω0)α

Γ (α + 1)

}
+

k2

Γ (α)

ω∫
ω0

(ω − τ)α−1
∥u (τ)∥ dτ

≤

{
∥u (ω0)∥ +

k1 (ω − ω0)α

Γ (α + 1)

}
exp

{
k2 (ω − ω0)α

Γ (α + 1)

}
, (3.2)

where

k1 = γ (1 + ρβ) {∥u∗∥ + ∥PK [u∗]∥}
k2 = γ (1 + ρβ) (2 + ρβ) > 0.

Thus from (3.2) , it follows that the solution is bounded on [ω0,∞). □

Theorem 3.2. Let the operator T be pseudomonotone and Lipschitz continuous. If γ > 0, then the
dynamical system (2.10) is stable in the sense of Lyapunov and globally converges to the solution of
variational inequality (2.1).

Proof. Since the operator is Lipschitz continuous, it follows from Theorem 3.1 that the dynamical
system (2.10) has a unique continuous solution u(ω) over [ω,T1) for any fixed u0 ∈ K. Let u(ω,ω0; u0)
be he solution of the initial value Problem (2.1). For a given u∗ ∈ K, consider the following Lyapunov
function

L (u (ω)) = ∥u (ω) − u∗∥2 , u ∈ K. (3.3)

It is clear that lim
n→∞

L (un) = ∞, whenever the sequence {un} ⊂ K and lim
n→∞

un = ∞. Consequently, we
conclude that the level sets of L are bounded. Let u∗ ∈ K be a solution of the variational inequality (2.1).
Then

⟨T u∗, v − u∗⟩ ≥ 0, ∀v ∈ K,
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which implies, using pseudomonotonicity of operator T ,

⟨T v, v − u∗⟩ ≥ 0, ∀v ∈ K. (3.4)

Setting v = PK
[
u − ρT u

]
in (3.4), we have〈
TPK

[
u − ρT u

]
, PK

[
u − ρT u

]
− u∗

〉
≥ 0. (3.5)

Now, setting v = u∗, u = PK
[
u − ρT u

]
and z = u − ρT u in (2.2), we have〈

PK
[
u − ρT u

]
− u + ρT u, u∗ − PK

[
u − ρT u

]〉
≥ 0. (3.6)

Adding (3.5) and (3.6), we have〈
PK

[
u − ρT u

]
− u + ρT u − ρTPK

[
u − ρT u

]
, u∗ − PK

[
u − ρT u

]〉
≥ 0, (3.7)

using (2.4), (3.7) can be written as〈
−R (u) + ρT u − ρTPK

[
u − ρT u

]
, u∗ − u + R (u)

〉
≥ 0,

which implies that〈
u − u∗,R (u) − ρT u + ρTPK

[
u − ρT u

]〉
≥ ∥R (u)∥2 − ρ

〈
R (u) ,T u − TPK

[
u − ρT u

]〉
≥ ∥R (u)∥2 − ρ ∥R (u)∥

∥∥∥T u − TPK
[
u − ρT u

]∥∥∥
≥ ∥R (u)∥2 − ρδ ∥R (u)∥

∥∥∥u − PK
[
u − ρT u

]∥∥∥
= (1 − ρδ) ∥R (u)∥2 , (3.8)

where we have used the fact that the operator T is Lipschitz continuous with constant δ > 0.
Thus from (2.10), (3.3) and (3.8), we have

DαωL (u (ω)) =
(
Dαu L (u (ω))

) (
Dαωu (ω)

)
=

Γ (3)
Γ (3 − α)

〈
u − u∗,Dαωu

〉
=

2γ
Γ (3 − α)

〈
u − u∗,−R (u) + ρT u − ρTPK

[
u − ρT u

]〉
≤
−2γ (1 − ρδ)
Γ (3 − α)

∥R (u)∥2 ≤ 0.

This implies that L(u) is a global Lyapunov function for the System (2.10) and the system is stable
in the sense of Lyapunov. Since {u (ω) : ω ≥ ω0} ⊂ K0, where K0 = {u ∈ K : L (u) ≤ L (u0)} and the
function is differentiable on the bounded and closed set K, then it follows from LaSalle’s invariance
principle that the trajectory will converge to Ω, the largest invariant subset of the following subset:

E =
{
u ∈ K : DαωL (u (ω)) = 0

}
.

Note that, if DαωL (u (ω)) = 0, then ∥∥∥u − PK
[
u − ρT u

]∥∥∥ = 0,
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and hence u is the equilibrium point of the dynamical system (2.4), that is,

Dαωu (ω) = 0.

Conversely, if Dαωu (ω) = 0, then it follows that DαωL (u (ω)) = 0. Thus, we conclude that

E =
{
u ∈ K : Dαωu (ω) = 0

}
= K0 ∩ K∗,

which is nonempty, convex and invariant set containing the solution set K∗. So

lim
ω→∞

dist (u (ω) , E) = 0.

Therefore the dynamical system (2.10) converges globally to the solution set of the variational
inequalities (2.1). In particular, if the set E = {u∗}, then

lim
ω→∞

u (ω) = u∗.

Hence the dynamical system (2.10) is globally asymptotically stable. □

We now discuss the stability and existence of the equilibrium point for the dynamical System (2.10)
under some suitable conditions.

Theorem 3.3. Let the operator T be Lipschitz continuous with constant β > 0. If γ < 0, then fractional
dynamical System (2.10) is α-exponentially stable.

Proof. Let u (ω) and v (ω) be any two solutions of dynamical System (2.10) with initial values u (0) =
u0 and v (0) = v0 respectively.

Let
e (ω) = u (ω) − v (ω) ,

then e (0) , 0 and taking the fractional derivative of above equation, we have

Dαωe (ω) = Dαωu (ω) − Dαωv (ω)

= γ
{
PK

[
u (ω) − ρT u (ω)

]
− ρTPK

[
u (ω) − ρT u (ω)

]
+ ρT u (ω) − u (ω)

}
−γ

{
PK

[
v (ω) − ρT v (ω)

]
− ρTPK

[
v (ω) − ρT v (ω)

]
+ ρT v (ω) − v (ω)

}
= γ

{
PK

[
u (ω) − ρT u (ω)

]
− PK

[
v (ω) − ρT v (ω)

]}
+ γρ {T u (ω) − T v (ω)}

−γρ
{
TPK

[
u (ω) − ρT u (ω)

]
− TPK

[
v (ω) − ρT v (ω)

]}
− γe (ω) , (3.9)

where 0 < α < 1, ω ≥ 0. From Theorem 3.1, u (ω) and v (ω) are uniquely determined solutions.
Therefore e (ω) is the uniquely determined solution of error System (3.9) with initial value e (0) = e0.

We claim that if e (0) > 0, then e (ω) ≥ 0 for ω ≥ 0, if e (0) < 0, then e (ω) ≤ 0 for ω ≥ 0. In
fact, if e (0) > 0, there exists ω1, such that e (ω) < 0 for ω ≥ ω1, so there must be 0 < ω0 < ω1 such
that e (ω0) = 0. It means that dynamical System (2.10) has two different solutions with initial value
ω0 to e (ω0) ≤ 0 for ω ≥ ω0, which contradicts to Theorem 3.1. In a similar way, we can prove that if
e (0) < 0 , then e (ω0) ≤ 0 for ω ≥ 0.
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So, we can have

DαωG (ω) = Dαω ∥e (ω)∥
= sgn (e (ω))

(
Dαωe (ω)

)
= γsgn (e (ω))

{
PK

[
u (ω) − ρT u (ω)

]
− PK

[
v (ω) − ρT v (ω)

]}
−γρsgn (e (ω))

{
TPK

[
u (ω) − ρT u (ω)

]
− TPK

[
v (ω) − ρT v (ω)

]}
+γρsgn (e (ω)) {T u (ω) − T v (ω)} − γsgn (e (ω)) e (ω)

≤ γ
∥∥∥PK

[
u (ω) − ρT u (ω)

]
− PK

[
v (ω) − ρT v (ω)

]∥∥∥
+γρ

∥∥∥TPK
[
u (ω) − ρT u (ω)

]
− TPK

[
v (ω) − ρT v (ω)

]∥∥∥
+γρ ∥T u (ω) − T v (ω)∥ + γ ∥e (ω)∥

≤ γ (1 + ρβ) ∥u (ω) − v (ω) − ρ (T u (ω) − T v (ω))∥
+γρβ ∥u (ω) − v (ω)∥ + γ ∥e (ω)∥

≤ γ (1 + ρβ) ∥u (ω) − v (ω)∥ + γρβ (1 + ρβ) ∥u (ω) − v (ω)∥
+γ (1 + ρβ) ∥e (ω)∥

= γ (1 + ρβ) (2 + ρβ) ∥e (ω)∥ ,

which implies

DαωG (ω) ≤ γ (1 + ρβ) (2 + ρβ) G (ω)

= θ1G (ω) ,

thus by using Lemma 2.13, we have

G (ω) ≤ G (0) exp
(
θ1ω

α

Γ (α + 1)

)
,

where
θ1 = γ (1 + ρβ) (2 + ρβ) < 0.

Let θ1 = −θ2, where θ2 is a positive constant. Then

G (ω) ≤ G (0) exp
(
−θ2ω

α

Γ (α + 1)

)
,

which shows that the dynamical system (2.10) is α-exponentially stable. □

Remark 3.4. We would like to mention that, for α = 1, Theorems 3.1–3.3 are also valid under the
same conditions. This gives us a new technique to study dynamical systems associated with variational
inequalities.

4. Conclutions

In this paper, we have introduced and studied fractional Wiener-Hopf dynamical systems for
classical variational inequalities. These fractional dynamical systems related to the variational
inequalities are proposed and analyzed using the projection technique. We have proved that these
dynamical systems converge exponentially to the unique solution of variational inequality problems
under some suitable conditions. The suggested dynamical systems can be used in designing recurrent
neural networks for solving variational inequalities and related optimization problems.
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