Research article Special Issues

Analysis of the solvability and stability of the operator-valued Fredholm integral equation in Hölder space

  • Received: 07 July 2023 Revised: 25 August 2023 Accepted: 04 September 2023 Published: 12 September 2023
  • MSC : 26B35, 45B05, 47H10

  • In this paper, the solvability of an operator-valued integral equation in Hölder spaces, i.e.,

    $ \begin{equation*} \label{fredholm} w(\zeta_1) = y(\zeta_1)+w(\zeta_1)\int_{\bf J}\kappa(\zeta_1, \varphi)(T_1w)(\varphi)d\varphi+z(\zeta_1)\int_{\bf J}h(\varphi, (T_2w)(\varphi))d\varphi, \end{equation*} $

    for $ \zeta_1\in{\bf J} = [0, 1], $ is studied by using Darbo's fixed point theorem (FPT). The process of the measure of noncompactness of the operators which constitute an intermediary of contraction and compact mappings can be explained with the help of Darbo's FPT. The greater effectiveness of Darbo's FPT due to its non-involvement of the compactness property gives a better scope when dealing with the Schauder FPT, where compactness is an essential property. To obtain a unique solution, we apply the Banach fixed point theorem and discuss the Hyers-Ulam stability of the integral equation. We also give some important examples to illustrate the existence and uniqueness of the results.

    Citation: Manalisha Bhujel, Bipan Hazarika, Sumati Kumari Panda, Dimplekumar Chalishajar. Analysis of the solvability and stability of the operator-valued Fredholm integral equation in Hölder space[J]. AIMS Mathematics, 2023, 8(11): 26168-26187. doi: 10.3934/math.20231334

    Related Papers:

  • In this paper, the solvability of an operator-valued integral equation in Hölder spaces, i.e.,

    $ \begin{equation*} \label{fredholm} w(\zeta_1) = y(\zeta_1)+w(\zeta_1)\int_{\bf J}\kappa(\zeta_1, \varphi)(T_1w)(\varphi)d\varphi+z(\zeta_1)\int_{\bf J}h(\varphi, (T_2w)(\varphi))d\varphi, \end{equation*} $

    for $ \zeta_1\in{\bf J} = [0, 1], $ is studied by using Darbo's fixed point theorem (FPT). The process of the measure of noncompactness of the operators which constitute an intermediary of contraction and compact mappings can be explained with the help of Darbo's FPT. The greater effectiveness of Darbo's FPT due to its non-involvement of the compactness property gives a better scope when dealing with the Schauder FPT, where compactness is an essential property. To obtain a unique solution, we apply the Banach fixed point theorem and discuss the Hyers-Ulam stability of the integral equation. We also give some important examples to illustrate the existence and uniqueness of the results.



    加载中


    [1] R. P. Agarwall, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge University Press, 2021.
    [2] S. Banach, Sur less opérations dans les ensembles abstraits ets leur applications aux equation integrates, Fund. Math., 3 (1922), 133–181.
    [3] J. Banaś, K. Goebel, Measure of noncompactness in Banach spaces, In: Lecture Notes in Pure and Applied Mathematics, New York, 1980.
    [4] J. Banaś, R. Nalepa, On a measure of noncompactness in the space of functions with tempered increments, J. Math. Anal. Appl., 435 (2016) 1634–1651. https://doi.org/10.1016/j.jmaa.2015.11.033 doi: 10.1016/j.jmaa.2015.11.033
    [5] J. Banaś, R. Nalepa, On the space of functions with growths tempered by a modulus of continuity and its applications, J. Funct. Space. Appl., 2013 (2013) 820437. https://doi.org/10.1155/2013/820437 doi: 10.1155/2013/820437
    [6] J. Banaś, M. Lecko, Fixed points of the product of operators in Banach algebra, Pan Amer. Math. J., 12 (2002), 101–109.
    [7] J. Banaś, K. Sadarangani, Solutions of some functional-integral equations in Banach algebra, Math. Comput. Model., 38 (2003) 245–250. https://doi.org/10.1016/S0895-7177(03)90084-7 doi: 10.1016/S0895-7177(03)90084-7
    [8] J. Banaś, L. Olszowy, On a class of measure of noncompactness in Banach algebras and their application to nonlinear integral equations, Z. Anal. Anwend., 28 (2009), 1–24. https://doi.org/10.4171/zaa/1394 doi: 10.4171/zaa/1394
    [9] M. Bhujel, B. Hazarika, Existence of solutions of Fredholm type integral equations in Hölder spaces, J. Integral Equ. Appl., 35 (2023), 1–10. https://doi.org/10.1216/jie.2023.35.1 doi: 10.1216/jie.2023.35.1
    [10] M. Bhujel, B. Hazarika, Solvability of quartic integral equations in Hölder space, Rocky Mt. J. Math., in press.
    [11] M. J. Caballero, M. A. Darwish, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type in Hölder spaces, Electron. J. Diff. Equ., 31 (2014), 1–10. https://doi.org/10.1155/2014/856183 doi: 10.1155/2014/856183
    [12] M. J. Caballero, R. Nalepa, K. Sadarangani, Solvability of a quadratic integral equation of Fredholm type with Supremum in Hölder spaces, J. Funct. Space. Appl., 2014 (2014), 856183. https://doi.org/10.1155/2014/856183 doi: 10.1155/2014/856183
    [13] L. Cǎdariu, V. Radu, On the stability of the Cauchy functional equation: A fixed point approach, Iteration Theory (ECIT'02), Grazer Math. Ber., 346 (2004), 43–52.
    [14] L. P. Castro, A. Ramos, Hyers-Ulam-Rassias stability for a class of nonlinear volterra integral equations, Banach J. Math. Anal., 3 (2009), 36–43. https://doi.org/10.15352/bjma/1240336421 doi: 10.15352/bjma/1240336421
    [15] S. Chandrasekhar, Radiative transfer, Oxford University Press, London, UK, 1950.
    [16] M. Cichoń, M. M. A. Metwali, On a fixed point theorem for the product of operators, J. Fixed Point Theory Appl., 18 (2016), 753–770. https://doi.org/10.1007/s11784-016-0319-7 doi: 10.1007/s11784-016-0319-7
    [17] K. Cichoń, M. Cichoń, M. M. A. Metwali, On some fixed point theorems in abstract duality pairs, Rev. Unión Mat. Argent., 61 (2020), 249–266. https://doi.org/10.33044/revuma.v61n2a04 doi: 10.33044/revuma.v61n2a04
    [18] M. Cichoń, M. M. A. Metwali, On the Banach algebra of integral-variation type Hölder spaces and quadratic fractional integral equations, Banach J. Math. Anal., 16 (2022), 34. https://doi.org/10.1007/s43037-022-00188-4 doi: 10.1007/s43037-022-00188-4
    [19] E. T. Copson, On an integral equation arising in the theory of diffraction, Q. J. Math., 17 (1946), 19–34. https://doi.org/10.1093/qmath/os-17.1.19 doi: 10.1093/qmath/os-17.1.19
    [20] M. T. Ersoy, H. Furkan, On the existence of the solutions of a Fredholm integral equation with a modified argument in Hölder spaces, Symmetry, 10 (2018), 522. https://doi.org/10.3390/sym10100522 doi: 10.3390/sym10100522
    [21] M. T. Ersoy, H. Furkan, B. Sarıçiçek, On the solutions of some nonlinear Fredholm integral equations in topological Hölder spaces, TWMS J. App. Eng. Math., 10 (2020), 657–668.
    [22] M. T. Ersoy, An application to the existence of solutions of the integral equations, Türk. J. Math. Comput. Sci., 13 (2021), 115–121.
    [23] M. Gachpazan, O. Baghani, Hyers-Ulam stability of nonlinear integral equation, Fixed Point Theory A., 2010 (2010), 927640. https://doi.org/10.1155/2010/927640 doi: 10.1155/2010/927640
    [24] R. I. Hassan, Existence, uniqueness, and stability solutions of nonlinear system of integral equations, J. Mat. MANTIK, 6 (2020), 76–82. https://doi.org/10.15642/mantik.2020.6.2.76-82 doi: 10.15642/mantik.2020.6.2.76-82
    [25] S. Hu, M. Khavanin, W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal., 34 (1989), 261–266. https://doi.org/10.1080/00036818908839899 doi: 10.1080/00036818908839899
    [26] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941) 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [27] S. M. Jung, A fixed point approach to the stability of a volterra integral equation, Fixed Point Theory A., 2007 (2007). https://doi.org/10.1155/2007/57064 doi: 10.1155/2007/57064
    [28] Y. Li, L. Hua, Hyers-Ulam stability of polynomial equation, Banach J. Math. Anal., 3 (2009), 86–90. https://doi.org/10.15352/bjma/1261086712 doi: 10.15352/bjma/1261086712
    [29] N. Lu, F. He, H. Huang, Answers to questions on the generalized Banach contraction conjecture in b-metric spaces, J. Fix. Point Theory A., 21 (2019), 43. https://doi.org/10.1007/s11784-019-0679-x doi: 10.1007/s11784-019-0679-x
    [30] J. R. Morales, E. M. Rojas, Hyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay, Int. J. Nonlinear Anal. Appl., 2 (2011), 1–6.
    [31] S. Öǧrekçi, Y. Başcı, A. Mısır, On the Ulam type stability of nonlinear Volterra integral equations, arXiv: 2105.11778, 2021. https://doi.org/10.48550/arXiv.2105.11778
    [32] S. Öǧrekçi, Y. Başcı, A. Mısır, A fixed point method for stability of nonlinear Volterra integral equations in the sense of Ulam, Math. Meth. Appl. Sci., 46 (2023), 8437–8444. https://doi.org/10.1002/mma.8988 doi: 10.1002/mma.8988
    [33] Í. Özdemir, On the solvability of a class of nonlinear integral equations in Hölder spaces, Numer. Func. Anal. Opt., 43 (2022), 1–29. https://doi.org/10.1080/01630563.2022.2032148 doi: 10.1080/01630563.2022.2032148
    [34] T. M. Rassias, On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1
    [35] S. M. Ulam, Problems in modern mathematics, John Wiley and Sons, New York, 1960.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(647) PDF downloads(70) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog