In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of nonlinear Fredholm integral equations (NFIEs). The existence and unique numerical solution of this system is discussed. Then, the modified Taylor's method was applied to transform the system of NFIEs into nonlinear algebraic systems (NAS). The existence and uniqueness of the nonlinear algebraic system's solution are discussed using Banach's fixed point theorem. Also, the stability of the modified error is presented. Some numerical examples are performed to show the efficiency and simplicity of the presented method, and all results are obtained using Wolfram Mathematica 11.
Citation: R. T. Matoog, M. A. Abdou, M. A. Abdel-Aty. New algorithms for solving nonlinear mixed integral equations[J]. AIMS Mathematics, 2023, 8(11): 27488-27512. doi: 10.3934/math.20231406
In this article, the existence and unique solution of the nonlinear Volterra-Fredholm integral equation (NVFIE) of the second kind is discussed. We also prove the solvability of the second kind of the NVFIE using the Banach fixed point theorem. Using quadrature method, the NVFIE leads to a system of nonlinear Fredholm integral equations (NFIEs). The existence and unique numerical solution of this system is discussed. Then, the modified Taylor's method was applied to transform the system of NFIEs into nonlinear algebraic systems (NAS). The existence and uniqueness of the nonlinear algebraic system's solution are discussed using Banach's fixed point theorem. Also, the stability of the modified error is presented. Some numerical examples are performed to show the efficiency and simplicity of the presented method, and all results are obtained using Wolfram Mathematica 11.
[1] | M. A. Abdou, M. E. Nasr, M. A. Abdel-Aty, A study of normality and continuity for mixed integral equations, J. Fixed Point Theory Appl., 20 (2018), 5. https://doi.org/10.1007/s11784-018-0490-0 doi: 10.1007/s11784-018-0490-0 |
[2] | S. A. Abusalim, M. A. Abdou, M. A. Abdel-Aty, M. E. Nasr, Hybrid functions spproach via nonlinear integral equations with symmetric and nonsymmetrical Kernel in two dimensions, Symmetry, 15 (2023), 1408. https://doi.org/10.3390/sym15071408 doi: 10.3390/sym15071408 |
[3] | A. M. Al-Bugami, Numerical treating of mixed integral equation two-dimensional in surface cracks in finite layers of materials, Adv. Math. Phys., 2022 (2022), 3398175. https://doi.org/10.1155/2022/3398175 doi: 10.1155/2022/3398175 |
[4] | V. M. Aleksandov, E. V. Kovalenko, Problems in mechanics media with mixed boundary conditions, Moscow: Nauk, 1986. |
[5] | S. E. A. Alhazmi, New model for solving mixed integral equation of the first kind with generalized potential kernel, J. Math. Res., 9 (2017), 18–29. |
[6] | S. E. Al Hazmi, Projection-iterated method for solving numerically the nonlinear mixed integral equation in position and time, J. Umm Al-Qura Univ. Appl. Sci., 9 (2023), 107–114. |
[7] | K. E. Atkinson, The numerical solution of integral equation of the second kind, Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511626340 |
[8] | M. Basseem, Degenerate method in mixed nonlinear three dimensions integral equation, Alex. Eng. J., 58 (2019), 387–392. https://doi.org/10.1016/j.aej.2017.10.010 doi: 10.1016/j.aej.2017.10.010 |
[9] | H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543234 |
[10] | L. M. Delves, J. L. Mohamed, Computational methods for integral equations, Cambridge: Cambridge University Press, 1985. https://doi.org/10.1017/CBO9780511569609 |
[11] | J. Gao, M. Condon, A. Iserles, Spectral computation of highly oscillatory integral equations in laser theory, J. Comput. Phys., 395 (2019), 351–381. https://doi.org/10.1016/j.jcp.2019.06.045 doi: 10.1016/j.jcp.2019.06.045 |
[12] | Z. Gouyandeh, T. Allahviranloo, A. Armand, Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via Tau-collocation method with convergence analysis, J. Comput. Appl. Math., 308 (2016), 435–446. https://doi.org/10.1016/j.cam.2016.06.028 doi: 10.1016/j.cam.2016.06.028 |
[13] | L. Grammont, P. B. Vasconcelos, M. Ahues, A modified iterated projection method adapted to a nonlinear integral equations, Appl. Math. Comput., 276 (2016), 432–441. |
[14] | R. M. Hafez, Y. H. Youssri, Spectral Legendre-Chebyshev treatment of 2D linear and nonlinear mixed Volterra-Fredholm integral equation, Math. Sci. Lett., 9 (2020), 37–47. |
[15] | B. H. Hashemi, M. Khodabin, K. Maleknejad, Numerical method for solving linear stochastic itô-volterra integral equations driven by fractional brownian motion using hat functions, Turk. J. Math., 41 (2017), 611–624. http://doi.org/10.3906/mat-1508-50 doi: 10.3906/mat-1508-50 |
[16] | M. H. Heydari, M. R. Hooshmandasl, F. M. M. Ghaini, C. Cattani, A computational method for solving stochastic itô-volterra integral equations based on stochastic operational matrix for generalized hat basis functions, J. Comput. Phys., 270 (2014), 402–415. https://doi.org/10.1016/j.jcp.2014.03.064 doi: 10.1016/j.jcp.2014.03.064 |
[17] | A. R. Jan, Solution of nonlinear mixed integral equation via collocation method basing on orthogonal polynomials, Heliyen, 8 (2022), e11827. https://doi.org/10.1016/j.heliyon.2022.e11827 doi: 10.1016/j.heliyon.2022.e11827 |
[18] | M. Lienert, R. Tumulka, A new class of Volterra type integral equations from relativistic quantum physics, J. Integral Equ. Appl., 31 (2019), 535–569. https://doi.org/10.1216/JIE-2019-31-4-535 doi: 10.1216/JIE-2019-31-4-535 |
[19] | N. Madbouly, Solutions of Hammerstein integral equations arising from chemical reactor theory, University of Strathclyde, PhD Thesis, 1996. |
[20] | S. Micula, An iterative numerical method for fredholm-volterra integral equations of the second kind, Appl. Math. Comput., 270 (2015), 935–942. https://doi.org/10.1016/j.amc.2015.08.110 doi: 10.1016/j.amc.2015.08.110 |
[21] | F. Mirzaee, E. Hadadiyan, Numerical solution of Volterra-Fredholm integral equations via modification of hat functions, Appl. Math. Comput., 280 (2016), 110–123. https://doi.org/10.1016/j.amc.2016.01.038 doi: 10.1016/j.amc.2016.01.038 |
[22] | F. Mirzaee, S. F. Hoseini, Application of Fibonacci collocation method for solving Volterra-Fredholm integral equations, Appl. Math. Comput., 273 (2016), 637–644. https://doi.org/10.1016/j.amc.2015.10.035 doi: 10.1016/j.amc.2015.10.035 |
[23] | F. Mirzaee, E. Hadadiyan, Applying the modified block-pulse functions to solve the three-dimensional Volterra-Fredholm integral equations, Appl. Math. Comput., 265 (2015), 759–767. https://doi.org/10.1016/j.amc.2015.05.125 doi: 10.1016/j.amc.2015.05.125 |
[24] | F. Mirzaee, N. Samadyar, Convergence of 2d-orthonormal Bernstein collocation method for solving 2d-mixed Volterra-Fredholm integral equations, T. A. Razmadze Math. In., 172 (2018), 631–641. https://doi.org/10.1016/j.trmi.2017.09.006 doi: 10.1016/j.trmi.2017.09.006 |
[25] | F. Mirzaee, Numerical solution of nonlinear fredholm-volterra integral equations via bell polynomials, Comput. Methods Differ. Equ., 5 (2017), 88–102. |
[26] | F. Mirzaee, E. Hadadiyan, Using operational matrix for solving nonlinear class of mixed volterra-fredholm integral equations, Math. Methods Appl. Sci., 40 (2017), 3433–3444. https://doi.org/10.1002/mma.4237 doi: 10.1002/mma.4237 |
[27] | M. E. Nasr, M. A. Abdel-Aty, A new techniques applied to Volterra-Fredholm integral equations with discontinuous kernel, J. Comput. Anal. Appl., 29 (2021), 11–24. |
[28] | M. E. Nasr, M. A. Abdel-Aty, Analytical discussion for the mixed integral equations, J. Fixed Point Theory Appl., 20 (2018), 115. https://doi.org/10.1007/s11784-018-0589-3 doi: 10.1007/s11784-018-0589-3 |
[29] | S. Noeiaghdam, S. Micula, A novel method for solving second kind Volterra integral equations with discontinuous Kernel, Mathematics, 9 (2021), 2172. https://doi.org/10.3390/math9172172 doi: 10.3390/math9172172 |
[30] | S. Paul, M. M. Panja, B. N. Mandal, Use of legendre multiwavelets to solve carleman type singular integral equations, Appl. Math. Model., 55 (2018), 522–535. https://doi.org/10.1016/j.apm.2017.11.008 doi: 10.1016/j.apm.2017.11.008 |
[31] | G. Y. Popov, Contact problems for a linearly deformable foundation, 1982. |
[32] | A. M. Rocha, J. S. Azevedo, S. P. Oliveira, M. R. Correa, Numerical analysis of a collocation method for functional integral equations, Appl. Numer. Math., 134 (2018), 31–45. https://doi.org/10.1016/j.apnum.2018.07.002 doi: 10.1016/j.apnum.2018.07.002 |
[33] | S. Salon, M. Chari, Numerical methods in electromagnetism, Elsevier, 1999. |
[34] | B. Shiri, A note on using the differential transformation method for the integro-differential equations, Appl. Math. Comput., 219 (2013), 7306–7309. https://doi.org/10.1016/j.amc.2012.03.106 doi: 10.1016/j.amc.2012.03.106 |
[35] | N. H. Sweilam, A. M. Nagy, I. K. Youssef, M. M. Mokhtar, New spectral second kind chebyshev wavelets scheme for solving systems of integro-differential equations, Int. J. Appl. Comput. Math., 3 (2017), 333–345. https://doi.org/10.1007/s40819-016-0157-8 doi: 10.1007/s40819-016-0157-8 |
[36] | A. N. Tikhonov, V. Y. Arsenin, Solutions of ill-posed problems, 1977. https://doi.org/10.1137/1021044 |
[37] | K. Wang, Q. Wang, Taylor polynomial method and error estimation for a kind of mixed Volterra-Fredholm integral equations, Appl. Math. Comput., 229 (2014), 53–59. https://doi.org/10.1016/j.amc.2013.12.014 doi: 10.1016/j.amc.2013.12.014 |
[38] | K. Warnick, Numerical analysis for electromagnetic integral equations, Artech, 2008. |
[39] | A. M. Wazwaz, Linear and nonlinear integral equations: Methods and applications, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-21449-3 |
[40] | G. C. Wu, B. Shiri, Q. Fan, H. R. Feng, Terminal value problems of non-homogeneous fractional linear systems with general memory kernels, J. Nonlinear Math. Phys., 30 (2023), 303–314. https://doi.org/10.1007/s44198-022-00085-2 doi: 10.1007/s44198-022-00085-2 |
[41] | X. Yi, Nonhomogeneous nonlinear integral equations on bounded domains, AIMS Mathematics, 8 (2023), 22207–22224. https://doi.org/10.3934/math.20231132 doi: 10.3934/math.20231132 |