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1. Introduction

Our goal in this paper is to use a new algorithm based on a modified Taylor’s method to solve the
following partial integro-differential equation (PIDE):

∂

∂t
(ωΨ(u, t) − f (u, t)) = λξ(t)

∫ 1

0
k(u, v)ϑ(t, v,Ψ(v, t))dv,

Ψ(u, 0) = φ(u).
(1.1)
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Here, f (u, t) and ϑ(t, v,Ψ(v, t)) are two given functions, while the function Ψ(u, t) is unknown in the
Banach space L2[0, 1] × C[0,T ]. The kernel of position, for x, y ∈ [0, 1], k(u, v) is continuous. The
kernel of time ξ(t), t ∈ [0,T ], T < 1, is continuous in the class C[0,T ], the constant ω determines the
type of the integral equation and λ is a complex constant with a distinct physical meaning [40, 41].

Integrating the previous equation, we get

ωΨ(u, t) = γ(u, t) + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψ(v, τ))dvdτ,

γ(u, t) = f (u, t) + ωφ(u) − f (u, 0).
(1.2)

Equation (1.2) is called the NVFIE.
These types of NVFIEs appear in a wide variety of applications in many fields including

generalized potential theory [5], electromagnetic and electrodynamics [33, 38], theory of
elasticity [31], quantum mechanics [18], contact problems in two layers of elastic materials [3], fluid
mechanics [36], radiation [19], nonlinear problems theory of boundary value [4, 9], population
genetics [9, 39], mathematical economics [10] and spectral relationships in laser theory [11].

Often, finding exact solutions of these equations is very difficult. Therefore, it is better to develop
an effective and accurate numerical method to find a solution of these types of problems. To solve the
NVFIE given by Eq (1.2), numerous computational techniques have been proposed, such as the
separation of variables method [27], Resolvent method [1], modified iterated projection method [13],
degenerate kernel method [8, 28], Lagrange polynomials [32], Legendre polynomials [30], Picard
iteration method [20], Chebyshev wavelets polynomials [35], Legendre-Chebyshev collocation
method [14], block pulse functions [23], hat functions [15, 16], Tau-collocation method [12], Hybrid
Functions method [2], collocation methods [9, 17, 24], Lagrange–collocation method [29], operational
matrices [26], Bell polynomials [25], Fibonacci collocation method [22], Taylor polynomial
method [37] and modification of hat functions [21]. We have developed an accurate and new method
to find the numerical solution to the problem presented by Eq (1.2), and this is the main goal of the
study.

The study of the problem in space and time is included in this article, which makes it a rare papers
in mathematical physics. This provides the authors with a more comprehensive understanding of how
to analyze and solve this problem utilizing a variety of numerical techniques.

In the present study, we consider NVFIE of the second type. Then, a new modification of the Taylor
series expansion method is proposed for the NVFIE of the second kind (1.2). The integral equations
illustrated in the examples can be approximated using this method, which have very effective and
simple steps. Using the presented method to transform the system of NFIEs into NAS, we will explain
the specific and practical features of this method in the following sections.

The existence and unique solution of the NVFIE of the second kind are discussed in Section 2.
In Section 3, the second type of NVFIE is obviously solvable using the Banach fixed point theorem.
In Section 4, using the quadrature method, the NVFIE leads to a system of NFIEs. The existence
and unique numerical solution of a system of NFIEs are discussed in Section 5. In Section 6, the
modified Taylor’s method was applied to transform a system of NFIEs into an NAS. The existence and
uniqueness of the nonlinear algebraic system’s solution are studied using Banach’s fixed point theorem
in Section 7. The stability of the modified error is defined in Section 8, while Section 9 solves various
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illustrative examples by using the program Wolfram Mathematica 11 to confirm the efficiency of the
approach. Finally, some remarks and conclusions are shown in Section 10.

2. Existence and uniqueness solution of the NVFIE (1.2)

We provide the following assumptions in order to discuss the existence and uniqueness of the
solution of Eq (1.2):

(i) The kernel k(u, v) is continuous in L2[0, 1] and satisfies |k(u, v)| ≤ β, ∀u, v ∈ [0, 1] and ω ∈ R−0.
(ii) The function ξ(τ) is continuous in the space C[0,T ] and satisfies

||ξ(τ)||C[0,T ] = max
t∈[0,T ]

|ξ(τ)| ≤ α.

(iii) The norm of the given function γ(u, t) is defined as

‖γ(u, t)‖L2[0,1]×C[0,T ] = max
0≤t≤T

∣∣∣∣∣∣∣∣
∫ t

0

[∫ 1

0
γ2(u, τ)du

] 1
2

dτ

∣∣∣∣∣∣∣∣ = χ.

(iv) The known function ϑ(t, u,Ψ(u, t)), for the constants υ > δ and υ > ε, satisfies:

(a) max
0≤t≤T

∣∣∣∣∣∣∣∣
∫ t

0

[∫ 1

0
|ϑ(τ, v,Ψ(v, τ))|2dv

] 1
2

dτ

∣∣∣∣∣∣∣∣ ≤ δ‖Ψ(u, t)‖L2[0,1]×C[0,T ],

(b) |ϑ(t, u,Ψ1(u, t)) − ϑ(t, u,Ψ2(u, t))| ≤ ∆(t, u)|Ψ1(u, t) − Ψ2(u, t)|,

where

‖∆(t, u)‖ = max
0≤τ≤t≤T

∣∣∣∣∣∣∣∣
∫ t

0

[∫ 1

0
|∆(τ, u)|2du

] 1
2

dτ

∣∣∣∣∣∣∣∣ = ε.

where α, β, χ, δ, ε and υ are positive constants.

Theorem 2.1. If the conditions (i)–(iv-b) are satisfied, and

T <
|ω|

βαυ|λ|
, (2.1)

then Eq (1.2) has a unique solution Ψ(u, t) in the Banach space L2[0, 1] ×C[0,T ].

Proof. We apply the successive approximation method (Picard’s method) to prove this theorem.
A solution for Eq (1.2) can be formed as a sequence of functions {Ψm(u, t)} as {m} tends to∞; thus,

Ψ(u, t) = lim
m→∞

Ψm(u, t),

where

Ψm(u, t) =

m∑
l=0

S l(u, t), t ∈ [0,T ], m = 0, 1, 2, . . . (2.2)

in which the functions S l(u, t), l = 0, 1, . . . ,m are continuous functions and take the following form:

S m(u, t) = Ψm(u, t) − Ψm−1(u, t)
S 0(u, t) = γ(u, t).

}
. (2.3)

We have to consider the following lemmas in order to prove the previous theorem. �
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Lemma 2.1. If the series
∑m

l=0 S l(u, t) is uniformly convergent, then Ψ(u, t) represents a solution of
Eq (1.2).

Proof. We establish a sequence Ψm(u, t) that is specified by

Ψm(u, t) =
1
ω
γ(u, t) +

λ

ω

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψm−1(v, τ))dvdτ,

Ψ0(u, t) =
1
ω

f (u, t) + φ(u) −
1
ω

f (u, 0).
(2.4)

Then, we obtain

Ψm(u, t) − Ψm−1(u, t) =
λ

ω

∫ t

0

∫ 1

0
ξ(τ)k(u, v)[ϑ(τ, v,Ψm−1(v, τ)) − ϑ(τ, v,Ψm−2(v, τ))]dvdτ.

From Eq (2.3) and properties of the norm, we get

‖S m(u, t)‖ ≤
|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
ξ(τ)k(u, v)[ϑ(τ, v,Ψm−1(v, τ)) − ϑ(τ, v,Ψm−2(v, τ))]dvdτ

∥∥∥∥∥∥ , (2.5)

using (iv-b), we have

‖S m(u, t)‖ ≤
|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
ξ(τ)k(u, v)∆(τ, v)|Ψm−1(v, τ) − Ψm−2(v, τ)|dvdτ

∥∥∥∥∥∥
≤
|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
ξ(τ)k(u, v)∆(τ, v)|S m−1(v, τ)|dvdτ

∥∥∥∥∥∥
≤
υ|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
ξ(τ)k(u, v)|S m−1(v, τ)|dvdτ

∥∥∥∥∥∥ .
Conditions (i)–(ii) have led to

‖S m(u, t)‖ ≤
βαυ|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
|S m−1(v, τ)|dvdτ

∥∥∥∥∥∥ , (2.6)

for m = 1 and using condition (iii), we get from formula (5.2)

‖S 1(u, t)‖ ≤
βαυ|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
|S 0(v, τ)|dvdτ

∥∥∥∥∥∥
≤
βαυ|λ|

|ω|
‖t‖χ,

(2.7)

where
T = max

0<t≤T
|t|.

Therefore, formula (2.7) becomes

‖S 1(u, t)‖ ≤
βαυ|λ|

|ω|
Tχ,
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and by induction, we have

‖S m(u, t)‖ ≤ Θmχ, Θ =
βαυ|λ|

|ω|
T < 1, m = 0, 1, 2, . . . (2.8)

Since

T <
|ω|

βαυ|λ|
,

which allows us to conclude that the sequence Ψm(u, t) has a convergent solution. Thus, for m → ∞,
we get

ωΨ(u, t) = lim
m→∞

(
γ(u, t) + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψm(v, τ))dvdτ

)
= γ(u, t) + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψ(v, τ))dvdτ.

�

Lemma 2.2. The function Ψ(u, t) represents a unique solution of NVFIE (1.2).

Proof. To provide that Ψ(u, t) is a unique solution, assume that there exists another solution Φ(u, t) of
Eq (1.2), then we obtain

ωΦ(u, t) = γ(u, t) + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Φ(v, τ))dvdτ,

and

Ψ(u, t) − Φ(u, t) =
λ

ω

∫ t

0

∫ 1

0
ξ(τ)k(u, v)[ϑ(τ, v,Ψ(v, τ)) − ϑ(τ, v,Φ(v, τ))]dvdτ.

From condition (iv-b), we have

‖Ψ(u, t) − Φ(u, t)‖ ≤
|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
ξ(τ)k(u, v)∆(τ, v)|Ψ(v, τ) − Φ(v, τ)|dvdτ

∥∥∥∥∥∥
≤
υ|λ|

|ω|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
ξ(τ)k(u, v)|Ψ(v, τ) − Φ(v, τ)|dvdτ

∥∥∥∥∥∥ .
Using conditions (i)–(ii), we have

‖Ψ(u, t) − Φ(u, t)‖ ≤
βαυ|λ|

|ω|
T‖Ψ(u, t) − Φ(u, t)‖

≤ Θ‖Ψ(u, t) − Φ(u, t)‖; Θ < 1.

If ‖Ψ(u, t) − Φ(u, t)‖ , 0, then the last formula yields Θ ≥ 1, which is a contradiction. Thus, ‖Ψ(u, t) −
Φ(u, t)‖ = 0 meaning that Ψ(u, t) = Φ(u, t), implying that the solution is unique. �
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3. Normality and continuity of the integral operator

To show the normality and continuity of the NVFIE (1.2), it will be represented in its integral
operator form

UΨ =
1
ω
γ(u, t) + UΨ, (3.1)

and

UΨ =
λ

ω

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψ(v, τ))dvdτ.

For the normality of the integral operator
From Eq (3.1), we obtain

‖UΨ‖ ≤
|λ|

|ω|

∫ t

0

∫ 1

0
|ξ(τ)||k(u, v)||ϑ(τ, v,Ψ(v, τ))|dvdτ.

Applying conditions (i),(ii) and (iv-a), we get

‖UΨ‖ ≤
βαυ|λ|

|ω|
T‖Ψ(u, t)‖

≤ Θ‖Ψ(u, t)‖; Θ =
βαυ|λ|

|ω|
T,

such that,

T <
|ω|

βαυ|λ|
,

Therefore, the integral operator U has a normality, and through the condition (iii), we directly proved
that the integral operator U also has a normality.
For the continuity of the integral operator

We consider the two functions Ψ1(u, t), Ψ2(u, t) in L2[0, 1] ×C[0,T ], satisfies Equation (3.1) then,

UΨ1 =
1
ω
γ(u, t) +

λ

ω

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψ1(v, τ))dvdτ.

Subtracting the function Ψ2(u, t) from Ψ1(u, t), we get

UΨ1 − UΨ2 = U[Ψ1 − Ψ2],

Using conditions (i),(ii) and (iv-b), we obtain

‖U[Ψ1 − Ψ2]‖ ≤
βαυ|λ|

|ω|
T‖Ψ1 − Φ2‖,

hence, we have
‖U[Ψ1 − Ψ2]‖ ≤ Θ‖Ψ1 − Φ2‖; Θ < 1. (3.2)

Inequality (3.2) shows the continuity of the integral operator U. Furthermore, U is a contraction
operator in L2[0, 1]×C[0,T ]. U has a unique fixed point, as proven by the Banach fixed point theorem.
The existence and uniqueness of the NVFIE (1.2) are accepted if the continuity and normality of the
integral operator are used.
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4. System of nonlinear Fredholm integral equations

The solution of Eq (1.2) is usually reduced to a system of NFIEs by using the quadrature method [7].
We divide the interval [0,T ], 0 ≤ t ≤ T, as 0 = t0 < t1 < · · · < tn < · · · < tN = T, where t = tn, n =

0, 1, . . . ,N; to get

ωΨ(u, tn) = γ(u, tn) + λ

∫ tn

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψ(v, τ))dvdτ,

γ(u, tn) = f (u, tn) + ωφ(u) − f (u, 0),
(4.1)

and the term for the Volterra integral are as follows:∫ tn

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψ(v, τ))dvdτ =

n∑
i=0

µiξ(ti)
∫ 1

0
k(u, v)ϑ(ti, v,Ψ(v, ti))dv + O(~p+1

n ), (4.2)

where
~p+1

n −→ 0, p > 0, ~n = max
0≤i≤n

hi and hi = ti+1 − ti.

The constant p and the values of the weight formula µi depend on the number of derivatives ξ(τ),
∀τ ∈ [0,T ], with respect to t. Here, O(~p+1

n ) is the order of sum errors of the numerical approach of
splitting the interval [0,T ], and the difference between the integration and summation, where the error
is defined by:

Rn =

∫ tn

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψ(v, τ))dvdτ −

n∑
i=0

µiξ(ti)
∫ 1

0
k(u, v)ϑ(ti, v,Ψ(v, ti))dv. (4.3)

Using Eq (4.2) in Eq (4.1) and neglecting O(~p+1
n ), we obtain

ωΨ(u, tn) = γ(u, tn) + λ

n∑
i=0

µiξ(ti)
∫ 1

0
k(u, v)ϑ(ti, v,Ψ(v, ti))dv,

γ(u, tn) = f (u, tn) + ωφ(u) − f (u, 0).

(4.4)

And then using the notations below:

Ψ(u, tn) = Ψn(u), γ(u, tn) = γn(u), ϑ(ti, v,Ψ(v, ti)) = ϑi(v,Ψi(v)).

Equation (4.4) can be rewritten in the following form:

ωΨn(u) = γn(u) + λ

n∑
i=0

µiξi

∫ 1

0
k(u, v)ϑi(v,Ψi(v))dv,

γn(u) = fn(u) + ωφ(u) − f (u, 0).

(4.5)

When ω = 0, we get a system of NFIEs of the first-type, whereas Eq (4.5) represents a system of
NFIEs of the second-type when ω , 0.
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5. The Existence of a unique solution of the system of nonlinear Fredholm integral equations

To prove the existence of a unique solution of the system of NFIEs (4.5), we can define the following
conditions:

(i*) The kernel of continuous position satisfies |k(u, v)| ≤ β.
(ii*) The function µiξi satisfies maxi |µiξi| ≤ α

∗.

(iii*) maxn |γn(u)| ≤ χ∗.
(iv*) The function ϑi(u,Ψi(u)) satisfies: |ϑi(u,Ψi,1(u)) − ϑi(u,Ψi,2(u))| ≤ ε∗|Ψi,1(u) − Ψi,2(u)|.

Theorem 5.1. If the series
∑∞

n=0
{
Ξn,l(u)

}
, Ξn,m(u) = Ψn,m(u)−Ψn,m−1(u) is uniformly convergent, then

Ψn(u) represents a solution of a system of NFIEs (4.5).

Proof. We create a sequence Ψn,m(u) described by

ωΨn,m(u) = γn(u) + λ

n∑
i=0

µiξi

∫ 1

0
k(u, v)ϑi(v,Ψi,m−1(v))dv. (5.1)

Introduce the function Ξn,l(u) such that Ξn,m(u) = Ψn,m(u)−Ψn,m−1(u). In this case, the integral Eq (5.1),
becomes

Ξn,m(u) =
λ

ω

n∑
i=0

µiξi

∫ 1

0
k(u, v)[ϑi(v,Ψi,m−1(v)) − ϑi(v,Ψi,m−2(v))]dv.

By utilizing the properties of the norm, we get

‖Ξn,m(u)‖ ≤
|λ|

|ω|

∥∥∥∥∥∥∥
n∑

i=0

µiξi

∫ 1

0
k(u, v)[ϑi(v,Ψi,m−1(v)) − ϑi(i,Ψi,m−2(v))]dv

∥∥∥∥∥∥∥ .
Using (iv*), we have

‖Ξn,m(u)‖ ≤
ε∗|λ|

|ω|

∥∥∥∥∥∥∥
n∑

i=0

µiξi

∫ 1

0
k(u, v)Ξi,m−1(v)dv

∥∥∥∥∥∥∥ .
For conditions (i*) and (ii*), we have

‖Ξn,m(u)‖ ≤
βα∗ε∗|λ|

|ω|

∥∥∥∥∥∥
∫ 1

0
Ξi,m−1(v)dv

∥∥∥∥∥∥ , (5.2)

for m = 1 and using condition (iii*), we get from the last formula

‖Ξn,1(u)‖ ≤
βα∗ε∗|λ|

|ω|

∥∥∥∥∥∥
∫ 1

0
Ξi,0(v)dv

∥∥∥∥∥∥
≤
βα∗ε∗|λ|

|ω|
χ∗,

and by induction, we get

‖Ξn,m(u)‖ ≤ (Θn)mχ, Θn =
βα∗ε∗|λ|

|ω|
< 1, n = 0, 1, 2, . . . ,N. (5.3)

The result of inequality (5.3) shows that the sequence of the system of NFIEs (4.5) is uniformly
convergent and the system has a unique solution when m→ ∞. �
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6. Modified Taylor’s method

We construct the Taylor expansion approach in this section to arrive at the numerical solution of
Eq (4.5) and the method depends on differentiating both sides of (4.5) rth times. Then, we replace the
Taylor polynomial for the unknown function in the resulting equation and after convert to NAS. The
existence and uniqueness of the solution of the NAS are discussed, and next the solution of the system
will be acquired.

Assume the solution of (4.5) takes the form:

Ψn(u) =

M∑
r=0

1
r!

Ψ(r)
n (a)(u − a)(r); 0 ≤ u, a ≤ 1, (6.1)

which is a Taylor polynomial of degree M at u = a, where Ψ
(r)
n (a), r = 0, 1, . . . ,M are coefficients that

need to be determined.
To get the solution of (4.5) in the expression form (6.1), we first differentiate both sides of (4.5), rth

times with respect to u, to obtain:

ωΨ(r)
n (u) = γ(r)

n (u) + λ

n∑
i=0

µiξi

∫ 1

0

∂rk(u, v)
∂ur Gi(v)dv,

γ(r)
n (u) = f (r)

n (u) + ωφ(r)(u) − f (r)(u, 0), Gi(v) = ϑi(v,Ψi(v)).

(6.2)

We put u = a in relation (6.2), and then replace the Taylor expansions of Gi(v) at v = a, i.e.,

Gi(v) =

∞∑
j=0

1
j!

G( j)
i (a)(v − a)( j),

in the resulting relation. The result is

ωΨ(r)
n (a) = γ(r)

n (a) + λ

n∑
i=0

µiξi

∫ 1

0

∂rk(u, v)
∂ur

∣∣∣∣∣∣∣
u=a

 ∞∑
j=0

1
j!

G( j)
i (a)(v − a)( j)

 dv,

γ(r)
n (a) = f (r)

n (a) + ωφ(r)(a) − f (r)(a, 0).

Or briefly

ωΨ(r)
n (a) = γ(r)

n (a) + λ

n∑
i=0

∞∑
j=0

µiξikr, jG
( j)
i (a), (6.3)

where

kr, j =
1
j!

∫ 1

0

∂rk(u, v)
∂ur

∣∣∣∣∣∣
u=a

(v − a)( j)dv.

The quantities G( j)
i (a) (i = 0, 1, . . . , n; j = 0, 1, 2, . . .) in Eq (6.3) can be found from the permutation

relation

G( j)
i (a) =

∑
s1+2s2+...+ιsι= j
s1+s2+...+sι=∆

(
j

s1s2 . . . sι

)
[Gi(a)](∆)

(
Ψ′i(a)

1!

)s1
(
Ψ′′i (a)

2!

)s2

· · ·

Ψ
(ι)
i (a)
ι!

sι

, (6.4)
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where (
j

s1s2 . . . sι

)
=

j!
s1!s2! . . . sι!

and s1, s2, . . . , sι are positive integers and zero.
Note that the generalized Leibniz rule can be used to get the relation (6.4).

G( j)
i (a) = [ϑi(a,Ψi(a))]( j)

=
∑

s1+2s2+...+ιsι= j
s1+s2+...+sι=∆

(
j

s1s2 . . . sι

)
[ϑi(a,Ψi(a))](∆)

(
Ψ′i(a)

1!

)s1
(
Ψ′′i (a)

2!

)s2

· · ·

Ψ
(ι)
i (a)
ι!

sι

,

If we take r, j = 0, 1, . . . ,M, then Eq (6.3) becomes

ωΨ(r)
n (a) = γ(r)

n (a) + λ

n∑
i=0

M∑
j=0

µiξikr, jG
( j)
i (a), (6.5)

which is an algebraic system of M + 1 nonlinear equations for the M + 1 unknowns
Ψ

(0)
n (a),Ψ(1)

n (a), . . . ,Ψ(M)
n (a). Standard techniques can be used to solve these problems numerically.

A system of nonlinear algebraic equations is represented by Eq (6.5), and it has the following form

ωAr − λKrA∗ = Br, (6.6)

where Ar, Br and KrA∗ are matrices defined by

Ar =



Ψ
(0)
n (a)

Ψ
(1)
n (a)
.

.

.

Ψ
(M)
n (a)


, Br =



γ(0)
n (a)
γ(1)

n (a)
.

.

.

γ(M)
n (a)


,

and

KrA∗ =



∑n
i=0 µiξik0,0G

(0)
i (a)

∑n
i=0 µiξik0,1G

(1)
i (a) · · ·

∑n
i=0 µiξik0,MG(M)

i (a)∑n
i=0 µiξik1,0G

(0)
i (a)

∑n
i=0 µiξik1,1G

(1)
i (a) · · ·

∑n
i=0 µiξik1,MG(M)

i (a)
. . .

. . .

. . .∑n
i=0 µiξikM,0G

(0)
i (a)

∑n
i=0 µiξikM,1G

(1)
i (a) · · ·

∑n
i=0 µiξikM,MG(M)

i (a)


.

On the other hand, we can represent the formula (6.6) as

ωΨ
(0)
n (a) − λ

∑n
i=0 µiξik0,0G

(0)
i (a) − λ

∑n
i=0 µiξik0,1G

(1)
i (a) − · · · − λ

∑n
i=0 µiξik0,MG(M)

i (a)
ωΨ

(1)
n (a) − λ

∑n
i=0 µiξik1,0G

(0)
i (a) − λ

∑n
i=0 µiξik1,1G

(1)
i (a) − · · · − λ

∑n
i=0 µiξik1,MG(M)

i (a)
. . . .

. . . .

. . . .

ωΨ
(M)
n (a) − λ

∑n
i=0 µiξikM,0G

(0)
i (a) − λ

∑n
i=0 µiξikM,1G

(1)
i (a) − · · · − λ

∑n
i=0 µiξikM,MG(M)

i (a)
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=



γ(0)
n (a)
γ(1)

n (a)
.

.

.

γ(M)
n (a)


.

From this nonlinear system, the unknown Taylor coefficients Ψ
(r)
n (a) (r = 0, 1, . . . ,M) are

determined and replaced in (6.1); thus we find the Taylor polynomial solution

Ψn(u) �
M∑

r=0

1
r!

Ψ(r)
n (a)(u − a)(r).

7. The existence of a unique solution of the system of nonlinear algebraic equations

Here in this section, under some conditions, we will give proof of the existence of the unique
solution of the NAS of Eq (6.5) and get the truncation error of the numerical solution. The following
theorems will help to achieve these aims:

Theorem 7.1. Under the following conditions:

(1*) The kernel of position
(∑M

r=0
∑M

j=0 |kr, j|
2
) 1

2
≤ β∗∗.

(2*)
(∑n

i=0 |µiξi|
2
) 1

2
≤ α∗∗.

(3*)
(∑M

r=0 |γ
(r)
n (a)|2

) 1
2
≤ χ∗∗.

(4*) The known function ϑ( j)
i (a,Ψi(a)), for the constants υ∗∗ > δ∗∗ and υ∗∗ > ε∗∗, satisfies:

(a)

 n∑
i=0

M∑
j=0

|ϑ
( j)
i (a,Ψi(a))|2


1
2

≤ δ∗∗

 n∑
i=0

M∑
j=0

|Ψ
( j)
i (a)|2


1
2

(b)

 n∑
i=0

M∑
j=0

|ϑ
( j)
i (a,Ψi,1(a)) − ϑ( j)

i (a,Ψi,2(a))|2


1
2

≤ ε∗∗

 n∑
i=0

M∑
j=0

|Ψ
( j)
i,1(a) − Ψ

( j)
i,2(a)|2


1
2

.

The NAS of Eq (6.5) has a unique solution.

Proof. We express the NAS (6.5) in the following operator form to prove the theorem:

LΨ(r)
n (a) =

1
ω
γ(r)

n (a) +
λ

ω

n∑
i=0

M∑
j=0

µiξikr, jϑ
( j)
i (a,Ψi(a)). (7.1)

Lemma 7.1. Under the conditions (1*)–(4*-a), the operator L defined by (7.1) maps the space `2 into
itself.

Proof. From (7.1), we get:

|LΨ(r)
n (a)|2 ≤

 1
|ω|
|γ(r)

n (a)| +
|λ|

|ω|

n∑
i=0

M∑
j=0

|µiξi||kr, j||ϑ
( j)
i (a,Ψi(a))|


2

.

AIMS Mathematics Volume 8, Issue 11, 27488–27512.



27499

Using the Cauchy-Schwarz inequality, then from the conditions (4*-a), and summing from r = 0 to
r = M, we obtain:

 M∑
r=0

|LΨ(r)
n (a)|2


1
2

≤


M∑

r=0

 1
|ω|
|γ(r)

n (a)| +
|λ|

|ω|
υ∗∗

 n∑
i=0

|µiξi|
2


1
2
 M∑

j=0

|kr, j|
2


1
2
 n∑

i=0

M∑
j=0

|Ψ
( j)
i (a)|2


1
2


2
1
2

.

After applying conditions (1*)–(3*) and allowing N → ∞, the above formula has the following form:

‖LΨn‖`2 ≤
1
|ω|
χ∗∗ +

β∗∗α∗∗υ∗∗|λ|

|ω|
‖Ψn‖`2

≤
1
|ω|
χ∗∗ + Θ∗∗‖Ψn‖`2; Θ∗∗ =

β∗∗α∗∗υ∗∗|λ|

|ω|
.

(7.2)

In view of inequality (7.2), the operator L maps into itself. �

Lemma 7.2. Under the conditions (1*)–(4*-b), L defined by (7.1) is a contraction operator in the
space `2.

Proof. In light of formula (7.1), if
{
Ψ

(r)
n,1(a)

}
and

{
Ψ

(r)
n,2(a)

}
are any functions in the space `2, we get:

|LΨ
(r)
n,1(a) − LΨ

(r)
n,2(a)|2 ≤

 |λ||ω|
n∑

i=0

M∑
j=0

|µiξi||kr, j||ϑ
( j)
i (a,Ψi,1(a)) − ϑ( j)

i (a,Ψi,2(a))|


2

.

From the Cauchy-Schwarz inequality, then summing from r = 0 to r = M, and utilizing the conditions
(1*), (2*) and (4*-b), the above inequality takes the form:

 M∑
r=0

|LΨ
(r)
n,1(a) − LΨ

(r)
n,2(a)|2


1
2

≤ Θ∗∗

 n∑
i=0

M∑
j=0

|ϑ
( j)
i (a,Ψi,1(a)) − ϑ( j)

i (a,Ψi,2(a))|2


1
2

.

The last inequality as N → ∞ becomes

‖LΨn,1 − LΨn,2‖`2 ≤ Θ∗∗‖Ψn,1 − Ψn,2‖`2 . (7.3)

Under the condition Θ∗∗ < 1, if inequality (7.3) shows the continuity of the operator L in the space
`2, then L is a contraction operator. Hence, by Banach fixed point theorem L has a unique fixed point
which is the unique solution of the system of NAS (6.5). �

It is obvious that, as N → ∞, the NAS of (6.5) is equivalent to the nonlinear Volterra–Fredholm
integral equation (1.2), and consequently the solution is the same.
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8. The stability of the modified error

Studying the resulting error is of great importance in developing the programs used as well as
the method used, in addition to the degree of approximation required. Therefore, the comparison of
one method over another comes by the amount of convergent acceleration between the two methods.
Hence, in this section of the paper, we will be interested in studying the error resulting from the
approximation.

Assume the approximate solution takes the form

ωΨn(u, t) = γn(u, t) + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑ(τ, v,Ψn(v, τ))dvdτ.

Hence, we get the error in the form

ω[Ψ(u, t) − Ψn(u, t)] = [γ(u, t) − γn(u, t)] + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)[ϑ(τ, v,Ψ(v, τ)) − ϑ(τ, v,Ψn(v, τ))]dvdτ.

(8.1)
The above Eq (8.1) takes the form

ωRn(u, t) = Fn(u, t) + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)ϑerror(τ, v,Ψ(v, τ)dvdτ, (8.2)

where
Rn(u, t) = [Ψ(u, t) − Ψn(u, t)], Fn(u, t) = γ(u, t) − γn(u, t), ϑerror(τ, v,Ψ(v, τ)) = [ϑ(τ, v,Ψ(v, τ)) −
ϑ(τ, v,Ψn(v, τ))].

From Eq (8.2), we deduce that the modified error represents NVFIE of the second kind.

Theorem 8.1. Under the same corresponding conditions of Section 2, the modified error (8.2) is stable
in the space L2[0, 1] ×C[0,T ].

Proof. Since

|ω|‖Rn(u, t)‖ ≤ ‖Fn(u, t)‖ + |λ|

∥∥∥∥∥∥
∫ t

0

∫ 1

0
|ξ(τ)||k(u, v)|ϑerror(τ, v,Ψ(v, τ)|dvdτ

∥∥∥∥∥∥ ,
by using the conditions of Section 2, we have

‖Rn(u, t)‖ ≤ ‖Fn(u, t)‖ +
βαυ|λ|

|ω|
T‖Ψ(u, t) − Ψn(u, t)‖

≤ ‖Fn(u, t)‖ + Θ‖Ψ(u, t) − Ψn(u, t)‖; Θ < 1.

As shown by the inequality above, if n→ ∞, then Fn(u, t), Rn → 0. �

Theorem 8.2. The representation of the modified error (8.2) is unique.

Proof. Assume that there are two different forms to describe the modified error

ωRn(u, t) − ωRm(u, t) = [Fn(u, t) − Fm(u, t)] + λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)[ϑ(τ, v,Ψ(v, τ)) − ϑ(τ, v,Ψn(v, τ))]dvdτ
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− λ

∫ t

0

∫ 1

0
ξ(τ)k(u, v)[ϑ(τ, v,Ψ(v, τ)) − ϑ(τ, v,Ψm(v, τ))]dvdτ.

Then, we have

‖Rn(u, t) − Rm(u, t)‖ ≤ ‖Fn(u, t) − Fm(u, t)‖ +
βαυ|λ|

|ω|
T‖Ψn(u, t) − Ψm(u, t)‖

≤ ‖Fn(u, t) − Fm(u, t)‖ + Θ‖Ψn(u, t) − Ψm(u, t)‖; Θ < 1.

In the above inequality, if n→ m, then {(Fn(u, t)−Fm(u, t))}, {(Ψn(u, t)−Ψm(u, t))} → 0⇔ {(Rn−Rm)} →
0. �

9. Numerical results

The method of this study is useful in finding the solution of the NVFIE in terms of the modified
Taylor’s method. We provide the following examples to demonstrate it. All computations are
performed using Wolfram Mathematica 11.

Example 9.1. Consider the following partial integro-differential equation with symmetric kernel:

5
∂

∂t
Ψ(u, t) =

∂

∂t
f (u, t) + 0.3t2

∫ 1

0
(u − v)2[Ψ(v, t)]2dv,

Ψ(u, 0) = u2.

(9.1)

where the function f (u, t) is specified by laying Ψ(u, t) = u2e−t as an exact solution.

f (u, t) =5u2e−t + e−2t(0.0107143 − 0.025u + 0.015u2 + t(0.0214286 − 0.05u + 0.03u2)
+ t2(0.0214286 − 0.05u + 0.03u2)).

Integrating Equation (9.1), we obtained NVFIE of the second kind,

5Ψ(u, t) = γ(u, t) + 0.3
∫ t

0

∫ 1

0
τ2(u − v)2[Ψ(v, τ))]2dvdτ,

γ(u, t) = f (u, t) + 5u2 − f (u, 0),
(9.2)

and approximate the solution Ψn(u) by the Taylor polynomial at a = 0

Ψn(u) =

5∑
r=0

1
r!

Ψ(r)
n (0)(u)(r); 0 ≤ u ≤ 1.

In order to apply the modified Taylor technique of integral problem (9.2), we do the following steps.
First, we find the coefficients kr, j (r, j = 0, 1, . . . , 5), and after that we obtain the derived values of the
function γ(u, t) at a = 0.

In Table 1, for u ∈ [0, 1], t ∈ [0, 0.6], the numerical computational results of the approximate
and exact solution of (9.2) are computed for M = 5. The maximum absolute errors of the proposed
technique are presented in Table 2.
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Table 1. Comparison between the exact and the approximate solution for Example 9.1 at
M = 5.

u t = 0,M = 5 t = 0.2,M = 5 t = 0.4,M = 5 t = 0.6,M = 5
0.0 3.58741×10−7 3.65284×10−7 1.85235×10−6 5.36214×10−6

0.1 6.51784×10−7 7.74528×10−7 3.25874×10−6 9.45698×10−6

0.2 8.02587×10−7 8.52587×10−7 5.74136×10−6 3.14721×10−5

0.3 8.69857×10−7 9.36521×10−7 8.02974×10−6 3.99999×10−5

0.4 9.41875×10−7 9.55647×10−6 1.89789×10−5 4.10257×10−5

0.5 5.13254×10−6 9.79854×10−6 5.74102×10−5 7.96321×10−5

0.6 5.36951×10−6 9.97412×10−6 6.32054×10−5 3.69852×10−4

0.7 6.85272×10−5 6.99998×10−5 8.01111×10−5 5.36214×10−4

0.8 7.69852×10−5 7.85796×10−5 8.69852×10−5 6.74123×10−4

0.9 9.02588×10−5 9.25841×10−5 9.56874×10−5 7.36985×10−4

1 9.65812×10−5 9.85204×10−5 7.85668×10−4 9.10258×10−4

Table 2. Maximum errors for different values of t = 0, 0.2, 0.4, 0.6 and M = 5 for Eq (9.2).

t = 0,M = 5 t = 0.2,M = 5 t = 0.4,M = 5 t = 0.6,M = 5
Maximum errors 9.65812×10−5 9.85204×10−5 7.85668×10−4 9.10258×10−4

In Figures 1–4, with various values of t, u and M = 5, we calculated the absolute error function.

Figure 1. Approximate, exact solution and absolute error for M = 5, t = 0.
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Figure 2. Approximate, exact solution and absolute error for M = 5, t = 0.2.

Figure 3. Approximate, exact solution and absolute error for M = 5, t = 0.4.

Figure 4. Approximate, exact solution and absolute error for M = 5, t = 0.6.
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Example 9.2. [6] In Eq (1.2), take ω = 1, λ = 1, ξ(τ) = τ2, k(u, v) = v and ϑ(t, v,Ψ(v, t)) = Ψ2(v, t).
When Ψ(u, t) = u2t2, then the given function is γ(u, t) = −(t7/42) + t2u2.

In order to determine the approximate solutions, we apply the technique provided in this study for
the cases where t = 0.8, M = 8 and t = 0.8, M = 15. In Table 3, for u = [0, 1], t = 0.8, the numerical
computational results of the approximate and exact solution of our method and the method in [6] are
calculated. The maximum absolute errors of the approach used in our paper and [6] are displayed in
Table 4.

Table 3. Comparison between the approximate and the exact solution at t = 0.8; M = 8, 15.

t = 0.8,M = 8 t = 0.8,M = 15
u Error of our method Error of [6] Error of our method Error of [6]
0.0 1.05471×10−8 0.114×10−7 0.23584×10−10 0.254×10−9

0.2 4.36215×10−8 0.532×10−7 1.32548×10−9 0.369×10−8

0.4 7.36204×10−8 0.542×10−6 3.02512×10−9 0.521×10−8

0.6 2.32014×10−7 0.856×10−6 6.74124×10−9 0.852×10−8

0.8 5.32147×10−7 0.999×10−6 5.20147×10−8 0.741×10−7

1.0 1.21478×10−6 0.216×10−5 8.95647×10−8 0.902×10−7

Table 4. Maximum errors for different values of M at t = 0.8.

t = 0.8,M = 8 t = 0.8,M = 15
Maximum errors of our method 6.21478×10−6 8.95647×10−8

Maximum errors of [6] 0.216×10−5 0.902×10−7

In Figures 5–8, with different values of t, u and M = 8, 15, we calculated the absolute error
function.

Figure 5. Absolute error, approximate and exact solution for M = 8 of our method.
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Figure 6. Absolute error, approximate and exact solution for M = 8 of [6].

Figure 7. Absolute error, approximate and exact solution for M = 15 of our method.

Figure 8. Absolute error, approximate and exact solution for M = 15 of [6].
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Example 9.3. Consider the following partial integro-differential equation with continuous kernel of
the second type:

9
∂

∂t
Ψ(u, t) =

∂

∂t
f (u, t) + 4

t3

5

∫ 1

0
u3v[Ψ(v, t)]3dv,

Ψ(u, 0) = u,
(9.3)

where the function f (u, t) is specified by laying Ψ(u, t) = u2 + t as an exact solution.

f (u, t) = 9t(1 + u2) −
t3u3

30
−

t4u3

10
−

3t5u3

25
−

t6u3

15
.

Integrating Eq (9.3), we obtained NVFIE with continuous kernel of the second kind,

9Ψ(u, t) = γ(u, t) + 4
∫ t

0

∫ 1

0

τ2

5
u3v[Ψ(v, τ))]3dvdτ,

γ(u, t) = f (u, t) + 9u − f (u, 0),
(9.4)

and approximated the solution Ψn(u) by the Taylor polynomial at a = 1

Ψn(u) =

10∑
r=0

1
r!

Ψ(r)
n (1)(u − 1)(r); 0 ≤ u ≤ 1.

In order to apply the modified Taylor technique of integral problem (9.4), we do the following steps.
First, we find the coefficients kr, j (r, j = 0, 1, . . . , 10), and after that we obtain the derived values of the
function γ(u, t) at a = 1.

In Table 5, for u ∈ [0, 1], t ∈ [0, 0.9], the numerical computational results of the approximate and
exact solution of (9.4) are computed for M = 10. Table 6 shows the maximum absolute errors of the
given method.

Table 5. Comparison between the exact and the approximate solution for Example 9.3 at
M = 10.

u t = 0.3,M = 10 t = 0.5,M = 10 t = 0.7,M = 10 t = 0.9,M = 10
0.0 9.25487×10−11 2.36521×10−10 2.36587×10−9 4.62587×10−9

0.1 1.36987×10−10 5.36214×10−10 4.32587×10−9 6.47184×10−9

0.2 3.98745×10−10 3.25417×10−9 7.32548×10−9 9.02587×10−9

0.3 4.39201×10−10 5.32014×10−9 8.21471×10−9 5.36214×10−8

0.4 1.87456×10−9 6.21478×10−9 9.36985×10−9 7.00147×10−8

0.5 2.85214×10−9 7.25874×10−9 9.96521×10−9 8.36952×10−8

0.6 5.74120×10−9 1.25417×10−8 9.02587×10−8 9.32658×10−8

0.7 5.99852×10−9 3.65278×10−8 9.32548×10−8 4.21477×10−7

0.8 8.96325×10−9 6.32587×10−8 9.63258×10−8 7.36985×10−7

0.9 9.89652×10−9 7.00024×10−8 9.78521×10−8 8.69854×10−7

1 2.83217×10−8 9.32587×10−8 4.62541×10−7 9.00258×10−7
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Table 6. Maximum errors for different values of t = 0.3, 0.5, 0.7, 0.9 and M = 10 for Eq (9.4).

t = 0.3,M = 10 t = 0.5,M = 10 t = 0.7,M = 10 t = 0.9,M = 10
Maximum errors 2.83217×10−8 9.32587×10−8 4.62541×10−7 9.00258×10−7

In Figures 9–12, we computed the absolute error function with different values of t, u and M = 10.

Figure 9. Approximate, exact solution and absolute error for t = 0.3, M = 10.

Figure 10. Approximate, exact solution and absolute error for t = 0.5, M = 10.
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Figure 11. Approximate, exact solution and absolute error for t = 0.7, M = 10.

Figure 12. Approximate, exact solution and absolute error for t = 0.9, M = 10.

10. Conclusions

The tables above and our numerical results lead us to conclude the following:

1) The Nonlinear Volterra–Fredholm integral equation (1.2) has a unique solution Ψ(u, t) in the
Banach space L2[0, 1] ×C[0,T ], under some conditions.

2) Since NVFIEs are usually difficult to solve analytically, it is required to obtain the approximate
solutions.

3) The modified Taylor’s method is considered as one of the best methods to obtain the solution
of the NVFIE with continuous kernel, numerically. This is evident by comparison with other
methods, see Example 9.2.

3.i) Our achieved results in this paper show that this method is effective and easy to implement.
3.ii) One of the advantages of this method is that the solution is expressed as a truncated Taylor series

at u = a, then Ψn(u) can be easily evaluated for arbitrary values of u at low-computation effort.
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3.iii) The method proposed in this paper can be applied to a wide class of NVFIEs of the second kind
with smooth and weakly singular kernels.

3.iv) There is a solution that is closer to the exact solution when the Taylor polynomial solution for the
conditions that are given is searched for about the points (Example 9.3).

4) From Examples 9.1–9.3, we notice that we obtain an analytical solution in many cases and this is
one of the interesting features of this method.

5) From Table 1 in Example 9.1, it is noticeable that the error is 3.58741×10−7 at the point u = 0, t =

0, but at the same point the error increase for t = 0.6 and becomes 9.45698×10−6. Also, at the
point u = 1, t = 0 the error is 9.65812×10−5 while for t = 0.6 at the same point the error becomes
9.10258×10−4. This means that if the time increases, then the error is also increases. This has
also been noted in the rest of the tables.

6) By comparing Figure 9 with Figure 10 in Example 9.3, at different times t = 0.3, t = 0.5 we find
that the error is less when the time is smaller. See also Figures 11 and 12.

7) In Example 9.2, we consider an NVFIE with continuous kernel of the second kind, and a
comparison was made between the modified Taylor’s method and projection-iterated method
which is used in [6] in Table 3, at the time t = 0.8, the following was noted at the point
u = 0, M = 8: the error of our method is 1.05471×10−8 while the error of method used in [6], at
the same value of u, M is 0.114×10−7. We notice a large difference in the error, and this
difference is observed for all values of u in [0, 1]. This difference was also noticed in the error
when M = 15. This shows that the modified Taylor’s method is more accurate than the
projection-iterated method. Also, the numerical results of Example 9.2 are presented in
Figures 5–8.

8) All computations were carried out using the program Wolfram Mathematica 11.
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