The roots of non-linear equations are a major challenge in many scientific and professional fields. This problem has been approached in a number of ways, including use of the sequential Newton's method and the traditional Weierstrass simultaneous iterative scheme. To approximate all of the roots of a given nonlinear equation, sequential iterative algorithms must use a deflation strategy because rounding errors can produce inaccurate results. This study aims to develop an efficient numerical simultaneous scheme for approximating all nonlinear equations' roots of convergence order 12. The numerical outcomes of the considered engineering problems show that, in terms of accuracy, validations, error, computational CPU time, and residual error, recently developed simultaneous methods perform better than existing methods in the literature.
Citation: Mudassir Shams, Nasreen Kausar, Serkan Araci, Georgia Irina Oros. Numerical scheme for estimating all roots of non-linear equations with applications[J]. AIMS Mathematics, 2023, 8(10): 23603-23620. doi: 10.3934/math.20231200
The roots of non-linear equations are a major challenge in many scientific and professional fields. This problem has been approached in a number of ways, including use of the sequential Newton's method and the traditional Weierstrass simultaneous iterative scheme. To approximate all of the roots of a given nonlinear equation, sequential iterative algorithms must use a deflation strategy because rounding errors can produce inaccurate results. This study aims to develop an efficient numerical simultaneous scheme for approximating all nonlinear equations' roots of convergence order 12. The numerical outcomes of the considered engineering problems show that, in terms of accuracy, validations, error, computational CPU time, and residual error, recently developed simultaneous methods perform better than existing methods in the literature.
[1] | T. Kim, D. S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys., 2 (2021), 342–355. https://doi.org/10.1134/S1061920821030079 doi: 10.1134/S1061920821030079 |
[2] | D. S. Kim, H. Kim, T. Kim, A note on infinite series whose terms involve truncated degenerate exponentials, Appl. Math. Sci. Eng., 31 (2023), 2205643. https://doi.org/10.1080/27690911.2023.2205643 doi: 10.1080/27690911.2023.2205643 |
[3] | A. Cordero, N. Garrido, J. R. Torregrosa, P. Triguero-Navarro, An iterative scheme to obtain multiple solutions simultaneously, Appl. Math. Letters, 1 (2023), 108738. https://doi.org/10.1016/j.aml.2023.108738 doi: 10.1016/j.aml.2023.108738 |
[4] | F. Chinesta, A. Cordero, N. Garrido, J. R. Torregrosa, P. Triguero-Navarro, Simultaneous roots for vectorial problems, Comput. Appl. Math., 42 (2023), 227. https://doi.org/10.1007/s40314-023-02366-y doi: 10.1007/s40314-023-02366-y |
[5] | P. D. Proinov, M. T. Vasileva, On the convergance of family of Weierstrass-type root-finding methods, Comptes. rendus. de l'Académie. bulgare. des. Sci., 68 (2015), 697–704. |
[6] | X. Zhang, H. Peng, G. Hu, A high order iteration formula for the simultaneous inclusion of polynomial zeros, Appl. Math. Comput., 179 (2006), 545–552. https://doi.org/10.1016/j.amc.2005.11.117 doi: 10.1016/j.amc.2005.11.117 |
[7] | A. I. Iliev, K. I. Semerdzhiev, Some generalizations of the chebyshev Method for simultaneous determination of all Roots of polynomial equations, Comput. Math. Math. Phy., 39 (1999), 1384–1391. |
[8] | P. D. Proinov, M. T. Vasileva, A new family of high-order Ehrlich-type iterative methods, Mathematics, 9 (2021), 1855. https://doi.org/10.3390/math9161855 doi: 10.3390/math9161855 |
[9] | S. Kanno, N. V. Kjurkchiev, T. Yamamoto, On some methods for the simultaneous determination of polynomial zeros, Jpn. J. Ind. Appl. Math., 13 (1996), 267. https://doi.org/10.1007/BF03167248 doi: 10.1007/BF03167248 |
[10] | P. D. Proinov, S. I. Cholakov, Semilocal convergence of Chebyshev-like root-finding method for simultaneous approximation of polynomial zeros, Appl. Math. Comput., 236 (2014), 669–682. https://doi.org/10.1016/j.amc.2014.03.092 doi: 10.1016/j.amc.2014.03.092 |
[11] | P. Weidner, The Durand-Kerner method for trigonometric and exponential polynomials, Computing, 40 (1988), 175–179. https://doi.org/10.1007/BF02247945 doi: 10.1007/BF02247945 |
[12] | N. A. Mir, R. Muneer, I. Jabeen, Some families of two-step simultaneous methods for determining zeros of nonlinear equations, ISRN Appl. Math., 2011 (2011), 817174. https://doi.org/10.5402/2011/817174 doi: 10.5402/2011/817174 |
[13] | M. R. Farmer, Computing the zeros of polynomials using the divide and conquer approach, Ph.D thesis, Department of Computer Science and Information Systems, Birkbeck, University of London, 2013. |
[14] | A. W. M. Nourein, An improvement on two iteration methods for simultaneous determination of the zeros of a polynomial, Inter. J. Comput. Math., 6 (1977), 241–252. https://doi.org/10.1080/00207167708803141 doi: 10.1080/00207167708803141 |
[15] | O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comput., 27 (1973), 339–344. https://doi.org/S0025-5718-1973-0329236-7 |
[16] | S. I. Cholakov, M. T. Vasileva, A convergence analysis of a fourth-order method for computing all zeros of a polynomial simultaneously. J. Comput. Appl. Math, 321 (2017), 270–283. https://doi.org/10.1016/j.cam.2017.02.038 doi: 10.1016/j.cam.2017.02.038 |
[17] | B. Sendov, A. Andreev, N. Kjurkchiev, Numerical solution of polynomial equations, Handbook Numer. Anal., 3 (1994), 625–778. https://doi.org/10.1016/S1570-8659(05)80019-5 doi: 10.1016/S1570-8659(05)80019-5 |
[18] | G. H. Nedzhibov, Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90 (2013), 994–1007. https://doi.org/10.1080/00207160.2012.744000 doi: 10.1080/00207160.2012.744000 |
[19] | H. T. Kung, J. F. Traub, Optimal order of one-point and multipoint iteration, J. ACM, 21 (1974), 643–651. https://doi.org/10.1145/321850.321860 doi: 10.1145/321850.321860 |
[20] | I. K. Argyros, A. A. Magreñán, L. Orcos, Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation, J. Math. Chem., 54 (2016), 1404–1416. https://doi.org/10.1007/s10910-016-0605-z doi: 10.1007/s10910-016-0605-z |
[21] | T. Kim, D. S. Kim, H. K. Kim, Study on r-truncated degenerate Stirling numbers of the second kind, Open Math., 20 (2022), 1685–1695. https://doi.org/10.1515/math-2022-0535 doi: 10.1515/math-2022-0535 |
[22] | T. Kim, D. S. Kim, H. K. Kim, Generalized degenerate stirling numbers arising from degenerate boson normal ordering, preprint paper, arXiv: 2305.04302, 2023. https://doi.org/10.48550/arXiv.2305.04302 |
[23] | T. Kim, D. S. Kim, Degenerate r-associated Stirling numbers, preprint paper, arXiv: 2206.10194, 2022. https://doi.org/10.48550/arXiv.2206.10194 |
[24] | K. Weierstrass, Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen, Sitzungsber. K önigl. Preuss. Akad. Wiss. Berlinn, 2 (1891), 1085–1101. |
[25] | P. D. Proinov, M. T. Vasileva, On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously, J. Inequal. Appl., 2015 (2015), 336. https://doi.org/10.1186/s13660-015-0855-5 doi: 10.1186/s13660-015-0855-5 |
[26] | M. S. Petković, L. D. Petković, J. Džunić, Accelerating generators of iterative methods for finding multiple roots of nonlinear equations, Comput. Math. with Appl., 59 (2010), 2784–2793. https://doi.org/10.1016/j.camwa.2010.01.048 doi: 10.1016/j.camwa.2010.01.048 |
[27] | M. S. Petković, L. D. Petković, J. Džunić, On an efficient simultaneous method for finding polynomial zeros, Appl. Math. Lett., 28 (2014), 60–65. https://doi.org/10.1016/j.aml.2013.09.011 doi: 10.1016/j.aml.2013.09.011 |
[28] | M. Shams, N. Rafiq, N. Kausar, P. Agarwal, C. Park, N. A. Mir, On highly efficient derivative-free family of numerical methods for solving polynomial equation simultaneously, Adv. Differ. Equ., 2021 (2021), 465. https://doi.org/10.1186/s13662-021-03616-1 doi: 10.1186/s13662-021-03616-1 |
[29] | M. Shams, N. Rafiq, N. Kausar, S. F. Ahmed, N. A. Mir, S. Chandra Saha, Inverse family of numerical methods for approximating all simple and roots with multiplicity of nonlinear polynomial equations with engineering applications, Math. Prob. Eng., 2021 (2021), 3124615. https://doi.org/10.1155/2021/3124615 doi: 10.1155/2021/3124615 |
[30] | M. Shams, N. Rafiq, N. Kausar, P. Agarwal, C. Park, N. A. Mir, On iterative techniques for estimating all roots of nonlinear equation and its system with application in differential equation, Adv. Differ. Equ., 2021 (2021), 480. https://doi.org/10.1186/s13662-021-03636-x doi: 10.1186/s13662-021-03636-x |
[31] | G. Pulvirenti, C. Faria, Influence of housing wall compliance on shock absorbers in the context of vehicle dynamics, IOP Conf. Series Mater. Sci. Eng., 252 (2017), 012026. https://doi.org/10.1088/1757-899X/252/1/012026 doi: 10.1088/1757-899X/252/1/012026 |
[32] | L. Konieczny, Analysis of simplifications applied in vibration damping modelling for a passive car shock absorber, Shock Vib., 2016 (2016), 6182847. https://doi.org/10.1155/2016/6182847 doi: 10.1155/2016/6182847 |
[33] | Y. Liu, J. Zhang, Nonlinear dynamic responses of twin-tube hydraulic shock absorber, Mech. Res. Commun., 29 (2002), 359–365. https://doi.org/10.1016/S0093-6413(02)00260-4 doi: 10.1016/S0093-6413(02)00260-4 |
[34] | R. L. Fournier, Basic Transport Phenomena in Biomedical Engineering, New York: Taylor & Franics, 2007. |
[35] | I. N. Bronshtein, K. A. Semendyayev, Handbook of Mathematics, Berlin: Springer, 2013. |