The roots of non-linear equations are a major challenge in many scientific and professional fields. This problem has been approached in a number of ways, including use of the sequential Newton's method and the traditional Weierstrass simultaneous iterative scheme. To approximate all of the roots of a given nonlinear equation, sequential iterative algorithms must use a deflation strategy because rounding errors can produce inaccurate results. This study aims to develop an efficient numerical simultaneous scheme for approximating all nonlinear equations' roots of convergence order 12. The numerical outcomes of the considered engineering problems show that, in terms of accuracy, validations, error, computational CPU time, and residual error, recently developed simultaneous methods perform better than existing methods in the literature.
Citation: Mudassir Shams, Nasreen Kausar, Serkan Araci, Georgia Irina Oros. Numerical scheme for estimating all roots of non-linear equations with applications[J]. AIMS Mathematics, 2023, 8(10): 23603-23620. doi: 10.3934/math.20231200
[1] | Muqeem Ahmad, Mobin Ahmad, Fatemah Mofarreh . Bi-slant lightlike submanifolds of golden semi-Riemannian manifolds. AIMS Mathematics, 2023, 8(8): 19526-19545. doi: 10.3934/math.2023996 |
[2] | Aliya Naaz Siddiqui, Meraj Ali Khan, Amira Ishan . Contact CR δ-invariant: an optimal estimate for Sasakian statistical manifolds. AIMS Mathematics, 2024, 9(10): 29220-29234. doi: 10.3934/math.20241416 |
[3] | Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373 |
[4] | Mehmet Gülbahar . Qualar curvatures of pseudo Riemannian manifolds and pseudo Riemannian submanifolds. AIMS Mathematics, 2021, 6(2): 1366-1376. doi: 10.3934/math.2021085 |
[5] | Oğuzhan Bahadır . On lightlike geometry of indefinite Sasakian statistical manifolds. AIMS Mathematics, 2021, 6(11): 12845-12862. doi: 10.3934/math.2021741 |
[6] | Richa Agarwal, Fatemah Mofarreh, Sarvesh Kumar Yadav, Shahid Ali, Abdul Haseeb . On Riemannian warped-twisted product submersions. AIMS Mathematics, 2024, 9(2): 2925-2937. doi: 10.3934/math.2024144 |
[7] | Fatimah Alghamdi, Fatemah Mofarreh, Akram Ali, Mohamed Lemine Bouleryah . Some rigidity theorems for totally real submanifolds in complex space forms. AIMS Mathematics, 2025, 10(4): 8191-8202. doi: 10.3934/math.2025376 |
[8] | Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of PR-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069 |
[9] | Mehmet Atçeken, Tuğba Mert . Characterizations for totally geodesic submanifolds of a K-paracontact manifold. AIMS Mathematics, 2021, 6(7): 7320-7332. doi: 10.3934/math.2021430 |
[10] | Yusuf Dogru . η-Ricci-Bourguignon solitons with a semi-symmetric metric and semi-symmetric non-metric connection. AIMS Mathematics, 2023, 8(5): 11943-11952. doi: 10.3934/math.2023603 |
The roots of non-linear equations are a major challenge in many scientific and professional fields. This problem has been approached in a number of ways, including use of the sequential Newton's method and the traditional Weierstrass simultaneous iterative scheme. To approximate all of the roots of a given nonlinear equation, sequential iterative algorithms must use a deflation strategy because rounding errors can produce inaccurate results. This study aims to develop an efficient numerical simultaneous scheme for approximating all nonlinear equations' roots of convergence order 12. The numerical outcomes of the considered engineering problems show that, in terms of accuracy, validations, error, computational CPU time, and residual error, recently developed simultaneous methods perform better than existing methods in the literature.
The concept of lightlike submanifolds in geometry was initially established and expounded upon in a work produced by Duggal and Bejancu [1]. A nondegenerate screen distribution was employed in order to produce a nonintersecting lightlike transversal vector bundle of the tangent bundle. They defined the CR-lightlike submanifold as a generalization of lightlike real hypersurfaces of indefinite Kaehler manifolds and showed that CR-lightlike submanifolds do not contain invariant and totally real lightlike submanifolds. Further, they defined and studied GCR-lightlike submanifolds of Kaehler manifolds as an umbrella of invariant submanifolds, screen real submanifolds, and CR-lightlike and SCR-lightlike submanifolds in [2,3], respectively. Subsequently, B. Sahin and R. Gunes investigated geodesic property of CR-lightlike submanifolds [4] and the integrability of distributions in CR-lightlike submanifolds [5]. In the year 2010, Duggal and Sahin published a book [6]pertaining to the field of differential geometry, specifically focusing on the study of lightlike submanifolds. This book provides a comprehensive examination of recent advancements in lightlike geometry, encompassing novel geometric findings, accompanied by rigorous proofs, and exploring their practical implications in the field of mathematical physics. The investigation of the geometric properties of lightlike hypersurfaces and lightlike submanifolds has been the subject of research in several studies (see [7,8,9,10,11,12,13,14]).
Crasmareanu and Hretcanu[15] created a special example of polynomial structure [16] on a differentiable manifold, and it is known as the golden structure (¯M,g). Hretcanu C. E. [17] explored Riemannian submanifolds with the golden structure. M. Ahmad and M. A. Qayyoom studied geometrical properties of Riemannian submanifolds with golden structure [18,19,20,21] and metallic structure [22,23]. The integrability of golden structures was examined by A. Gizer et al. [24]. Lightlike hypersurfaces of a golden semi-Riemannian manifold was investigated by N. Poyraz and E. Yasar [25]. The golden structure was also explored in the studies [26,27,28,29].
In this research, we investigate the CR-lightlike submanifolds of a golden semi-Riemannian manifold, drawing inspiration from the aforementioned studies. This paper has the following outlines: Some preliminaries of CR-lightlike submanifolds are defined in Section 2. We establish a number of properties of CR-lightlike submanifolds on golden semi-Riemannian manifolds in Section 3. In Section 4, we look into several CR-lightlike submanifolds characteristics that are totally umbilical. We provide a complex illustration of CR-lightlike submanifolds of a golden semi-Riemannian manifold in the final section.
Assume that (¯ℵ,g) is a semi-Riemannian manifold with (k+j)-dimension, k,j≥1, and g as a semi-Riemannian metric on ¯ℵ. We suppose that ¯ℵ is not a Riemannian manifold and the symbol q stands for the constant index of g.
[15] Let ¯ℵ be endowed with a tensor field ψ of type (1,1) such that
ψ2=ψ+I, | (2.1) |
where I represents the identity transformation on Γ(Υ¯ℵ). The structure ψ is referred to as a golden structure. A metric g is considered ψ-compatible if
g(ψγ,ζ)=g(γ,ψζ) | (2.2) |
for all γ, ζ vector fields on Γ(Υ¯ℵ), then (¯ℵ,g,ψ) is called a golden Riemannian manifold. If we substitute ψγ into γ in (2.2), then from (2.1) we have
g(ψγ,ψζ)=g(ψγ,ζ)+g(γ,ζ). | (2.3) |
for any γ,ζ∈Γ(Υ¯ℵ).
If (¯ℵ,g,ψ) is a golden Riemannian manifold and ψ is parallel with regard to the Levi-Civita connection ¯∇ on ¯ℵ:
¯∇ψ=0, | (2.4) |
then (¯ℵ,g,ψ) is referred to as a semi-Riemannian manifold with locally golden properties.
The golden structure is the particular case of metallic structure [22,23] with p=1, q=1 defined by
ψ2=pψ+qI, |
where p and q are positive integers.
[1] Consider the case where ℵ is a lightlike submanifold of k of ¯ℵ. There is the radical distribution, or Rad(Υℵ), on ℵ that applies to this situation such that Rad(Υℵ)=Υℵ∩Υℵ⊥, ∀ p∈ℵ. Since RadΥℵ has rank r≥0, ℵ is referred to as an r-lightlike submanifold of ¯ℵ. Assume that ℵ is a submanifold of ℵ that is r-lightlike. A screen distribution is what we refer to as the complementary distribution of a Rad distribution on Υℵ, then
Υℵ=RadΥℵ⊥S(Υℵ). |
As S(Υℵ) is a nondegenerate vector sub-bundle of Υ¯ℵ|ℵ, we have
Υ¯ℵ|ℵ=S(Υℵ)⊥S(Υℵ)⊥, |
where S(Υℵ)⊥ consists of the orthogonal vector sub-bundle that is complementary to S(Υℵ) in Υ¯ℵ|ℵ. S(Υℵ),S(Υℵ⊥) is an orthogonal direct decomposition, and they are nondegenerate.
S(Υℵ)⊥=S(Υℵ⊥)⊥S(Υℵ⊥)⊥. |
Let the vector bundle
tr(Υℵ)=ltr(Υℵ)⊥S(Υℵ⊥). |
Thus,
Υ¯ℵ=Υℵ⊕tr(Υℵ)=S(Υℵ)⊥S(Υℵ⊥)⊥(Rad(Υℵ)⊕ltr(Υℵ). |
Assume that the Levi-Civita connection is ¯∇ on ¯ℵ. We have
¯∇γζ=∇γζ+h(γ,ζ),∀γ,ζ∈Γ(Υℵ) | (2.5) |
and
¯∇γζ=−Ahζ+∇⊥γh,∀γ∈Γ(Υℵ)andh∈Γ(tr(Υℵ)), | (2.6) |
where {∇γζ,Ahγ} and {h(γ,ζ),∇⊥γh} belongs to Γ(Υℵ) and Γ(tr(Υℵ)), respectively.
Using projection L:tr(Υℵ)→ltr(Υℵ), and S:tr(Υℵ)→S(Υℵ⊥), we have
¯∇γζ=∇γζ+hl(γ,ζ)+hs(γ,ζ), | (2.7) |
¯∇γℵ=−Aℵγ+∇lγℵ+λs(γ,ℵ), | (2.8) |
and
¯∇γχ=−Aχγ+∇sγ+λl(γ,χ) | (2.9) |
for any γ,ζ∈Γ(Υℵ),ℵ∈Γ(ltr(Υℵ)), and χ∈Γ(S(Υℵ⊥)), where hl(γ,ζ)=Lh(γ,ζ),hs(γ,ζ)=Sh(γ,ζ),∇lγℵ,λl(γ,χ)∈Γ(ltr(Tℵ)),∇sγλs(γ,ℵ)∈Γ(S(Υℵ⊥)), and ∇γζ,Aℵγ,Aχγ∈Γ(Υℵ).
The projection morphism of Υℵ on the screen is represented by P, and we take the distribution into consideration.
∇γPζ=∇∗γPζ+h∗(γ,Pζ),∇γξ=−A∗ξγ+∇∗tγξ, | (2.10) |
where γ,ζ∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)).
Thus, we have the subsequent equation.
g(h∗(γ,Pζ),ℵ)=g(Aℵγ,Pζ), | (2.11) |
Consider that ¯∇ is a metric connection. We get
(∇γg)(ζ,η)=g(hl(γ,ζ),η)+g(hl(γ,ζη),ζ). | (2.12) |
Using the characteristics of a linear connection, we can obtain
(∇γhl)(ζ,η)=∇lγ(hl(ζ,η))−hl(¯∇γζ,η)−hl(ζ,¯∇γη), | (2.13) |
(∇γhs)(ζ,η)=∇sγ(hs(ζ,η))−hs(¯∇γζ,η)−hs(ζ,¯∇γη). | (2.14) |
Based on the description of a CR-lightlike submanifold in [4], we have
Υℵ=λ⊕λ′, |
where λ=Rad(Υℵ)⊥ψRad(Υℵ)⊥λ0.
S and Q stand for the projection on λ and λ′, respectively, then
ψγ=fγ+wγ |
for γ,ζ∈Γ(Υℵ), where fγ=ψSγ and wγ=ψQγ.
On the other hand, we have
ψζ=Bζ+Cζ |
for any ζ∈Γ(tr(Υℵ)), Bζ∈Γ(Υℵ) and Cζ∈Γ(tr(Υℵ)), unless ℵ1 and ℵ2 are denoted as ψL1 and ψL2, respectively.
Lemma 2.1. Assume that the screen distribution is totally geodesic and that ℵ is a CR-lightlike submanifold of the golden semi-Riemannian manifold, then ∇γζ∈Γ(S(ΥN)), where γ,ζ∈Γ(S(Υℵ)).
Proof. For γ,ζ∈Γ(S(Υℵ)),
g(∇γζ,ℵ)=g(¯∇γζ−h(γ,ζ),ℵ)=−g(ζ,¯∇γℵ). |
Using (2.8),
g(∇γζ,ℵ)=−g(ζ,−Aℵγ+∇⊥γℵ)=g(ζ,Aℵγ). |
Using (2.11),
g(∇γζ,ℵ)=g(h∗(γ,ζ),ℵ). |
Since screen distribution is totally geodesic, h∗(γ,ζ)=0,
g(¯∇γζ,ℵ)=0. |
Using Lemma 1.2 in [1] p.g. 142, we have
∇γζ∈Γ(S(Υℵ)), |
where γ,ζ∈Γ(S(Υℵ)).
Theorem 2.2. Assume that ℵ is a locally golden semi-Riemannian manifold ¯ℵ with CR-lightlike properties, then ∇γψγ=ψ∇γγ for γ∈Γ(λ0).
Proof. Assume that γ,ζ∈Γ(λ0). Using (2.5), we have
g(∇γψγ,ζ)=g(¯∇γψγ−h(γ,ψγ),ζ)g(∇γψγ,ζ)=g(ψ(¯∇γγ),ζ)g(∇γψγ,ζ)=g(ψ(∇γγ),ζ),g(∇γψγ−ψ(∇γγ),ζ)=0. |
Nondegeneracy of λ0 implies
∇γψγ=ψ(∇γγ), |
where γ∈Γ(λ0).
Definition 3.1. [4] A CR-lightlike submanifold of a golden semi-Riemannian manifold is mixed geodesic if h satisfies
h(γ,α)=0, |
where h stands for second fundamental form, γ∈Γ(λ), and α∈Γ(λ′).
For γ,ζ∈Γ(λ) and α,β∈Γ(λ′) if
h(γ,ζ)=0 |
and
h(α,β)=0, |
then it is known as λ-geodesic and λ′-geodesic, respectively.
Theorem 3.2. Assume ℵ is a CR-lightlike submanifold of ¯ℵ, which is a golden semi-Riemannian manifold. ℵ is totally geodesic if
(Lg)(γ,ζ)=0 |
and
(Lχg)(γ,ζ)=0 |
for α,β∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. Since ℵ is totally geodesic, then
h(γ,ζ)=0 |
for γ,ζ∈Γ(Υℵ).
We know that h(γ,ζ)=0 if
g(h(γ,ζ),ξ)=0 |
and
g(h(γ,ζ),χ)=0. |
g(h(γ,ζ),ξ)=g(¯∇γζ−∇γζ,ξ)=−g(ζ,[γ,ξ]+¯∇ξγ=−g(ζ,[γ,ξ])+g(γ,[ξ,ζ])+g(¯∇ζξ,γ)=−(Lξg)(γ,ζ)+g(¯∇ζξ,γ)=−(Lξg)(γ,ζ)−g(ξ,h(γ,ζ)))2g(h(γ,ζ)=−(Lξg)(γ,ζ). |
Since g(h(γ,ζ),ξ)=0, we have
(Lξg)(γ,ζ)=0. |
Similarly,
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=−g(ζ,[γ,χ])+g(γ,[χ,ζ])+g(¯∇ζχ,γ)=−(Lχg)(γ,ζ)+g(¯∇ζχ,γ)2g(h(γ,ζ),χ)=−(Lχg)(γ,ζ). |
Since g(h(γ,ζ),χ)=0, we get
(Lχg)(γ,ζ)=0 |
for χ∈Γ(S(Υℵ⊥)).
Lemma 3.3. Assume that ¯ℵ is a golden semi-Riemannian manifold whose submanifold ℵ is CR-lightlike, then
g(h(γ,ζ),χ)=g(Aχγ,ζ) |
for γ∈Γ(λ),ζ∈Γ(λ′) and χ∈Γ(S(Υℵ⊥)).
Proof. Using (2.5), we get
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=g(ζ,¯∇γχ). |
From (2.9), it follows that
g(h(γ,ζ),χ)=−g(ζ,−Aχγ+∇sγχ+λs(γ,χ))=g(ζ,Aχγ)−g(ζ,∇sγχ)−g(ζ,λs(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ), |
where γ∈Γ(λ),ζ∈Γ(λ′),χ∈Γ(S(Υℵ⊥)).
Theorem 3.4. Assume that ℵ is a CR-lightlike submanifold of the golden semi-Riemannian manifold and ¯ℵ is mixed geodesic if
A∗ξγ∈Γ(λ0⊥ψL1) |
and
Aχγ∈Γ(λ0⊥Rad(Υℵ)⊥ψL1) |
for γ∈Γ(λ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. For γ∈Γ(λ),ζ∈Γ(λ′), and χ∈Γ(S(Υℵ⊥)), we get
Using (2.5),
g(h(γ,ζ),ξ)=g(¯∇γζ−∇γζ,ξ)=−g(ζ,¯∇γξ). |
Again using (2.5), we obtain
g(h(γ,ζ),ξ)=−g(ζ,∇γξ+h(γ,ξ))=−g(ζ,∇γξ). |
Using (2.10), we have
g(h(γ,ζ),ξ)=−g(ζ,−A∗ξγ+∇∗tγξ)g(ζ,A∗ξγ)=0. |
Since the CR-lightlike submanifold ℵ is mixed geodesic, we have
g(h(γ,ζ),ξ)=0 |
⇒g(ζ,A∗ξγ)=0 |
⇒A∗ξγ∈Γ(λ0⊥ψL1), |
where γ∈Γ(λ),ζ∈Γ(λ′).
From (2.5), we get
g(h(γ,ζ),χ)=g(¯∇γζ−∇γζ,χ)=−g(ζ,¯∇γχ). |
From (2.9), we get
g(h(γ,ζ),χ)=−g(ζ,−Aχγ+∇sγχ+λl(γ,χ))g(h(γ,ζ),χ)=g(ζ,Aχγ). |
Since, ℵ is mixed geodesic, then g(h(γ,ζ),χ)=0
⇒g(ζ,Aχγ)=0. |
Aχγ∈Γ(λ0⊥Rad(Υℵ)⊥ψ1). |
Theorem 3.5. Suppose that ℵ is a CR-lightlike submanifold of a golden semi-Riemannian manifold ¯ℵ, then ℵ is λ′-geodesic if Aχη and A∗ξη have no component in ℵ2⊥ψRad(Υℵ) for η∈Γ(λ′),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. From (2.5), we obtain
g(h(η,β),χ)=g(¯∇ηβ−∇γζ,χ)=−¯g(∇γζ,χ), |
where χ,β∈Γ(λ′).
Using (2.9), we have
g(h(η,β),χ)=−g(β,−Aχη+∇sη+λl(η,χ))g(h(η,β),χ)=g(β,Aχη). | (3.1) |
Since ℵ is λ′-geodesic, then g(h(η,β),χ)=0.
From (3.1), we get
g(β,Aχη)=0. |
Now,
g(h(η,β),ξ)=g(¯∇ηβ−∇ηβ,ξ)=g(¯∇ηβ,ξ)=−g(β,¯∇ηξ). |
From (2.10), we get
g(h(η,β),ξ)=−g(η,−A∗ξη+∇∗tηξ)g(h(η,β),ξ)=g(A∗ξβ,η). |
Since ℵ is λ′- geodesic, then
g(h(η,β),ξ)=0 |
⇒g(A∗ξβ,η)=0. |
Thus, Aχη and A∗ξη have no component in M2⊥ψRad(Υℵ).
Lemma 3.6. Assume that ¯ℵ is a golden semi-Riemannian manifold that has a CR-lightlike submanifold ℵ. Due to the distribution's integrability, the following criteria hold.
(ⅰ) ψg(λl(ψγ,χ),ζ)−g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)−g(Aχγ,ψζ),
(ⅱ) g(λl(ψγ),ξ)=g(Aχγ,ψξ),
(ⅲ) g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ),
where γ,ζ∈Γ(Υℵ),ξ∈Γ(Rad(Υℵ)), and χ∈Γ(S(Υℵ⊥)).
Proof. From Eq (2.9), we obtain
g(λl(ψγ,χ),ζ)=g(¯∇ψγχ+Aχψγ−∇sψγχ,ζ)=−g(χ,¯∇ψγζ)+g(Aχψγ,ζ). |
Using (2.5), we get
g(λl(ψγ,χ),ζ)=−g(χ,∇ψγζ+h(ψγ,ζ))+g(Aχψγ,ζ)=−g(χ,h(γ,ψζ))+g(Aχψγ,ζ). |
Again, using (2.5), we get
g(λl(ψγ,χ),ζ)=−g(χ,¯∇γψζ−∇γψζ)+g(Aχψγ,ζ)=g(¯∇γχ,ψζ)+g(Aχψγ,ζ). |
Using (2.9), we have
g(λl(ψγ,χ),ζ)=g(−Aχγ+∇sγχ+λl(γ,χ),ψζ)+g(λl(ψγ,χ),ζ)−g(λl(γ,χ),ψζ)=g(Aχψγ,ζ)−g(Aχγ,ψζ). |
(ⅱ) Using (2.9), we have
g(λl(ψγ,χ),ξ)=g(Aχψγ−∇sψγχ+∇ψγχ,ξ)=g(Aχψγ,ξ)−g(χ,¯∇ψγξ). |
Using (2.10), we get
g(λl(ψγ,χ),ξ)=g(Aχψγ,ξ)+g(χ,A∗ξψγ)−g(χ,∇∗tψγ,ξ)g(λl(ψγ),ξ)=g(Aχγ,ψξ). |
(ⅲ) Replacing ζ by ψξ in (ⅰ), we have
ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),ψ2ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψ2ξ). |
Using Definition 2.1 in [18] p.g. 9, we get
ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),(ψ+I)ξ)=g(Aχψγ,ψξ)−g(Aχγ,(ψ+I)ξ)ψg(λl(ψγ,χ),ψξ)−g(λl(γ,χ),ψξ)−g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ)−g(Aχγ,ξ).g(λl(γ,χ),ξ)=g(Aχψγ,ψξ)−g(Aχγ,ψξ). |
Definition 4.1. [12] A CR-lightlike submanifold of a golden semi-Riemannian manifold is totally umbilical if there is a smooth transversal vector field H∈tr Γ(Υℵ) that satisfies
h(χ,η)=Hg(χ,η), |
where h is stands for second fundamental form and χ, η∈ Γ(Υℵ).
Theorem 4.2. Assume that the screen distribution is totally geodesic and that ℵ is a totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯ℵ, then
Aψηχ=Aψχη,∀χ,η∈Γλ′. |
Proof. Given that ¯ℵ is a golden semi-Riemannian manifold,
ψ¯∇ηχ=¯∇ηψχ. |
Using (2.5) and (2.6), we have
ψ(∇ηχ)+ψ(h(η,χ))=−Aψχη+∇tηψχ. | (4.1) |
Interchanging η and χ, we obtain
ψ(∇χη)+ψ(h(χ,η))=−Aψηχ+∇tχψη. | (4.2) |
Subtracting Eqs (4.1) and (4.2), we get
ψ(∇ηχ−∇χη)−∇tηψχ+∇tχψη=Aψηχ−Aψχη. | (4.3) |
Taking the inner product with γ∈Γ(λ0) in (4.3), we have
g(ψ(∇χη,γ)−g(ψ(∇χη,γ)=g(Aψηχ,γ)−g(Aψχη,γ).g(Aψηχ−Aψχη,γ)=g(∇χη,−ψγ)g(∇χη,ψγ). | (4.4) |
Now,
g(∇χη,ψγ)=g(¯∇χη−h(χ,η),ψγ)g(∇χη,ψγ)=−g(η,(¯∇χψ)γ−ψ(¯∇χγ)). |
Since ψ is parallel to ¯∇, i.e., ¯∇γψ=0,
g(∇χη,ψγ)=−ψ(¯∇χγ)). |
Using (2.7), we have
g(∇χη,ψγ)=−g(ψη,∇χγ+hs(χ,γ)+hl(χ,γ))g(∇χη,ψγ)=−g(ψη,∇χγ)−g(ψη,hs(χ,γ))−g(ψη,hl(χ,γ)). | (4.5) |
Since ℵ is a totally umbilical CR-lightlike submanifold and the screen distribution is totally geodesic,
hs(χ,γ)=Hsg(χ,γ)=0 |
and
hl(χ,γ)=Hlg(χ,γ)=0, |
where χ∈Γ(λ′) and γ∈Γ(λ0).
From (4.5), we have
g(∇χη,ψγ)=−g(ψη,∇χγ). |
From Lemma 2.1, we get
g(∇χη,ψγ)=0. |
Similarly,
g(∇ηχ,ψγ)=0 |
Using (4.4), we have
g(Aψηχ−Aψχη,γ)=0. |
Since λ0 is nondegenerate,
Aψηχ−Aψχη=0 |
⇒Aψηχ=Aψχη. |
Theorem 4.3. Let ℵ be the totally umbilical CR-lightlike submanifold of the golden semi-Riemannian manifold ¯ℵ. Consequently, ℵ's sectional curvature, which is CR-lightlike, vanishes, resulting in ¯K(π)=0, for the entire CR-lightlike section π.
Proof. We know that ℵ is a totally umbilical CR-lightlike submanifold of ¯ℵ, then from (2.13) and (2.14),
(∇γhl)(ζ,ω)=g(ζ,ω)∇lγHl−Hl{(∇γg)(ζ,ω)}, | (4.6) |
(∇γhs)(ζ,ω)=g(ζ,ω)∇sγHs−Hs{(∇γg)(ζ,ω)} | (4.7) |
for a CR-lightlike section π=γ∧ω,γ∈Γ(λ0),ω∈Γ(λ′).
From (2.12), we have (∇Ug)(ζ,ω)=0. Therefore, from (4.6) and (4.7), we get
(∇γhl)(ζ,ω)=g(ζ,ω)∇lγHl, | (4.8) |
(∇γhs)(ζ,ω)=g(ζ,ω)∇sγHs. | (4.9) |
Now, from (4.8) and (4.9), we get
{¯R(γ,ζ)ω}tr=g(ζ,ω)∇lγHl−g(γ,ω)∇lζHl+g(ζ,ω)λl(γ,Hs)−g(γ,ω)λl(ζ,Hs)+g(ζ,ω)∇sγHs−g(γ,ω)∇sζHs+g(ζ,ω)λs(γ,Hl)−g(γ,ω)λs(ζ,Hl). | (4.10) |
For any β∈Γ(tr(Υℵ)), from Equation (4.10), we get
¯R(γ,ζ,ω,β)=g(ζ,ω)g(∇lγHl,β)−g(γ,ω)g(∇lζHl,β)+g(ζ,ω)g(λl(γ,Hs),ζ)−g(γ,ω)g(λl(ζ,Hs),β)+g(ζ,ω)g(∇sγHs,β)−g(γ,ω)g(∇sζHs,β)+g(ζ,ω)g(λs(γ,Hl),β)−g(γ,ω)g(λs(ζ,Hl,β). |
R(γ,ω,ψγ,ψω)=g(ω,ψγ)g(∇lγHl,ψω)−g(γ,ψγ)g(∇lωHl,ψω)+g(ω,ψγ)g(λl(γ,Hs),ψω)−g(γ,ψγ)g(λl(ω,Hs),ψω)+g(ω,ψγ)g(∇sγHs,ψω)−g(γ,ψγ)g(∇sωHs,ψω)+g(ω,ψγ)g(λs(γ,Hl),ψω)−g(γ,ψγ)g(λs(ω,Hl,ψU). |
For any unit vectors γ∈Γ(λ) and ω∈Γ(λ′), we have
¯R(γ,ω,ψγ,ψω)=¯R(γ,ω,γ,ω)=0. |
We have
K(γ)=KN(γ∧ζ)=g(¯R(γ,ζ)ζ,γ), |
where
¯R(γ,ω,γ,ω)=g(¯R(γ,ω)γ,ω) |
or
¯R(γ,ω,ψγ,ψω)=g(¯R(γ,ω)ψγ,ψω) |
i.e.,
¯K(π)=0 |
for all CR-sections π.
Example 5.1. We consider a semi-Riemannian manifold R62 and a submanifold ℵ of co-dimension 2 in R62, given by equations
υ5=υ1cosα−υ2sinα−υ3z4tanα, |
υ6=υ1sinα−υ2cosα−υ3υ4, |
where α∈R−{π2+kπ; k∈z}. The structure on R62 is defined by
ψ(∂∂υ1,∂∂υ2,∂∂υ3,∂∂υ4,∂∂υ5,∂∂υ6)=(¯ϕ ∂∂υ1,¯ϕ∂∂υ2,ϕ∂∂υ3,ϕ∂∂υ4,ϕ∂∂υ5,ϕ∂∂υ6). |
Now,
ψ2(∂∂υ1,∂∂υ2,∂∂υ3,∂∂υ4,∂∂υ5,∂∂υ6)=((¯ϕ+1) ∂∂υ1,(¯ϕ+1)∂∂υ2,(ϕ+1)∂∂υ3,(ϕ+1)∂∂υ4, |
(ϕ+1)∂∂υ5,(ϕ+1)∂∂υ6) |
ψ2=ψ+I. |
It follows that (R62,ψ) is a golden semi-Reimannian manifold.
The tangent bundle Υℵ is spanned by
Z0=−sinα ∂∂υ5−cosα ∂∂υ6−ϕ ∂∂υ2, |
Z1=−ϕ sinα ∂∂υ5−ϕ cosα ∂∂υ6+ ∂∂υ2, |
Z2=∂∂υ5−¯ϕ sinα ∂∂υ2+∂∂υ1, |
Z3=−¯ϕ cosα ∂∂υ2+∂∂υ4+i∂∂υ6. |
Thus, ℵ is a 1-lightlike submanifold of R62 with RadΥℵ=Span{X0}. Using golden structure of R62, we obtain that X1=ψ(X0). Thus, ψ(RadΥℵ) is a distribution on ℵ. Hence, the ℵ is a CR-lightlike submanifold.
In general relativity, particularly in the context of the black hole theory, lightlike geometry finds its uses. An investigation is made into the geometry of the ℵ golden semi-Riemannian manifolds that are CR-lightlike in nature. There are many intriguing findings on completely umbilical and completely geodesic CR-lightlike submanifolds that are examined. We present a required condition for a CR-lightlike submanifold to be completely geodesic. Moreover, it is demonstrated that the sectional curvature K of an entirely umbilical CR-lightlike submanifold ℵ of a golden semi-Riemannian manifold ¯ℵ disappears.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The present work (manuscript number IU/R&D/2022-MCN0001708) received financial assistance from Integral University in Lucknow, India as a part of the seed money project IUL/IIRC/SMP/2021/010. All of the authors would like to express their gratitude to the university for this support. The authors are highly grateful to editors and referees for their valuable comments and suggestions for improving the paper. The present manuscript represents the corrected version of preprint 10.48550/arXiv.2210.10445. The revised version incorporates the identities of all those who have made contributions, taking into account their respective skills and understanding.
Authors have no conflict of interests.
[1] |
T. Kim, D. S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys., 2 (2021), 342–355. https://doi.org/10.1134/S1061920821030079 doi: 10.1134/S1061920821030079
![]() |
[2] |
D. S. Kim, H. Kim, T. Kim, A note on infinite series whose terms involve truncated degenerate exponentials, Appl. Math. Sci. Eng., 31 (2023), 2205643. https://doi.org/10.1080/27690911.2023.2205643 doi: 10.1080/27690911.2023.2205643
![]() |
[3] |
A. Cordero, N. Garrido, J. R. Torregrosa, P. Triguero-Navarro, An iterative scheme to obtain multiple solutions simultaneously, Appl. Math. Letters, 1 (2023), 108738. https://doi.org/10.1016/j.aml.2023.108738 doi: 10.1016/j.aml.2023.108738
![]() |
[4] |
F. Chinesta, A. Cordero, N. Garrido, J. R. Torregrosa, P. Triguero-Navarro, Simultaneous roots for vectorial problems, Comput. Appl. Math., 42 (2023), 227. https://doi.org/10.1007/s40314-023-02366-y doi: 10.1007/s40314-023-02366-y
![]() |
[5] | P. D. Proinov, M. T. Vasileva, On the convergance of family of Weierstrass-type root-finding methods, Comptes. rendus. de l'Académie. bulgare. des. Sci., 68 (2015), 697–704. |
[6] |
X. Zhang, H. Peng, G. Hu, A high order iteration formula for the simultaneous inclusion of polynomial zeros, Appl. Math. Comput., 179 (2006), 545–552. https://doi.org/10.1016/j.amc.2005.11.117 doi: 10.1016/j.amc.2005.11.117
![]() |
[7] | A. I. Iliev, K. I. Semerdzhiev, Some generalizations of the chebyshev Method for simultaneous determination of all Roots of polynomial equations, Comput. Math. Math. Phy., 39 (1999), 1384–1391. |
[8] |
P. D. Proinov, M. T. Vasileva, A new family of high-order Ehrlich-type iterative methods, Mathematics, 9 (2021), 1855. https://doi.org/10.3390/math9161855 doi: 10.3390/math9161855
![]() |
[9] |
S. Kanno, N. V. Kjurkchiev, T. Yamamoto, On some methods for the simultaneous determination of polynomial zeros, Jpn. J. Ind. Appl. Math., 13 (1996), 267. https://doi.org/10.1007/BF03167248 doi: 10.1007/BF03167248
![]() |
[10] |
P. D. Proinov, S. I. Cholakov, Semilocal convergence of Chebyshev-like root-finding method for simultaneous approximation of polynomial zeros, Appl. Math. Comput., 236 (2014), 669–682. https://doi.org/10.1016/j.amc.2014.03.092 doi: 10.1016/j.amc.2014.03.092
![]() |
[11] |
P. Weidner, The Durand-Kerner method for trigonometric and exponential polynomials, Computing, 40 (1988), 175–179. https://doi.org/10.1007/BF02247945 doi: 10.1007/BF02247945
![]() |
[12] |
N. A. Mir, R. Muneer, I. Jabeen, Some families of two-step simultaneous methods for determining zeros of nonlinear equations, ISRN Appl. Math., 2011 (2011), 817174. https://doi.org/10.5402/2011/817174 doi: 10.5402/2011/817174
![]() |
[13] | M. R. Farmer, Computing the zeros of polynomials using the divide and conquer approach, Ph.D thesis, Department of Computer Science and Information Systems, Birkbeck, University of London, 2013. |
[14] |
A. W. M. Nourein, An improvement on two iteration methods for simultaneous determination of the zeros of a polynomial, Inter. J. Comput. Math., 6 (1977), 241–252. https://doi.org/10.1080/00207167708803141 doi: 10.1080/00207167708803141
![]() |
[15] | O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comput., 27 (1973), 339–344. https://doi.org/S0025-5718-1973-0329236-7 |
[16] |
S. I. Cholakov, M. T. Vasileva, A convergence analysis of a fourth-order method for computing all zeros of a polynomial simultaneously. J. Comput. Appl. Math, 321 (2017), 270–283. https://doi.org/10.1016/j.cam.2017.02.038 doi: 10.1016/j.cam.2017.02.038
![]() |
[17] |
B. Sendov, A. Andreev, N. Kjurkchiev, Numerical solution of polynomial equations, Handbook Numer. Anal., 3 (1994), 625–778. https://doi.org/10.1016/S1570-8659(05)80019-5 doi: 10.1016/S1570-8659(05)80019-5
![]() |
[18] |
G. H. Nedzhibov, Iterative methods for simultaneous computing arbitrary number of multiple zeros of nonlinear equations, Int. J. Comput. Math., 90 (2013), 994–1007. https://doi.org/10.1080/00207160.2012.744000 doi: 10.1080/00207160.2012.744000
![]() |
[19] |
H. T. Kung, J. F. Traub, Optimal order of one-point and multipoint iteration, J. ACM, 21 (1974), 643–651. https://doi.org/10.1145/321850.321860 doi: 10.1145/321850.321860
![]() |
[20] |
I. K. Argyros, A. A. Magreñán, L. Orcos, Local convergence and a chemical application of derivative free root finding methods with one parameter based on interpolation, J. Math. Chem., 54 (2016), 1404–1416. https://doi.org/10.1007/s10910-016-0605-z doi: 10.1007/s10910-016-0605-z
![]() |
[21] |
T. Kim, D. S. Kim, H. K. Kim, Study on r-truncated degenerate Stirling numbers of the second kind, Open Math., 20 (2022), 1685–1695. https://doi.org/10.1515/math-2022-0535 doi: 10.1515/math-2022-0535
![]() |
[22] | T. Kim, D. S. Kim, H. K. Kim, Generalized degenerate stirling numbers arising from degenerate boson normal ordering, preprint paper, arXiv: 2305.04302, 2023. https://doi.org/10.48550/arXiv.2305.04302 |
[23] | T. Kim, D. S. Kim, Degenerate r-associated Stirling numbers, preprint paper, arXiv: 2206.10194, 2022. https://doi.org/10.48550/arXiv.2206.10194 |
[24] | K. Weierstrass, Neuer Beweis des Satzes, dass jede ganze rationale Function einer Veränderlichen dargestellt werden kann als ein Product aus linearen Functionen derselben Veränderlichen, Sitzungsber. K önigl. Preuss. Akad. Wiss. Berlinn, 2 (1891), 1085–1101. |
[25] |
P. D. Proinov, M. T. Vasileva, On the convergence of high-order Ehrlich-type iterative methods for approximating all zeros of a polynomial simultaneously, J. Inequal. Appl., 2015 (2015), 336. https://doi.org/10.1186/s13660-015-0855-5 doi: 10.1186/s13660-015-0855-5
![]() |
[26] |
M. S. Petković, L. D. Petković, J. Džunić, Accelerating generators of iterative methods for finding multiple roots of nonlinear equations, Comput. Math. with Appl., 59 (2010), 2784–2793. https://doi.org/10.1016/j.camwa.2010.01.048 doi: 10.1016/j.camwa.2010.01.048
![]() |
[27] |
M. S. Petković, L. D. Petković, J. Džunić, On an efficient simultaneous method for finding polynomial zeros, Appl. Math. Lett., 28 (2014), 60–65. https://doi.org/10.1016/j.aml.2013.09.011 doi: 10.1016/j.aml.2013.09.011
![]() |
[28] |
M. Shams, N. Rafiq, N. Kausar, P. Agarwal, C. Park, N. A. Mir, On highly efficient derivative-free family of numerical methods for solving polynomial equation simultaneously, Adv. Differ. Equ., 2021 (2021), 465. https://doi.org/10.1186/s13662-021-03616-1 doi: 10.1186/s13662-021-03616-1
![]() |
[29] |
M. Shams, N. Rafiq, N. Kausar, S. F. Ahmed, N. A. Mir, S. Chandra Saha, Inverse family of numerical methods for approximating all simple and roots with multiplicity of nonlinear polynomial equations with engineering applications, Math. Prob. Eng., 2021 (2021), 3124615. https://doi.org/10.1155/2021/3124615 doi: 10.1155/2021/3124615
![]() |
[30] |
M. Shams, N. Rafiq, N. Kausar, P. Agarwal, C. Park, N. A. Mir, On iterative techniques for estimating all roots of nonlinear equation and its system with application in differential equation, Adv. Differ. Equ., 2021 (2021), 480. https://doi.org/10.1186/s13662-021-03636-x doi: 10.1186/s13662-021-03636-x
![]() |
[31] |
G. Pulvirenti, C. Faria, Influence of housing wall compliance on shock absorbers in the context of vehicle dynamics, IOP Conf. Series Mater. Sci. Eng., 252 (2017), 012026. https://doi.org/10.1088/1757-899X/252/1/012026 doi: 10.1088/1757-899X/252/1/012026
![]() |
[32] |
L. Konieczny, Analysis of simplifications applied in vibration damping modelling for a passive car shock absorber, Shock Vib., 2016 (2016), 6182847. https://doi.org/10.1155/2016/6182847 doi: 10.1155/2016/6182847
![]() |
[33] |
Y. Liu, J. Zhang, Nonlinear dynamic responses of twin-tube hydraulic shock absorber, Mech. Res. Commun., 29 (2002), 359–365. https://doi.org/10.1016/S0093-6413(02)00260-4 doi: 10.1016/S0093-6413(02)00260-4
![]() |
[34] | R. L. Fournier, Basic Transport Phenomena in Biomedical Engineering, New York: Taylor & Franics, 2007. |
[35] | I. N. Bronshtein, K. A. Semendyayev, Handbook of Mathematics, Berlin: Springer, 2013. |
1. | Bang-Yen Chen, Majid Ali Choudhary, Afshan Perween, A Comprehensive Review of Golden Riemannian Manifolds, 2024, 13, 2075-1680, 724, 10.3390/axioms13100724 |