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Abstract: The roots of non-linear equations are a major challenge in many scientific and professional
fields. This problem has been approached in a number of ways, including use of the sequential
Newton’s method and the traditional Weierstrass simultaneous iterative scheme. To approximate all
of the roots of a given nonlinear equation, sequential iterative algorithms must use a deflation strategy
because rounding errors can produce inaccurate results. This study aims to develop an efficient
numerical simultaneous scheme for approximating all nonlinear equations’ roots of convergence
order 12. The numerical outcomes of the considered engineering problems show that, in terms
of accuracy, validations, error, computational CPU time, and residual error, recently developed
simultaneous methods perform better than existing methods in the literature.
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1. Introduction

Numerical iterative methods for solving nonlinear equations have a long and rich history, dating
back to ancient times. They have played a significant role in the development of mathematics and
have a wide range of applications in science and engineering. Today, these methods continue to be
an important area of research and development, as mathematicians and scientists seek to develop new
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and more efficient methods for solving nonlinear equations. These methods are particularly useful in
situations in which it is difficult or impossible to find the exact roots of a polynomial by using analytical
methods. Iterative methods are used in a wide range of applications, including engineering, science,
finance, and computer science. One of the main areas where iterative methods for finding polynomial
roots play a significant role is in signal processing. Signals, such as sound waves, images and videos,
can be represented mathematically as polynomials. The roots of these polynomials correspond to the
frequencies present in the signal [1,2]. Therefore, finding the roots of a polynomial is an essential task
in signal processing, and iterative methods are commonly used to estimate the roots of the polynomial
representing a signal. Another area where iterative methods are used for finding polynomial roots is
in control systems. Control systems are used to regulate the behavior of physical systems such as
machines, vehicles, and robots. The roots of the polynomial describing the behavior of a system can be
used to design control strategies to stabilize or improve the system’s performance. Iterative methods
for finding polynomial roots are used to estimate the roots of the polynomial model of the system,
enabling the design of control strategies that work in real-time.

Iterative methods are also used in finance, where they are used to estimate the roots of polynomial
equations used in to price financial derivatives, such as options and futures. These financial instruments
can be modeled mathematically as polynomials, and finding the roots of these polynomials is essential
to pricing them accurately.

In an effort to simultaneously find all polynomial roots Cordero et al [3] used the Ehrlich method
to develop a simultaneous method of convergence order 3p; Chinesta et al. [4] used a simultaneous
method to solve a vectorial problem, Proinov and Vasileva [5] accelerated the convergence order of
the Simultaneous-Weierstrass method; Zhang et al. [6] presented a fifth order simultaneous method
with derivatives; Iliev and Semerdzhiev [7] generalized the Chebyshev method into the Chebyshev-
simultaneous method, and many others. Iterative methods for approximating all roots of nonlinear
equations have grown in prominence in recent years, due to their global convergence and parallel
computer application (see, e.g., Proinov and Vasileva [8], Kanno et al. [9], Proinov and Cholakov [10],
Weidner [11], Mir et al. [12], Farmer [13], Nourein [14], Aberth [15], Cholakov and Vasileva [16] and
the references cited there in [17–20]).
Motivated by the aforementioned work, we develop a higher-order simultaneous method for solving
nonlinear equations in this article. In the future, this article will assist other researchers in the further
development of this topic.

The main contributions of this research works are

• A simultaneous numerical technique for locating all of the roots of scalar nonlinear equations is
developed.
• The proposed numerical scheme for solving polynomial equations was subjected to a local

convergence analysis.
• For some random initial guess values, we execute numerical simultaneous methods to show the

behavior of global convergence.
• The efficiency, stability, and application of the suggested technique are evaluated using

mathematical computational tools.

The method’s applicability to various nonlinear engineering applications [21–23] is considered.
In last few years, a lot of work is done on numerical iterative methods which approximate single at
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one time of nonlinear equation. Besides these single root estimating methods in literature, we found
another class of derivative free iterative schemes which approximates all roots of nonlinear equations
simultaneously.

Among the derivative free simultaneous methods, the Weierstrass-Dochive [24] method is the most
attractive method, and it is given by

u[ς]
i = r[ς]

i − w(r[ς]
i ), (1.1)

where

w(r[ς]
i ) =

f (r[ς]
i )

n
Π
j=1
j,i

(r[ς]
i − r[ς]

j )
, (i, j = 1, 2, 3, ..., n), (1.2)

is Weierstrass’ correction. Method (1.2) has a local quadratic convergence.
In 1977, Ehrlich presented the following convergent simultaneous method [25] of third order as:

u[ς]
i = r[ς]

i −
1

1
Ni(r

[ς]
i )
−

n∑
j=1
j,i

(
1(

r[ς]
i −r[ς]

j

)
) ; (1.3)

using r[ς]
j =

∗
u

[ς]

j as a correction in (1.3), Petkovic et al. [26] accelerated the convergence order of (1.3)
from three to 6:

u[ς]
i = r[ς]

i −
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1
Ni(r

[ς]
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−
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)
 , (1.4)

where
∗
u

[ς]

j = r[ς]
j −

f (s[ς]
j )− f (r[ς]

j )

2∗ f (s[ς]
j )− f (r[ς]

j )

f (r[ς]
j )

f ′(r[ς]
j )

and s[ς]
j = r[ς]

j −
f (r[ς]

j )

f ′(r[ς]
j )
.

Petkovic et al. [27] accelerated the convergence order of (1.3) from three to 10 as (abbreviated as
MM10α):

x[ς+1]
i = x[ς]

i −
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) .
Shams et al. [28] proposed the following three-step simultaneous scheme for finding all polynomial

roots (abbreviated as MM12α):

x[ς+1]
i = z[ς]

i −
f (z[ς]

i )
n
Π
j=1
j,i

(z[ς]
i − z[ς]

j )
−

f (z[ς]
i )

n
Π
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(z[ς]
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j )
, (1.6)
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where z[ς]
i = y[ς]

i −
f (y[ς]

i )
n
Π
j=1
j,i

(y[ς]
i −y[ς]

j )
, y[ς]

i = x[ς]
i −

f (x[ς]
i )

n
Π
j=1
j,i

(x[ς]
i −x∗[ς]j )

and x∗[ς]j = x[ς]
j −

α
(

f (x[ς]
i )

)2

f (x[ς]
i +α f (x[ς]

i ))− f (x[ς]
i )

;α ∈ R. The order

of convergence of the numerical scheme (1.6) is 12.

2. Construction of family of simultaneous methods for distinct roots

Here, we propose the following family of methods as (abbreviated as MM12):
y[ς] = x[ς] −

f(x[ς])
f ′(x[ς]) ,

z[ς] = y[ς] −
f(y[ς])
f ′(y[ς]) ,

x[ς+1] = z[ς] −
f(z[ς])

f ′(y[ς])+ f(y[ς])+ f(z[ς]) .

(2.1)

The following theorem proves the convergence order of the numerical scheme MM12.

Theorem 1. Assume that ζ ∈ I is the simple root of a sufficiently differential function f : I ⊆ R −→ R.
The convergence order of (2.1) is six if x0 is sufficiently close to ζ, and the error equation is given by

e[ς+1] = (2σ5
2 − σ

4
2)

(
e[ς]

)6
+ O(e[ς]), (2.2)

where σm =
f m(ζ)

m! f ′ (ζ) ,m ≥ 2.

Proof. Let ζ be a simple root of f and x[ς] = ζ + e[ς], x[ς+1] = ζ + e[ς+1]. By Taylor series expansion
about ζ, taking f (ζ) = 0, we get

f (x[ς]) = f
′

(ζ)(e[ς] + σ2

(
e[k]

)2
+ σ3

(
e[ς]

)3
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(
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)4
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(
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)5
+ ...) (2.3)

and
f
′

(x[ς]) = f
′

(ζ)(1 + 2c2

(
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)
+ 3σ3

(
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)2
+ 4σ4

(
e[ς]

)3
+ ...). (2.4)

Dividing (2.3) by (2.4), we have

f (x[ς])
f ′(x[ς])

= e[ς] + σ2

(
e[ς]

)2
+ (2σ2

2 − 2σ3)
(
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)3
+ (7σ2σ3 − 3σ4 − 4σ3

2)
(
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)4
+ ... (2.5)

Using (2.5) in the first-step of (2.2), we have

y[ς] = ζ + σ2

(
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)2
+ (2σ3 − 2σ2

2)
(
e[ς]

)3
+ ... (2.6)

Thus, using a Taylor series, we have

f (y[ς]) = f
′

(ζ)(σ2

(
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2
2)

(
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)3
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2)
(
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)4
+ ... (2.7)

f ′(y[ς]) = 1 + 2σ2
2

(
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)2
+ 2(−2σ2
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(
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)3
(2.8)

+(2σ2(4c3
2 − 7σ2σ3 + 3σ4) + 3σ2

2σ3)
(
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)4
+ ...
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This gives
f (y[ς])
f ′(y[ς])

= σ2

(
e[ς]

)2
+ (2σ3 − 2σ2

2)
(
e[ς]

)3
+ (3σ3

2 − 7σ2σ3 + 3σ4)
(
e[ς]

)4
(2.9)

+6σ2σ3(−2σ2
2 + 2σ3)

(
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)5
+ O

((
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)6
)

z[ς] = ζ + (σ3
2)

(
e[ς]

)4
+ (−4σ4

2 + 4σ2
2σ3)

(
e[ς]

)5
+ ... (2.10)

Adding (2.3), (2.7) and a function of (2.10), we have

f ′(y[ς]) + f (y[ς]) + f (z[ς]) = 1 + (2σ2
2 + σ2)

(
e[ς]

)2
+ (−4σ3

2 − 2σ2
2 + 4σ2σ3 + 2σ3)

(
e[ς]

)3
+ ... (2.11)(

f (z[ς])
f ′(y[ς]) + f (y[ς]) + f (z[ς])

)
= σ3

2

(
e[ς]

)4
+ (−4σ4

2 + 4σ2
2σ3)

(
e[ς]

)5
+ ... (2.12)

This implies that
x[ς+1] = ζ + (2σ5

2 − σ
4
2)

(
e[ς]

)6
+ O

(
e[ς]

)7
. (2.13)

Hence we arrive at the desired result. □

Using (1.2), we convert (2.1) into a simultaneous iterative method for approximating all nonlinear
equation roots as follows:

w[ς]
i = z[ς]

i −
f
(
z[ς]

i

)
n
Π
j=1
j,i

(
z[ς]

i − z[ς]
j

)


1

Ψ[ς] ∗

1 + f
(
y[ς]

i

)
n
Π
j=1
j,i

(
y[ς]

i −y[ς]
j

) + f
(
z[ς]

i

)
n
Π
j=1
j,i

(
z[ς]

i −z[ς]
j

)



, (2.14)

where y[ς]
i = x[ς]

i −
f
(
x[ς]

i

)
n∏

j=1
j,i

x[ς]
i −x[ς]

j +
f(x[ς]

i )
f ′(x[ς]

i )
11−α

 f(x[ς]
i )

1+ f(x[ς]
i )





, z[ς]

i = y[ς]
i −

f
(
y[ς]

i

)
n
Π
j=1
j,i

(
y[ς]

i −y[ς]
j

) . Therefore


y[ς]

i = x[ς]
i − w∗i

(
x[ς]

i

)
,

z[ς]
i = y[ς]

i − wi

(
y[ς]

i

)
,

w[ς]
i = z[ς]

i − wi

(
z[ς]

i

) [
1

Ψ[ς]∗
(
1+w

(
y[ς]

i

)
+wi

(
z[ς]

i

))] , (2.15)

where w∗i
(
x[ς]

i

)
=

f
(
x[ς]

i

)
n∏

j=1
j,i

x[ς]
i −x[ς]

j +
f(x[ς]

i )
f ′(x[ς]

i )
11−α

 f(x[ς]
i )

1+ f(x[ς]
i )





,wi

(
y[ς]

i

)
=

f (r(σ)
i )

n
Π
j=1
j,i

(r(σ)
i −r(σ)

j )
,

wi

(
z[ς]

i

)
=

f
(
z[ς]

i

)
n
Π
j=1
j,i

(
z[ς]

i −z[ς]
j

) and Ψ[ς] =
f ′(y[ς])
f ′(z[ς]) .

In the following theorem, we prove the convergence order of MM12.
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Theorem 2. Let ζ1, ..., ζσ be a simple zero of the nonlinear equation and for sufficiently close initial
distinct estimation x[0]

1 , ..., x
[0]
n of the roots respectively; then, MM12 has a convergence of order 12.

Proof. Let ϵi = x[σ]
i − ζi, ϵ

′
i = y[σ]

i − ζi, ϵ
′′
i = z[σ]

i − ζi and ϵ′′′i = w[σ]
i − ζi be the errors in x[σ]

i , y
[σ]
i , z

[σ]
i ,

and w[σ]
i , respectively. From the first-step of MM12, we have

y[ς]
i − ζi = x[ς]

i − ζi −
f
(
x[ς]

i

)
n∏

j=1
j,i

x[ς]
i − x[ς]

j +
f
(
x[ς]

i

)
f ′
(
x[kς]

i

) x11−α f(x[ς]
i )

1+ f(x[ς]
i )




. (2.16)

ϵ′i = ϵi − ϑ
∗
i

(
x[ς]

i

)
= ϵi − ϵi

ϑ∗i

(
x[ς]

i

)
ϵi
, (2.17)

ϵ′i = ϵi
(
1 − Q[1]

i

)
, (2.18)

where

Q[1]
i =

ϑ∗i

(
x[ς]

i

)
ϵi

=

n∏
j=1
j,i

 x[ς]
i − ζ j

x[ς]
i −

∗
x

[ς]

j

 , (2.19)

and
∗
x

[ς]

j = x[ς]
j −

f
(
x[ς]

i

)
f ′
(
x[ς]

i

) 11−α f(x[ς]
i )

1+ f(x[ς]
i )

 .

x[ς]
i − ζ j

x[ς]
i −

∗
x

[ς]

j

= 1 +
x[ς]

j − ζ j

x[ς]
i −

∗
x

[ς]

j

1 + O
(∣∣∣ϵ2∣∣∣) , (2.20)

Q[1]
i =

n∏
j=1
j,i

 x[ς]
i − ζ j

x[ς]
i −

∗
x

[ς]

j

 = (
1 + O

(∣∣∣ϵ2∣∣∣))n−1
, (2.21)

= 1 + (n − 1) O
(∣∣∣ϵ2∣∣∣) = 1 + O

(∣∣∣ϵ2∣∣∣) ,
Q[1]

i − 1 = O
(∣∣∣ϵ2∣∣∣) . (2.22)

Thus, we get
ϵ′i = ϵi

(
O

(∣∣∣ϵ2∣∣∣)) = O
(∣∣∣ϵ3∣∣∣) , (2.23)

z[ς]
i − ζi = y[ς]

i − ζi −
f
(
y[ς]

i

)
n∏

j=1
j,i

(
y[ς]

i − y[ς]
j

) . (2.24)

ϵ′′i = ϵ
′
i − ϑ

∗
i

(
y[ς]

i

)
= ϵ′i − ϵ

′
i

ϑ∗i

(
y[ς]

i

)
ϵ′i

= ϵ′i
(
1 − Q[2]

i

)
, (2.25)
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where

Q[2]
i =

ϑ∗i

(
y[ς]

i

)
ϵ′i

=

n∏
j=1
j,i

 y[ς]
i − ζ j

y[ς]
i −

∗
y

[ς]

j

 , (2.26)

y[ς]
i − ζ j

y[ς]
i − y[ς]

j

= 1 +
y[ς]

j − ζ j

y[ς]
i − y[ς]

j

= 1 + O
(∣∣∣ϵ2∣∣∣) , (2.27)

Q[2]
i =

n∏
j=1
j,i

 y[ς]
i − ζ j

y[ς]
i − y[ς]

j

 = (
1 + O

(
|ϵ′|

))n−1 , (2.28)

= 1 + (n − 1) O
(
|ϵ′|

)
= 1 + O

(
|ϵ′|

)
,

Q[2]
i − 1 = O

(
|ϵ′|

)
. (2.29)

Assume that |ϵi| =
∣∣∣ϵ j

∣∣∣ = |ϵ| , then, we get

ϵ′′i = ϵ
′
i
(
O

(
|ϵ′|

))
= O

(
|ϵ′|2

)
= O

(∣∣∣ϵ6∣∣∣) . (2.30)

Also

z[ς]
i − ζi = z[ς]

i − ζi −
f
(
z[ς]

i

)
n∏

j=1
j,i

(
z[ς]

i − z[ς]
j

)


1

Ψ[ς] ∗

1 + f
(
y[ς]

i

)
n
Π
j=1
j,i

(
y[ς]

i −y[ς]
j

) + f
(
z[ς]

i

)
n
Π
j=1
j,i

(
z[ς]

i −z[ς]
j

)



, (2.31)

ϵ′′′i = ϵ
′′
i − ϵ

′′
i

ϑ∗i

(
z[ς]

i

)
ϵ′′i

 1

Ψ[ς] ∗
(
1 + ϑ∗i

(
y[ς]

i

)
+ ϑ∗i

(
z[ς]

i

)) , (2.32)

ϵ′′′i = ϵ
′′
i − ϵ

′′
i

ϑ∗i

(
z[ς]

i

)
ϵ′′i

 1

Ψ[ς] ∗
(
1 + ϑ∗i

(
y[ς]

i

)
+ ϑ∗i

(
z[ς]

i

)) (2.33)

as Ψ[ς] =
f ′
(
y[ς]

i

)
f ′
(
z[ς]

i

) .
f
(
x[ς]

i

)
=

(
x[ς]

1 − ζ1
)
...

(
x[ς]

i − ζi
)
= ϵi

n∏
j=1
j,i

(
x[ς]

i − ζ j

)
, (2.34)

f
(
y[ς]

i

)
=

(
y[ς]

1 − ζ1
)
...

(
y[ς]

i − ζi
)
= ϵ′i

n∏
j=1
j,i

(
y[ς]

i − ζ j

)
, (2.35)
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= ϵ′i

n∏
j=1
j,i

x[ς]
i − x[ς]

j −
f
(
x[ς]

i

)
f ′

(
x[ς]

i

) 1[
1 − α

[
f
(
x[ς]

i

)
1+ f

(
x[ς]

i

)]] − ζ j

 ,
= ϵ′i

n∏
j=1
j,i

(
x[ς]

i − ϑ
∗
i

(
x[ς]

i

)
− ζ j

)
,

f
(
z[ς]

i

)
=

(
z[ς]

1 − ζ1
)
...

(
z[ς]

i − ζi
)

(2.36)

= ϵ′′i

n∏
j=1
j,i

(
z[ς]

i − ζ j

)
= ϵ′′i

n∏
j=1
j,i

(
y[ς]

i − ϑ
∗
i

(
y[ς]

i

)
− ζ j

)
, (2.37)

= ϵ′′i

n∏
j=1
j,i

(
y[ς]

i − ϑ
∗
i

(
y[ς]

i

)
− ζ j

)
.

f
(
y[ς]

i

)
f
(
x[ς]

i

) = ϵ′i
ϵi

n∏
j=1
j,i

y[ς]
i − ζ j

x[ς]
i − ζ j

 = ϵi
(
1 − Q[1]

i

)
ϵi

n∏
j=1
j,i

 x[ς]
i − ϑ

∗
i

(
x[ς]

i

)
− ζ j

x[ς]
i − ζ j

 , (2.38)

=
(
1 − Q[1]

i

) n∏
j=1
j,i

1 − ϑ∗i
(
x[ς]

i

)
x[ς]

i − ζ j

 = 1 − O (ϵ) ,

f
(
z[ς]

i

)
f
(
y[ς]

i

) = ϵ′′i
ϵ′i

n∏
j=1
j,i

 z[ς]
i − ζ j

y[ς]
i − ζ j

 = ϵ′′iϵ′i (
1 − O

(
ϵ′
))
, (2.39)

f ′
(
y[ς]

i

)
f ′

(
z[ς]

i

) = f
(
y[ς]

i

)
f
(
z[ς]

i

)
f
(
y[ς]

i

)
f
(
z[ς]

i

) n∏
j=1
j,i

y[ς]
i − ζ j

z[ς]
i − ζ j

 = 1; (2.40)

therefore

Ψ[ς] ∗

1 +
f
(
y[ς]

i

)
n
Π
j=1
j,i

(
y[ς]

i − y[ς]
j

) + f
(
z[ς]

i

)
n
Π
j=1
j,i

(
z[ς]

i − z[ς]
j

)
 , (2.41)

= 1 +
f
(
z[ς]

i

)
f ′

(
z[ς]

i

)


f
(
z[ς]

i

)
f
(
y[ς]

i

) + 1

f
(
z[ς]

i

)
f
(
y[ς]

i

)

 = 1 + ϵ′′i
n∏

j=1
j,i

 z[ς]
i − ζ j

z[ς]
i − z[ς]

j



ϵ′′i
ϵ′i

(1 − O (ϵ′)) + 1
ϵ′′i
ϵ′i

(1 − O (ϵ′))

 ,
= 1 + ϵ′′i

n∏
j=1
j,i

 z[ς]
i − ζ j

z[ς]
i − z[ς]

j

 [ϵ′′i (1 − O (ϵ′)) + ϵ′

ϵ′′i (1 − O (ϵ′))

]
,
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= 1 +
n∏

j=1
j,i

 z[ς]
i − ζ j

z[ς]
i − z[ς]

j

 [ϵ′′i (1 − O (ϵ′)) + ϵ′

(1 − O (ϵ′))

]
,

= 1 + O
(
ϵ′′

)
.

Thus

ϵ′′′i = ϵ
′′
i − ϵ

′′
i

ϑ∗i

(
z[ς]

i

)
ϵ′′i

[
1 − O

(
ϵ′′

)
.
]
= ϵ′′i

(
1 − Q[3]

i

)
, (2.42)

where

Q[3]
i =

ϑ∗i

(
z[ς]

i

)
ϵ′′i

=

n∏
j=1
j,i

 z[ς]
i − ζ j

z[ς]
i − z[ς]

j

 , (2.43)

y[ς]
i − ζ j

y[ς]
i − y[ς]

j

= 1 +
z[ς]

j − ζ j

z[ς]
i − z[ς]

j

1 + O
(∣∣∣ϵ2∣∣∣) , (2.44)

Q[3]
i =

n∏
j=1
j,i

 z[ς]
i − ζ j

z[ς]
i − z[ς]

j

 = (
1 + O

(
|ϵ′′|

))n−1 , (2.45)

Q[3]
i = 1 + (n − 1) O

(
|ϵ′′|

)
= 1 + O

(
|ϵ′′|

)
,

Q[1]
i − 1 = O

(
|ϵ′′|

)
. (2.46)

Thus, we get

ϵ′′′i = ϵ
′′
i
(
O

(
|ϵ′′|

))
= O

(
|ϵ′′|2

)
= O

(∣∣∣ϵ6∣∣∣2) = O (|ϵ |)12 . (2.47)

Hence, we have completed the proof of this theorem. □

3. Computational analysis of simultaneous methods

The computational analysis of the numerical approach comprises analyzing its computational
complexity and convergence characteristics. In general, the approach converges more quickly when
the initial guess is nearer to the exact roots. The computational complexity of the simultaneous
technique is dominated by global convergence behavior unlike a single root-finding algorithm. This
indicates that the overall complexity of the simultaneous technique, where n is the degree of the
polynomial, is O

[
m2

]
. Here, we contrast the computing effectiveness of the recently introduced

methods MM10 with the MM10 and MM12α. As presented in [29], the computational efficiency of an
iterative method can be estimated by using the efficiency index given by

Λ[∗][m] =
log[r]

θ[∗]11 + θ
[∗]
12 + θ

[∗]
13

, (3.1)

where θ[∗]11 = was ∗ AS m, θ
[∗]
12 = wmMm, and θ[∗]13 = wdDm [30]. Applying the data given in Table 1, we

have

Λ
[∗]
1 [m, n] =

(
Λ[∗][m] − Λ[∗][n]
Λ[∗][n]

× 100
)
. (3.2)
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Table 1. Basic operations for simultaneous schemes.

Methods MM10 MM12 MM12α

AAm 22*
(
m2

)
+O[m] 17*

(
m2

)
+O[m] 19*

(
m2

)
+O[m]

MMm 12*
(
m2

)
+O[m] 6*

(
m2

)
+O[m] 8*

(
m2

)
+O[m]

DDm 2*
(
m2

)
+O[m] 2*

(
m2

)
+O[m] 2*

(
m2

)
+O[m]

Remark 1. Figure 1 graphically illustrates the computational efficiency ratios. It is evident from
Figure 1 that the newly constructed simultaneous methods MM12 is more efficient than MM10 and
MM12α

EFHMM12L�EFHMM10L

10 20 30 40 50

93

94

95

96

97

(a) Computational efficiency of MM12α w.r.t MM10.

EFHMM12*L�EFHMM10L
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46.5
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47.5

48.0

48.5

49.0

(b) Computational efficiency of MM12 w.r.t MM10.
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(c) Computational efficiency of MM10 w.r.t MM12α.

EFHMM10L�EFHMM12*L
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-30.0

-29.8

-29.6

-29.4

-29.2

(d) Computational efficiency of MM10 w.r.t MM12.

Figure 1. (a–d) Computational efficiency ratios for simultaneous methods.

4. Numerical outcomes

4.1. Real world application

In this section, we discuss some real world applications whose solutions are approximated by our
newly constructed methods MM10,MM12, and MM12α.

Example 1: Quarter car suspension model
One component of the suspension system i.e., the shock absorbed, is also utilized to regulate the

transient behavior of the vehicle mass and the suspension mass (see Pulvirenti and Faria [31],
Konieczny [32]). Due to its nonlinear behavior, it is one of the most complicated components of the
suspension system. The damping force of the dampers is, however, described by an asymmetric
nonlinear hysteresis loop [33]. A two-degrees-of-freedom quarter-car model is used to simulate the
vehicle characteristics in this situation, and linear and nonlinear damping characteristics are used to
analyze the damper effect. Construction of a damper model that describes the damper’s nonlinear
hysteresis features, such as a polynomial model, is crucial because simpler models, such as linear and
piece-wise linear models, fail to characteristic the damper’s behavior. What follows are the equations
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of mass motion: {
msx′′s + ςs(xs − xu) + F = 0,

mux′′u − ςs(xs − xu) − ςσ(xr − xu) − F = 0,
(4.1)

where ms is masses that are over-sprung, mu denotes masses that are under sprung, xs displacement over
masses, xu displacement under masses, xr is the disturbance from road bumps, ςs denotes coefficients
relating to the spring, and ςσ coefficients relating to the spring stiffness in the Tyre stiffness. The
following polynomial is used to fit the damper force F in (4.1):

f (x) = −77.14 ∗ x4 + 23.14 ∗ x3 + 342.7 ∗ x2 + 956.7x + 124.5. (4.2)

The quarter-car model’s suspension is centered between the sprung mass and the unsprung mass. The
force-velocity relation of the shock absorbed is based on the models covered in the section before,
whereas the suspension system’s spring has a stiffness of ςs. The stiffness of the tyre is represented by
a second spring attached to the unsprung mass with a coefficient of ςσ The two springs in the system
are considered to be linear in nature and to have constant spring coefficients. It should be mentioned
that system damping is thought to be more important than tyre damping. The response of the system
can be analyzed by determining the displacement, velocity, and acceleration of the mass over time.
The model can be used to design and optimize suspension systems for various driving conditions, such
as ride comfort, handling, and stability.

The exact roots of (4.2) are

ζ1 = 3.090556803, ζ2 = −1.326919946 + 1.434668028 ∗ i, ζ3 = −0.1367428388,
ζ4 = −1.326919946 − 1.434668028 ∗ i.

We have determined the convergence history and computational order for the numerical schemes
MM10, MM12, and MM12α. Using the standard "rand()" function in CAS-Matlab, a random initial
guess value of v1, v2 and v3 of Appendix A1.1 was generated in order to observe the overall
convergence behavior of the simultaneous scheme. With a random initial estimate value, MM10,

MM12, MM12α converges to exact zeros after 10, 8, 8; 7,6,6 and 8,7,6 iterations respectively. Table 2
reveals the CPU time and the local convergence order of the computational algorithm for MM10,

MM12, MM12α. Table 2, clearly shows that the rate of convergence of MM12 is better than those of
MM10 and MM12α. Error analysis from Table 3, shows that in terms of maximum error and in
maximum iteration MM12 is better as compared to MM10 and MM12α. Our newly developed inverse
numerical scheme converges to exact roots at different random initial guesses values, which indicates
the better global convergence behavior as compared to MM10 and MM12α. The numerical out of the
iterative schemes on random initial guesses presented in Table 3 shows that the simultaneous scheme
MM12 is more stable than MM10 and MM12α.

The rate of convergence of simultaneous schemes MM10, MM12, MM12α increases as the initial
guesses values are chosen to be close to the exact roots. Choosing initial guesses values close to the
exact roots results in significant improvements in the CPU time, computational order of convergence
and error iterations, as shown in Table 4.
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Table 2. Finding all polynomial roots simultaneously.

Methods e[ς]
1 e[ς]

2 e[ς]
3 e[ς]

4 ρ[ς−1]
ςi C-Time

Random initial guess vector v1 taken from Appendix A1.1
MM10 0.214E-10 2.7E-15 8.17E-15 0.251E-14 6.12015 2.4533

MM12 4.87E-20 5.66E-25 9.52E-30 7.221E-30 9.78914 005733

MM12α 2.98E-21 0.561E-20 0.33E-20 0.221E-25 8.01241 0.9342

Random initial guess vector v2 taken from Appendix A1.1
MM10 0.146E-03 0.451E-05 3.252E-10 2.114E-05 5.41534 1.0124

MM12 0.186E-10 6.145E-15 0.241E-20 0.141E-25 9.41534 0.00124

MM12α 0.168E-09 7.1548E-10 1.122E-12 1.251E-15 9.41534 0.00124

Random initial guess vector v3 taken from Appendix A1.1
MM10 8.116E-18 0.1352E-15 2.214E-09 0.178E-25 7.41534 0.00124

MM12 9.165E-29 8.1012E-30 2.3562E-35 0.198E-35 11.41534 0.00124

MM12α 3.126E-21 0.114E-25 0.2541E-26 0.581E-27 9.41534 0.00124

Table 3. Error analysis on random initial values.

Methods MM10 MM12 MM12α

Maximum error on random initial vector v1
Error it 10.0 8.00 8.00

Max-Err 2.14E-10 5.66E-25 0.561E-20
Maximum error on random initial vector v2
Error it 7.0 6.00 6.00

Max-Err 3.252E-10 0.186E-10 0.168E-09
Maximum error on random initial vector v3
Error it 8.00 7.00 6.00

Max-Err 2.14E-09 8.1012E-30 3.126E-21

Table 4. Determination of all polynomial roots.

Methods MM10 MM12 MM12α

Error it 10 08 08
CPU 0.014145 0.01642585 0.05442551
e[ς]

1 3.3120e-45 0.7226e-65 3.5874e-65
e[ς]

2 1.6220e-43 5.2526e-64 0.2398e-56
e[ς]

3 3.3150e-53 8.8583e-75 7.2325e-70
e[ς]

4 1.6254e-53 9.4258e-85 0.2544e-65
ρ[σ−1]
ςi 9.1221512 12.031452 11.914556
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Convergence rates rise when the following initial guess value set is used

[0]
x1 = 3,

[0]
x2 = −1 + 1i,

[0]
x 3 = −0.1, x[0]

4 = −1 − 1i.

Example 2: Blood rheology model [30]
The "Casson fluid," a non-Newtonian fluid, is used to represent blood. The Casson fluid model

predicts that a simple fluid, such as water or blood, will flow through a tube such by its center
core moves as a plug with minimal deformation and that there is a velocity gradient towards the tube
wall. The plug flow of Casson fluids can be described by using the non-linear polynomial equation as
follows [34, 35]:

G = 1 −
16
7
√

x +
4
3

x −
1

21
x4, (4.3)

Using flow rate reduction G = 0.40 in Eq (4.3), we have:

f1(x) =
1

441
x8 −

8
63

x5 − 0.05714285714x4 +
16
9

x2 − 3.624489796x + 0.36. (4.4)

The exact roots of (4.4) are

ζ1 = 0.1046986515, ζ2 = 3.822389235, ζ3 = 1.553919850 + .9404149899i,

ζ4 = −1.238769105 + 3.408523568i, ζ5 = −2.278694688 + 1.987476450i,

ζ6 = −2.278694688 − 1.987476450i, ζ7 = −1.238769105 − 3.408523568,
ζ8 = 1.553919850 − .9404149899.

We determined the convergence history and computational order for the numerical schemes MM10,
MM12, and MM12α. Using the standard "rand()" function in CAS-Matlab, a random initial guess value
of v1, v2 and v3 Appendix A1.2 was generated in order to observe the overall convergence behavior
of the inverse simultaneous scheme. With a random initial estimate value, MM10,MM12,MM12α

converges to exact zeros after 10, 8, 8; 7,6,6 and 8,7,6 iterations respectively. The CPU time and local
computational order of convergence are represented in Table 5. Table 5, clearly shows that the rate of
convergence of MM12 is better than those of MM10 and MM12α. Error analysis from Table 6 shows
that in terms of maximum error and in maximum iteration MM12 is better as compared to MM10 and
MM12α. Our newly developed inverse numerical scheme converges to exact roots at different random
initial guesses values, which indicates the better global convergence behavior as compared to MM10

and MM12α. The numerical out of the iterative schemes on random initial guesses presented in Table 6
shows that the simultaneous scheme MM12 is more stable than MM10 and MM12α.

The rate of convergence of simultaneous schemes MM10, MM12, MM12α increases as the initial
guesses values are chosen to be close to the exact roots. Choosing initial guesses values close to the
exact roots results in significant improvements in CPU time, computational order of convergence, and
error iterations, as shown in Table 7.

Convergence rates rise when the following initial guess value set is used

[0]
x1 = 0.1,

[0]
x2 = 3.8,

[0]
x 3 = 1.5 + 0.9i,

[0]
x 4 = 1.2 + 3.4i,

[0]
x5 = −2.2 + 1.9i,

[0]
x6 = −2.2 − 1.9i

[0]
x7 = −1.2 − 3.4i, x[0]

8 = 1.5 + 0.9i.
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Table 5. Simultaneous determination of all polynomial roots using the random initial
approximations in A1.2.

Methods MM10 MM12 MM12α MM10 MM12 MM12α MM10 MM12 MM12α

Error it 10 8 8 7 6 6 8 7 6
v1 from Appendix A1.2 v2 from Appendix A1.2 v3 from Appendix A1.2

CPU 2.514114 0.0165847 0.9541451 3.0678541 1.365521 1.76554 2.0141 1.016145 1.052544
e[ς]

1 3.30E-06 0.76E-26 5.5E-20 0.012E-06 3.67E-47 3.67E-37 8.30E-16 3.76E-16 3.5E-26
e[ς]

2 1.62E-04 0.26E-30 4.23E-20 6.725E-14 6.26E-34 6.26E-34 1.62E-14 1.26E-14 1.23E-24
e[ς]

3 3.013E-03 0.83E-25 3.23E-20 4.356E-13 1.77E-49 1.77E-39 5.35E-13 1.83E-13 1.23E-23
e[ς]

4 1.6104E-03 9.48E-20 3.44E-18 1.84E-13 1.64E-48 1.64E-38 6.64E-13 9.48E-13 1.44E-23
e[ς]

5 8.551E-03 0.05E-15 0.51E-10 7.525E-22 8.5E-45 8.554E-35 9.55E-13 0.05E-10 3.5E-10
e[ς]

6 0.65E-04 0.56E-20 0.76E-11 9.526E-21 6.66E-45 6.66E-45 9.65E-14 0.56E-11 8.76E-21
e[ς]

7 0.26E-03 0.52E-12 5.62E-20 15.24E-13 1.27E-46 1.27E-26 0.26E-18 0.52E-12 5.62E-23
e[ς]

8 0.34E-03 0.33E-20 7.43E-20 12.43E-13 4.37E-45 4.37E-35 4.34E-18 4.33E-03 7.43E-23
ρ[ς−1]
ςi 5.145215 7.01214 7.5145 4.01445 9.12405 7.31445 6.1215 0.2314 1.5145

Table 6. Error analysis on random initial values.
Methods MM10 MM12 MM12α

Maximum error on random initial vector v1
Error it 10.0 8.00 8.00

Max-Err 0.34E-03 0.05E-15 0.51E-10
Maximum error on random initial vector v2
Error it 7.0 6.00 6.00

Max-Err 0.012E-06 8.58E-45 8.554E-45
Maximum error on random initial vector v3
Error it 8.00 7.00 6.00

Max-Err 9.55E-13 0.56E-11 3.5E-10

Table 7. Determination of all polynomial roots.
Methods MM10 MM12 MM12α

Error it 10 06 07
CPU 0.014114 0.016145 0.0545656
e[ς]

1 3.30E-26 0.0 0.0
e[ς]

2 1.62E-34 0.0 1.23E-64
e[ς]

3 3.3E-33 1.83E-75 1.23E-53
e[ς]

4 1.64E-43 9.48E-95 1.44E-69
e[ς]

5 8.55E-33 0.05E-101 0.0
e[ς]

6 2.65E-34 0.0 0.0
e[ς]

7 1.26E-38 0.0 0.62E-63
e[ς]

8 4.34E-45 0.0 4.43E-73
ρ[ς−1]
ςi 9.121556 12.01412 11.514525

AIMS Mathematics Volume 8, Issue 10, 23603–23620.



23617

5. Conclusions

A new family of simultaneous methods with a convergence order of 12 is introduced to
approximate the roots of all nonlinear equations. To demonstrate the global convergence of the newly
developed schemes MM12, engineering applications for various random initial approximations have
been solved. The rate of convergence increases when some close initial approximations are used, as
shown in Tables 4 and 7. Similar higher order simultaneous iterative techniques for finding
polynomial roots are required to solve more complex engineering applications.
Future research will focus on the same methodologies described in this article, and we will use
fractional calculus and the weight function technique to develop optimal higher-order efficient
fractional simultaneous iterative methods with and without derivatives for finding all roots of
nonlinear equations.

Furthermore, we will investigate the dynamical analysis, computational convergent history, and
root trajectories under the condition of random initial guesses values in the future in order to better
understand the global convergence of simultaneous schemes.
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Supplementary

Abbreviations

In this study’s article, the following abbreviations are used
MM12 Proposed Simultaneous Scheme
Error it Number of Error Iterations
Ex-Time Computational Time in Seconds
Max-Err Maximum Error
e- 10−()

ρ(σ−1)
ςi Computational local order of convergence

Appendix

Table 8. Appendix A1.1: Matlab was used to generate a random set of initial guess values
for engineering application 1.

[0]
xi∗ [

[0]
x1 ,

[0]
x2 ,

[0]
x3 ,

[0]
x4 ]

v1 [-0.160,0.643,0.967,0.085]
v2 [0.743,0.392,0.655,0.171]
v3 [-0..145,0.874,0.475,0.876]
... [

...,
...,

...,
...]

Table 9. Appendix A1.2: Matlab was used to generate a random set of initial guess values
for engineering application 2.

[0]
xi∗ [

[0]
x1 ,

[0]
x2 ,

[0]
x3 ,

[0]
x4 ,

[0]
x5 ,

[0]
x6 ,

[0]
x7 ,

[0]
x8 ]

v1 [-0.760,0.643,0.967,0.881,0.760,0.643,0.967,0.085]
v2 [-0.153,0.392,0.615,0.171,0.743,0.392,0.855,0.071]
v3 [-0.905,0.874,0.473,0.076,0.145,0.874,0.775,0.076]
... [

...,
... ,
... ,
... ,

... ,
... ,

... ,
...]
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