Research article

Statistical characterization of vaccinated cases and deaths due to COVID-19: methodology and case study in South America

  • Received: 25 April 2023 Revised: 05 June 2023 Accepted: 15 June 2023 Published: 17 July 2023
  • MSC : 62H25, 62H30

  • Many studies have been performed in different regions of the world as a result of the COVID-19 pandemic. In this work, we perform a statistical study related to the number of vaccinated cases and the number of deaths due to COVID-19 in ten South American countries. Our objective is to group countries according to the aforementioned variables. Once the groups of countries are built, they are characterized based on common properties of countries in the same group and differences between countries that are in different groups. Countries are grouped using principal component analysis and K-means analysis. These methods are combined in a single procedure that we propose for the classification of the countries. Regarding both variables, the countries were classified into three groups. Political decisions, availability of resources, bargaining power with suppliers and health infrastructure among others are some of the factors that can affect both the vaccination process and the timely care of infected people to avoid death. In general, the countries acted in a timely manner in relation to the vaccination of their citizens with the exception of two countries. Regarding the number of deaths, all countries reached peaks at some point in the study period.

    Citation: Carlos Martin-Barreiro, Xavier Cabezas, Víctor Leiva, Pedro Ramos-De Santis, John A. Ramirez-Figueroa, Erwin J. Delgado. Statistical characterization of vaccinated cases and deaths due to COVID-19: methodology and case study in South America[J]. AIMS Mathematics, 2023, 8(10): 22693-22713. doi: 10.3934/math.20231155

    Related Papers:

  • Many studies have been performed in different regions of the world as a result of the COVID-19 pandemic. In this work, we perform a statistical study related to the number of vaccinated cases and the number of deaths due to COVID-19 in ten South American countries. Our objective is to group countries according to the aforementioned variables. Once the groups of countries are built, they are characterized based on common properties of countries in the same group and differences between countries that are in different groups. Countries are grouped using principal component analysis and K-means analysis. These methods are combined in a single procedure that we propose for the classification of the countries. Regarding both variables, the countries were classified into three groups. Political decisions, availability of resources, bargaining power with suppliers and health infrastructure among others are some of the factors that can affect both the vaccination process and the timely care of infected people to avoid death. In general, the countries acted in a timely manner in relation to the vaccination of their citizens with the exception of two countries. Regarding the number of deaths, all countries reached peaks at some point in the study period.



    加载中


    [1] K. Chahuán-Jiménez, R. Rubilar, H. De La Fuente-Mella, V. Leiva, Breakpoint analysis for the COVID-19 pandemic and its effect on the stock markets, Entropy, 23 (2021), 100. https://doi.org/10.3390/e23010100 doi: 10.3390/e23010100
    [2] Y. Liu, C. Mao, V. Leiva, S. Liu, W. A. Silva Neto, Asymmetric autoregressive models: Statistical aspects and a financial application under COVID-19 pandemic, J. Appl. Stat., 49 (2022), 1323–1347. https://doi.org/10.1080/02664763.2021.1913103 doi: 10.1080/02664763.2021.1913103
    [3] E. Mahdi, V. Leiva, S. Mara'Beh, C. Martin-Barreiro, A new approach to predicting cryptocurrency returns based on the gold prices with support vector machines during the COVID-19 pandemic using sensor-related data, Sensors, 21 (2021), 6319. https://doi.org/10.3390/s21186319 doi: 10.3390/s21186319
    [4] H. He, L. Harris, The impact of COVID-19 pandemic on corporate social responsibility and marketing philosophy, J. Bus. Res., 116 (2020), 176–182. https://doi.org/10.1016/j.jbusres.2020.05.030 doi: 10.1016/j.jbusres.2020.05.030
    [5] J. C. Hoekstra, P. S. Leeflang, Marketing in the era of COVID-19, Ital. J. Mark., 2020 (2020), 249–260. https://doi.org/10.1007/s43039-020-00016-3 doi: 10.1007/s43039-020-00016-3
    [6] C. Stamu‐O'Brien, S. Carniciu, E. Halvorsen, M. Jafferany, Psychological aspects of COVID‐19, J. Cosmet. Dermatol., 19 (2020), 2169–2173. https://doi.org/10.1111/jocd.13601 doi: 10.1111/jocd.13601
    [7] T. Rume, S. D. U. Islam, Environmental effects of COVID-19 pandemic and potential strategies of sustainability, Heliyon, 6 (2020), e04965. https://doi.org/10.1016/j.heliyon.2020.e04965 doi: 10.1016/j.heliyon.2020.e04965
    [8] L. Bera, M. Souchon, A. Ladsous, V. Colin, J. Lopez-Castroman, Emotional and behavioral impact of the COVID-19 epidemic in adolescents, Curr. Psychiatry Rep., 24 (2022), 37–46. https://doi.org/10.1007/s11920-022-01313-8 doi: 10.1007/s11920-022-01313-8
    [9] E. Kiran, Prominent issues about the social impacts of COVID 19, Gaziantep Uni. J. Soc. Sci., 19 (2020), 752–766. https://doi.org/10.21547/jss.787779 doi: 10.21547/jss.787779
    [10] F. Rojas, V. Leiva, M. Huerta, C. Martin-Barreiro, Lot-size models with uncertain demand considering its skewness/kurtosis and stochastic programming applied to hospital pharmacy with sensor-related COVID-19 data, Sensors, 2 (2021), 5198. https://doi.org/10.3390/s21155198 doi: 10.3390/s21155198
    [11] M. Rangasamy, C. Chesneau, C. Martin-Barreiro, V. Leiva, On a novel dynamics of SEIR epidemic models with a potential application to COVID-19, Symmetry, 14 (2022), 1436. https://doi.org/10.3390/sym14071436 doi: 10.3390/sym14071436
    [12] J. Yego, R. Korom, E. Eriksson, S. Njavika, O. Sane, P. Kanorio, et al., A comparison of strategies to improve uptake of COVID-19 vaccine among high-risk adults in Nairobi, Kenya in 2022, Vaccines, 11 (2023), 209. https://doi.org/10.3390/vaccines11020209 doi: 10.3390/vaccines11020209
    [13] A. B. Hogan, P. Winnskill, O. J. Watson, P. G. T. Walker, C. Whittaker, M. Baguelin, et al., Within-country age-based prioritisation, global allocation, and public health impact of a vaccine against SARS-CoV-2: a mathematical modelling analysis, Vaccines, 39 (2021), 2995–3006. https://doi.org/10.1016/j.vaccine.2021.04.002 doi: 10.1016/j.vaccine.2021.04.002
    [14] O. J. Watson, G. Barnsley, J. Tool, A. B. Hogan, P. Winskill, A. C. Ghani, Global impact of the first year of COVID-19 vaccination: a mathematical modelling study, Lancet Infect. Dis., 22 (2022), 1293–1302. https://doi.org/10.1016/S1473-3099(22)00320-6 doi: 10.1016/S1473-3099(22)00320-6
    [15] N. Parolini, L. Dede', G. Ardenghi, A. Quarteroni, Modelling the COVID-19 epidemic and the vaccination campaign in Italy by the SUIHTER model, Infect. Dis. Model., 7 (2022), 45–63. https://doi.org/10.1016/j.idm.2022.03.002 doi: 10.1016/j.idm.2022.03.002
    [16] M. S. Nabaggala, T. S. Nair, M. Gacic-Dobo, A. Siyam, K. Diallo, M. Boniol, The global inequity in COVID-19 vaccination coverage among health and care workers, Int. J. Equity Health, 21 (2022), 147. https://doi.org/10.1186/s12939-022-01750-0 doi: 10.1186/s12939-022-01750-0
    [17] P. Galanis, I. Vraka, A. Katsiroumpa, O. Siskou, O. Konstantakopoulou, T. Katsoulas, et al.. COVID-19 vaccine uptake among healthcare workers: a systematic review and meta-analysis, Vaccines, 10 (2022), 1637. https://doi.org/10.3390/vaccines10101637 doi: 10.3390/vaccines10101637
    [18] M. Antonelli, R. S. Penfold, J. Merino, C. H. Sudre, E. Molteni, S. Berry, et al., Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID symptom study app: a prospective, community-based, nested, case-control study, Lancet Infect. Dis., 22 (2022), 43–55. https://doi.org/10.1016/S1473-3099(21)00460-6 doi: 10.1016/S1473-3099(21)00460-6
    [19] P. R. Wratil, K. Kotter, M. L. Bischof, S. Hollerbach, E. Apak, A. L. Kalteis, et al., Vaccine-hesitant individuals accumulate additional COVID-19 risk due to divergent perception and behaviors related to SARS-CoV-2 testing: a population-based, cross-sectional study, Infection, 2022. https://doi.org/10.1007/s15010-022-01947-z
    [20] A. Ahmadini, M. Elgarhy, A. W. Shawki, H. Baaqeel, O. Bazighifan, Statistical analysis of the people fully caccinated against COVID-19 in two different regions, Appl. Bionics Biomech., 2022 (2022), 7104960. https://doi.org/10.1155/2022/7104960 doi: 10.1155/2022/7104960
    [21] Y. Guo, B. Li, T. Duan, N. Yao, H. Wang, Y. Yang, et al., A panel regression analysis for the COVID-19 epidemic in the United States, PloS One, 2022. https://doi.org/10.1371/journal.pone.0273344
    [22] C. Latkin, L. Dayton, J. Miller, G. Yi, A. Balaban, B. Boodram, et al., A longitudinal study of vaccine hesitancy attitudes and social influence as predictors of COVID-19 vaccine uptake in the US, Hum. Vacc. Immunother., 18 (2022), 2043102. https://doi.org/10.1080/21645515.2022.2043102 doi: 10.1080/21645515.2022.2043102
    [23] S. W. Yip, A. Jordan, R. J. Kohler, A. Holmes, D. Bzdok, Multivariate, transgenerational associations of the COVID-19 pandemic across minoritized and marginalized communities, JAMA Psychiat., 79 (2022), 350–358. https://doi.org/10.1001/jamapsychiatry.2021.4331 doi: 10.1001/jamapsychiatry.2021.4331
    [24] M. da P. Harb, L. Silva, T. Ayass, N. Vijaykumar, M. Silva, C. R. Francês, Dendrograms for clustering in multivariate analysis: applications for COVID-19 vaccination infodemic data in Brazil, Computation, 10 (2022), 166. https://doi.org/10.3390/computation10090166 doi: 10.3390/computation10090166
    [25] R. Borchering, L. Mullany, E. Howerton, M. Chinazzi, C. P. Smith, M. Qin, et al., Impact of SARS-CoV-2 vaccination of children ages 5–11 years on COVID-19 disease burden and resilience to new variants in the United States. November 2021–March 2022: A multi-model study, Lancet Regional Health-Americas, 17 (2023), 100398. https://doi.org/10.1016/j.lana.2022.100398 doi: 10.1016/j.lana.2022.100398
    [26] K. I. Kasozi, A. Laudisoit, L. O. Osuwat, G. El-Saber Batiha, N. E. Al Omairi, E. Aigbogun, et al., A descriptive-multivariate analysis of community knowledge, confidence, and trust in COVID-19 clinical trials among healthcare workers in Uganda, Vaccines, 9 (2021), 253. https://doi.org/10.3390/vaccines9030253 doi: 10.3390/vaccines9030253
    [27] T. Roederer, B. Mollo, C. Vincent, G. Leduc, J. Sayyad-Hilario, M. Mosnier, et al., Estimating COVID-19 vaccine uptake and its drivers among migrants, homeless and precariously housed people in France, Commun. Med., 3 (2022), 30. https://doi.org/10.1038/s43856-023-00257-1 doi: 10.1038/s43856-023-00257-1
    [28] G. H. Murata, A. E. Murata, D. J. Perkins, H. M. Campbell, J. T. Mao, B. Wagner, et al., Effect of vaccination on the case fatality rate for COVID-19 infections 2020–2021: multivariate modelling of data from the US Department of Veterans Affairs, BMJ Open, 12 (2022), e064135. http://dx.doi.org/10.1136/bmjopen-2022-064135 doi: 10.1136/bmjopen-2022-064135
    [29] J. Cheng, S. Loong, C. Min-Ho, K. Jing Ng, M. Min Qi Ng, R. Choon Hoe Chee, et al., Knowledge, attitudes, and practices of COVID-19 vaccination among adults in Singapore: A cross-sectional study, Am. J. Trop. Med. Hyg., 107 (2023), 540–550.
    [30] S. Koya, S. Ponnam, S. Salenius, S. Pamidighantam, A Markov chain Monte Carlo multivariate analysis of the association of vital parameter variation with the lunar cycle in patients hospitalized with COVID-19, Cureus, 15 (2023), e34290. http://dx.doi.org/10.7759/cureus.34290 doi: 10.7759/cureus.34290
    [31] X. Cabezas, S. García, C. Martin-Barreiro, E. Delgado, V. Leiva, A two-stage location problem with order solved using a Lagrangian algorithm and stochastic programming for a potential use in COVID-19 vaccination based on sensor-related data, Sensors, 21 (2021), 5352. https://doi.org/10.3390/s21165352 doi: 10.3390/s21165352
    [32] E. J. Delgado, X. Cabezas, C. Martin-Barreiro, V. Leiva, F. Rojas, An equity-based optimization model to solve the location problem for healthcare centers applied to hospital beds and COVID-19 vaccination, Mathematics, 10 (2022), 1825. https://doi.org/10.3390/math10111825 doi: 10.3390/math10111825
    [33] M. R. Mahmoudi, M. H. Heydari, S. N. Qasem, A. Mosavi, S. S. Band, Principal component analysis to study the relations between the spread rates of covid-19 in high risks countries, Alex. Eng. J., 60 (2021), 457–464. https://doi.org/10.1016/j.aej.2020.09.013 doi: 10.1016/j.aej.2020.09.013
    [34] I. Noy, N. Doan, B. Ferrarini, D. Park, Measuring the economic risk of COVID-19, Global Policy, 11 (2020), 413–423. https://doi.org/10.1111/1758-5899.12851 doi: 10.1111/1758-5899.12851
    [35] W. Ye, W. Lu, Y. Tang, G. Chen, X. Li, C. Ji, et al., Identification of covid-19 clinical phenotypes by principal component analysis-based cluster analysis, Front. Med., 7 (2020), 782. https://doi.org/10.3389/fmed.2020.570614 doi: 10.3389/fmed.2020.570614
    [36] A. Ramadan, A. Kamel, A. Taha, A. El-Shabrawy, N. A. Abdel-Fatah, A multivariate data analysis approach for investigating daily statistics of countries affected with COVID-19 pandemic, Heliyon, 6 (2020), e05575. https://doi.org/10.1016/j.heliyon.2020.e05575 doi: 10.1016/j.heliyon.2020.e05575
    [37] B. E. Zinsou, D. Letourneur, J. Siko, R. M. de Souza, F. Adjagba, P. Pineau, Main modulators of COVID-19 epidemic in sub-Saharan Africa, Heliyon, 9 (2022), e12727. https://doi.org/10.1016/j.heliyon.2022.e12727 doi: 10.1016/j.heliyon.2022.e12727
    [38] C. Martin-Barreiro, J. A. Ramirez-Figueroa, X. Cabezas, V. Leiva, M. P. Galindo-Villardón, Disjoint and functional principal component analysis for infected cases and deaths due to COVID-19 in South American countries with sensor-related data, Sensors, 21 (2021), 4094. https://doi.org/10.3390/s21124094 doi: 10.3390/s21124094
    [39] M. Coccia, Pandemic prevention: lessons from COVID-19, Encyclopedia, 1 (2021), 433–444. https://doi.org/10.3390/encyclopedia1020036 doi: 10.3390/encyclopedia1020036
    [40] W. S. Chan, M. Lam, J. H. Y. Law, T. L. Chan, E. S. K. Ma, B. S. F. Tang, Geographical prevalence of SARS-CoV-2 variants, August 2020 to July 2021, Sci. Rep., 12 (2021), 4704. https://doi.org/10.1038/s41598-022-08684-1 doi: 10.1038/s41598-022-08684-1
    [41] C. Magazzino, M. Mele, M. Coccia, A machine learning algorithm to analyze the effects of vaccination on COVID-19 mortality, Epidemiol. Infect., 150 (2022), e168. https://doi.org/10.1017/S0950268822001418 doi: 10.1017/S0950268822001418
    [42] M. Coccia, Optimal levels of vaccination to reduce COVID-19 infected individuals and deaths: a global analysis, Environ. Res., 204 (2022), 112314. https://doi.org/10.1016/j.envres.2021.112314 doi: 10.1016/j.envres.2021.112314
    [43] I. Benati, M. Coccia, Global analysis of timely COVID-19 vaccinations: Improving governance to reinforce response policies for pandemic crises, Int. J. Health Gov., 27 (2022), 240–253. https://doi.org/10.1108/IJHG-07-2021-0072 doi: 10.1108/IJHG-07-2021-0072
    [44] M. Coccia, COVID-19 pandemic over 2020 (with lockdowns) and 2021 (with vaccinations): similar effects for seasonality and environmental factors, Environ. Res., 208 (2022), 112711. https://doi.org/10.1016/j.envres.2022.112711 doi: 10.1016/j.envres.2022.112711
    [45] M. Fiori, G. Bello, N. Wschebor, F. Lecumberry, A. Ferragut, E. Mordecki, Decoupling between SARS-CoV-2 transmissibility and population mobility associated with increasing immunity from vaccination and infection in South America, Sci. Rep., 12 (2022), 6874. https://doi.org/10.1038/s41598-022-10896-4 doi: 10.1038/s41598-022-10896-4
    [46] M. Coccia, Effects of strict containment policies on COVID‐19 pandemic crisis: lessons to cope with next pandemic impacts, Environ. Sci. Pollut. Res., 30 (2023), 2020–2028. ttps://doi.org/10.1007/s11356-022-22024-w doi: 10.1007/s11356-022-22024-w
    [47] S. S. Musa, A. Tariq, L. Yuan, W. Haozhen, D. He, Infection fatality rate and infection attack rate of COVID-19 in South American countries, Infect. Dis. Poverty, 11 (2022), 40. https://doi.org/10.1186/s40249-022-00961-5 doi: 10.1186/s40249-022-00961-5
    [48] M. Coccia, COVID-19 vaccination is not a sufficient public policy to face crisis management of next pandemic threats, Public Organiz. Rev., 2022. https://doi.org/10.1007/s11115-022-00661-6.
    [49] M. Coccia, Improving preparedness for next pandemics: max level of COVID-19 vaccinations without social impositions to design effective health policy and avoid flawed democracies, Environ. Res., 213 (2022), 113566. https://doi.org/10.1016/j.envres.2022.113566 doi: 10.1016/j.envres.2022.113566
    [50] D. O. Oyewola, E. G. Dada, S. Misra, Machine learning for optimizing daily COVID-19 vaccine dissemination to combat the pandemic, Health Technol., 12 (2022), 1277–1293. https://doi.org/10.1007/s12553-022-00712-4 doi: 10.1007/s12553-022-00712-4
    [51] D. E. Lucero-Prisno, D. O. Shomuyiwa, G. R. Vicente, M. J. González Méndez, S. Qaderi, J. C. Lopez, et al., Achieving herd immunity in South America, Glob. Health Res. Policy, 8 (2023), 2. https://doi.org/10.1186/s41256-023-00286-2 doi: 10.1186/s41256-023-00286-2
    [52] M. Coccia, High potential of technology to face new respiratory viruses: mechanical ventilation devices for effective healthcare to next pandemic emergencies, Technol. Soc., 73 (2023), 102233. https://doi.org/10.1016/j.techsoc.2023.102233 doi: 10.1016/j.techsoc.2023.102233
    [53] T. H. Jen, J. W. Wu, T. W. Chien, W. Chou, Using dashboards to verify coronavirus (COVID-19) vaccinations can reduce fatality rates in countries/regions: Development and usability study, Medicine, 102 (2023), e33274. https://doi.org/10.1097/MD.0000000000033274 doi: 10.1097/MD.0000000000033274
    [54] J. Torales, I. González-Urbieta, I. Barrios, M. Waisman-Campos, A. Terrazas-Landivar, L. Viola, et al., Pandemic fatigue in South America: A multi-center report from Argentina, Bolivia, Paraguay, Peru, and Uruguay, Brain Sci., 13 (2023), 444. https://www.mdpi.com/2076-3425/13/3/444
    [55] M. Coccia, Sources, diffusion and prediction in COVID-19 pandemic: lessons learned to face next health emergency, AIMS Public Health, 10 (2023), 145–168. https://doi.org/10.3934/publichealth.2023012 doi: 10.3934/publichealth.2023012
    [56] C. Torres, M. Nabaes Jodar, D. Acuña, R. M. Zambrana Montaño, A. C. Alberto Culasso, A. Fernando Amadio, et al., Omicron waves in Argentina: dynamics of SARS-CoV-2 lineages BA.1, BA.2 and the emerging BA.2.12.1 and BA.4/BA.5, Viruses, 15 (2023), 312. https://doi.org/10.3390/v15020312 doi: 10.3390/v15020312
    [57] Y. Zhao, J. Du, Z. Li, Z. Xu, Y. Wu, W. Duan, et al., It is time to improve the acceptance of COVID-19 vaccines among people with chronic diseases: A systematic review and meta-analysis, J. Med. Virol., 95 (2023), e28509. https://doi.org/10.1002/jmv.28509 doi: 10.1002/jmv.28509
    [58] R. Zambrana-Montaño, A. C. A. Culasso, F. Fernández, N. Marquez, H. Debat, M. Salmerón, et al., Evolution of SARS-CoV-2 during the first year of the COVID-19 pandemic in Northwestern Argentina, Virus Res., 323 (2023), 198936. https://doi.org/10.1016/j.virusres.2022.198936 doi: 10.1016/j.virusres.2022.198936
    [59] R Core Team, R: A Language and Environment for Statistical Computing, Vienna: R Foundation for Statistical Computing, 2021.
    [60] P. Giordani, Principal component analysis, In Encyclopedia of Social Network Analysis and Mining, New York: Springer, 2018.
    [61] I. T. Jolliffe, Principal Component Analysis, New York: Springer, 2002.
    [62] J. A. Ramirez-Figueroa, C. Martin-Barreiro, A. B. Nieto-Librero, V. Leiva, M. P. Galindo-Villardón, A new principal component analysis by particle swarm optimization with an environmental application for data science, Stoch. Env. Res. Risk Assess., 35 (2021), 1969–1984. https://doi.org/10.1007/s00477-020-01961-3 doi: 10.1007/s00477-020-01961-3
    [63] P. Sharma, A. K. Singh, V. Leiva, C. Martin-Barreiro, X. Cabezas, Modern multivariate statistical methods for evaluating the impact of WhatsApp on academic performance: methodology and case study in India, Appl. Sci., 12 (2022), 6141. https://doi.org/10.3390/app12126141 doi: 10.3390/app12126141
    [64] C. Martin-Barreiro, J. A. Ramirez-Figueroa, A. B. Nieto-Librero, V. Leiva, A. Martin-Casado, M. P. Galindo-Villardón, A new algorithm for computing disjoint orthogonal components in the three-way tucker model, Mathematics, 9 (2021), 203. https://doi.org/10.3390/math9030203 doi: 10.3390/math9030203
    [65] C. Martin-Barreiro, J. A. Ramirez-Figueroa, X. Cabezas, V. Leiva, A. Martin-Casado, M. P. Galindo-Villardón, A new algorithm for computing disjoint orthogonal components in the parallel factor analysis model with simulations and applications to real-world data, Mathematics, 9 (2021), 2058. https://doi.org/10.3390/math9030203 doi: 10.3390/math9030203
    [66] J. Wu, Cluster analysis and K-means clustering: an introduction, In: Advances in K-Means Clustering: A Data Mining Thinking, Berlin: Springer, 2012
    [67] D. Abdullah, S. Susilo, A. S. Ahmar, R. Rusli, R. Hidayat, The application of K-means clustering for province clustering in Indonesia of the risk of the COVID-19 pandemic based on COVID-19 data, Qual. Quant., 56 (2022), 1283–1291. https://doi.org/10.1007/s11135-021-01176-w doi: 10.1007/s11135-021-01176-w
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1402) PDF downloads(81) Cited by(4)

Article outline

Figures and Tables

Figures(6)  /  Tables(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog