This article discusses the existence and uniqueness of radial solution for the elliptic equation system
$ \left \{ \begin{array}{ll} -\triangle u = f(|x|, \ u, \ v, \ |\nabla u|), \; \; x\in \Omega, \\[10pt] -\triangle v = g(|x|, \ u, \ v, \ |\nabla v|), \; \; x\in \Omega, \\[10pt] u|_{\partial \Omega} = 0, \; v|_{\partial \Omega} = 0, \end{array} \right. $
where $ \Omega = \{x\in \mathbb{R}^{N}:\; r_1 < |x| < r_2\}, \; N\ge 3, \; f, \; g:[r_1, \; r_2]\times \mathbb{R}\times \mathbb{R}\times \mathbb{R}^+\to \mathbb{R} $ are continuous. Due to the appearance of the gradient term in the nonlinearity, the equation system has no variational structure and the variational method cannot be applied to it directly. We will give the correlation conditions of $ f $ and $ g $, that is, $ f $ and $ g $ are superlinear or sublinear, and prove the existence and uniqueness of radial solutions by using Leray-Schauder fixed point theorem.
Citation: Dan Wang, Yongxiang Li. Existence and uniqueness of radial solution for the elliptic equation system in an annulus[J]. AIMS Mathematics, 2023, 8(9): 21929-21942. doi: 10.3934/math.20231118
This article discusses the existence and uniqueness of radial solution for the elliptic equation system
$ \left \{ \begin{array}{ll} -\triangle u = f(|x|, \ u, \ v, \ |\nabla u|), \; \; x\in \Omega, \\[10pt] -\triangle v = g(|x|, \ u, \ v, \ |\nabla v|), \; \; x\in \Omega, \\[10pt] u|_{\partial \Omega} = 0, \; v|_{\partial \Omega} = 0, \end{array} \right. $
where $ \Omega = \{x\in \mathbb{R}^{N}:\; r_1 < |x| < r_2\}, \; N\ge 3, \; f, \; g:[r_1, \; r_2]\times \mathbb{R}\times \mathbb{R}\times \mathbb{R}^+\to \mathbb{R} $ are continuous. Due to the appearance of the gradient term in the nonlinearity, the equation system has no variational structure and the variational method cannot be applied to it directly. We will give the correlation conditions of $ f $ and $ g $, that is, $ f $ and $ g $ are superlinear or sublinear, and prove the existence and uniqueness of radial solutions by using Leray-Schauder fixed point theorem.
[1] | D. R. Dunninger, H. Y. Wang, Multiplicity of positive radial solutions for an elliptic system on an annulus, Nonlinear Anal., 42 (2000), 803–811. https://doi.org/10.1016/S0362-546X(99)00125-X doi: 10.1016/S0362-546X(99)00125-X |
[2] | Y. H. Lee, A multiplicity result of positive radial solutions for a multiparameter elliptic system on an exterior domain, Nonlinear Anal., 45 (2001), 597–611. https://doi.org/10.1016/S0362-546X(99)00410-1 doi: 10.1016/S0362-546X(99)00410-1 |
[3] | D. D. Hai, Uniqueness of positive solutions for a class of semilinear elliptic systems, Nonlinear Anal., 52 (2003), 595–603. https://doi.org/10.1016/S0362-546X(02)00125-6 doi: 10.1016/S0362-546X(02)00125-6 |
[4] | D. G. de Figueiredo, I. Peral, J. D. Rossi, The critical hyperbola for a Hamiltonian elliptic system with weights, Ann. Mat. Pur. Appl., 187 (2008), 531–545. https://doi.org/10.1007/978-3-319-02856-9_42 doi: 10.1007/978-3-319-02856-9_42 |
[5] | D. G. de Figueiredo, J. M. do Ó, B. Ruf, Non-variational elliptic systems in dimension two: A priori bounds and existence of positive solutions, J. Fixed Point Theory Appl., 4 (2008), 77–96. https://doi.org/10.1007/978-3-319-02856-9_41 doi: 10.1007/978-3-319-02856-9_41 |
[6] | D. G. de Figueiredo, P. Ubilla, Superlinear systems of second-order ODE's, Nonlinear Anal., 68 (2008), 1765–1773. https://doi.org/10.1016/j.na.2007.01.001 doi: 10.1016/j.na.2007.01.001 |
[7] | R. Precup, Existence, localization and multiplicity results for positive radial solutions of semilinear elliptic systems, J. Math. Anal. Appl., 352 (2009), 48–56. https://doi.org/10.1016/j.jmaa.2008.01.097 doi: 10.1016/j.jmaa.2008.01.097 |
[8] | G. A. Afrouzi, T. A. Roushan, Existence of positive radial solutions for some nonlinear elliptic systems, Bull. Math. Anal. Appl., 3 (2011), 146–154. |
[9] | C. O. Alves, A. Moussaoui, Existence of solutions for a class of singular elliptic systems with convection term, Asymptot. Anal., 90 (2014), 237–248. https://doi.org/10.3233/ASY-141245 doi: 10.3233/ASY-141245 |
[10] | C. J. Batkam, Radial and nonradial solutions of a strongly indefinite elliptic system on $\mathbb{R}^N$, Afr. Mat., 26 (2015), 65–75. https://doi.org/10.1007/s13370-013-0190-2 doi: 10.1007/s13370-013-0190-2 |
[11] | D. D. Hai, R. C. Smith, Uniqueness for a class of singular semilinear elliptic systems, Funkcial. Ekvac., 59 (2016), 35–49. https://doi.org/10.1619/fesi.59.35 doi: 10.1619/fesi.59.35 |
[12] | R. Y. Ma, T. L. Chen, H. Y. Wang, Nonconstant radial positive solutions of elliptic systems with Neumann boundary conditions, J. Math. Anal. Appl., 443 (2016), 542–565. https://doi.org/10.1016/j.jmaa.2016.05.038 doi: 10.1016/j.jmaa.2016.05.038 |
[13] | R. Y. Ma, H. L. Gao, Y. Q. Lu, Radial positive solutions of nonlinear elliptic systems with Neumann boundary conditions, J. Math. Anal. Appl., 434 (2016), 1240–1252. https://doi.org/10.1016/j.jmaa.2015.09.065 doi: 10.1016/j.jmaa.2015.09.065 |
[14] | D. Motreanu, A. Moussaoui, Z. T. Zhang, Positive solutions for singular elliptic systems with convection term, J. Fix. Point Theory A., 19 (2017), 2165–2175. https://doi.org/10.1007/s11784-017-0407-3 doi: 10.1007/s11784-017-0407-3 |
[15] | F. Cianciaruso, G. Infante, P. Pietramala, Multiple positive radial solutions for Neumann elliptic systems with gradient dependence, Math. Method. Appl. Sci., 41 (2018), 6358–6367. https://doi.org/10.1002/mma.5143 doi: 10.1002/mma.5143 |
[16] | F. Cianciaruso, P. Pietramala, Semilinear elliptic systems with dependence on the gradient, Mediterr. J. Math., 15 (2018). https://doi.org/10.1007/s00009-018-1203-z doi: 10.1007/s00009-018-1203-z |
[17] | D. D. Hai, R. Shivaji, Existence and multiplicity of positive radial solutions for singular superlinear elliptic systems in the exterior of a ball, J. Differ. Equations, 266 (2019), 2232–2243. https://doi.org/10.1016/j.jde.2018.08.027 doi: 10.1016/j.jde.2018.08.027 |
[18] | B. Son, P. Y. Wang, Positive radial solutions to classes of nonlinear elliptic systems on the exterior of a ball, J. Math. Anal. Appl., 488 (2020). https://doi.org/10.1016/j.jmaa.2020.124069 doi: 10.1016/j.jmaa.2020.124069 |
[19] | G. Infante, Eigenvalues of elliptic functional differential systems via a Birkhoff-Kellogg type theorem, Mathematics, 9 (2021), 4. https://doi.org/10.3390/math9010004 doi: 10.3390/math9010004 |
[20] | H. Y. Zhang, J. F. Xu, D. O'Regan, Nontrivial radial solutions for a system of second order elliptic equations, J. Appl. Anal. Comput., 12 (2022), 2208–2219. https://doi.org/10.11948/20210232 doi: 10.11948/20210232 |
[21] | M. Khuddush, K. R. Prasad, Existence of infinitely many positive radial solutions for an iterative system of nonlinear elliptic equations on an exterior domain, Afr. Mat., 33 (2022). https://doi.org/10.1007/s13370-022-01027-3 doi: 10.1007/s13370-022-01027-3 |
[22] | K. R. Prasad, M. Khuddush, B. Bharathi, Denumerably many positive radial solutions for the iterative system of elliptic equations in an annulus, Palest. J. Math., 11 (2022), 549–559. |
[23] | L. M. Guo, J. F. Xu, D. O'Regan, Positive radial solutions for a boundary value problem associated to a system of elliptic equations with semipositone nonlinearities, AIMS Math., 8 (2023), 1072–1089. https://doi.org/10.3934/math.2023053 doi: 10.3934/math.2023053 |
[24] | Y. X. Li, Positive radial solutions for elliptic equations with nonlinear gradient terms in an annulus, Complex Var. Elliptic, 63 (2018), 171–187. https://doi.org/10.1080/17476933.2017.1292261 doi: 10.1080/17476933.2017.1292261 |
[25] | Y. X. Li, W. F. Ma, Existence of classical solutions for nonlinear elliptic equations with gradient terms, Entropy, 24 (2022). https://doi.org/10.3390/e24121829 doi: 10.3390/e24121829 |
[26] | K. Deimling, Nonlinear functional analysis, New York: Springer-Verlag, 1985. |
[27] | D. Guo, V. Lakshmikantham, Nonlinear problems in abstract cones, New York: Academic Press, 1988. |