This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we prove that the weak solution is regular on (0,T] provided that either the norm ‖π‖Lα,∞(0,T;Lβ,∞(R3)) with 2α+3β=2 and 32<β<∞ or ‖∇π‖Lα,∞(0,T;Lβ,∞(R3)) with 2α+3β=3 and 1<β<∞ is sufficiently small.
Citation: Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa. Regularity results for solutions of micropolar fluid equations in terms of the pressure[J]. AIMS Mathematics, 2023, 8(9): 21208-21220. doi: 10.3934/math.20231081
[1] | Shuo Ma, Jiangman Li, Qiang Li, Ruonan Liu . Adaptive exponential synchronization of impulsive coupled neutral stochastic neural networks with Lévy noise and probabilistic delays under non-Lipschitz conditions. AIMS Mathematics, 2024, 9(9): 24912-24933. doi: 10.3934/math.20241214 |
[2] | Zhifeng Lu, Fei Wang, Yujuan Tian, Yaping Li . Lag synchronization of complex-valued interval neural networks via distributed delayed impulsive control. AIMS Mathematics, 2023, 8(3): 5502-5521. doi: 10.3934/math.2023277 |
[3] | Dong Pan, Huizhen Qu . Finite-time boundary synchronization of space-time discretized stochastic fuzzy genetic regulatory networks with time delays. AIMS Mathematics, 2025, 10(2): 2163-2190. doi: 10.3934/math.2025101 |
[4] | Hongguang Fan, Jihong Zhu, Hui Wen . Comparison principle and synchronization analysis of fractional-order complex networks with parameter uncertainties and multiple time delays. AIMS Mathematics, 2022, 7(7): 12981-12999. doi: 10.3934/math.2022719 |
[5] | Arthit Hongsri, Wajaree Weera, Thongchai Botmart, Prem Junsawang . Novel non-fragile extended dissipative synchronization of T-S fuzzy complex dynamical networks with interval hybrid coupling delays. AIMS Mathematics, 2023, 8(12): 28601-28627. doi: 10.3934/math.20231464 |
[6] | Chengbo Yi, Rui Guo, Jiayi Cai, Xiaohu Yan . Pinning synchronization of dynamical neural networks with hybrid delays via event-triggered impulsive control. AIMS Mathematics, 2023, 8(10): 25060-25078. doi: 10.3934/math.20231279 |
[7] | Shuang Li, Xiao-mei Wang, Hong-ying Qin, Shou-ming Zhong . Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays. AIMS Mathematics, 2021, 6(8): 8044-8063. doi: 10.3934/math.2021467 |
[8] | Xingxing Song, Pengfei Zhi, Wanlu Zhu, Hui Wang, Haiyang Qiu . Exponential synchronization control of delayed memristive neural network based on canonical Bessel-Legendre inequality. AIMS Mathematics, 2022, 7(3): 4711-4734. doi: 10.3934/math.2022262 |
[9] | Zhengqi Zhang, Huaiqin Wu . Cluster synchronization in finite/fixed time for semi-Markovian switching T-S fuzzy complex dynamical networks with discontinuous dynamic nodes. AIMS Mathematics, 2022, 7(7): 11942-11971. doi: 10.3934/math.2022666 |
[10] | Pratap Anbalagan, Evren Hincal, Raja Ramachandran, Dumitru Baleanu, Jinde Cao, Chuangxia Huang, Michal Niezabitowski . Delay-coupled fractional order complex Cohen-Grossberg neural networks under parameter uncertainty: Synchronization stability criteria. AIMS Mathematics, 2021, 6(3): 2844-2873. doi: 10.3934/math.2021172 |
This paper is devoted to investigating regularity criteria for the 3D micropolar fluid equations in terms of pressure in weak Lebesgue space. More precisely, we prove that the weak solution is regular on (0,T] provided that either the norm ‖π‖Lα,∞(0,T;Lβ,∞(R3)) with 2α+3β=2 and 32<β<∞ or ‖∇π‖Lα,∞(0,T;Lβ,∞(R3)) with 2α+3β=3 and 1<β<∞ is sufficiently small.
Let q≥3 be an integer, and χ be a Dirichlet character modulo q. The characters of the rational polynomial are defined as follows:
N+M∑x=N+1χ(f(x)), |
where M and N are any given positive integers, and f(x) is a rational polynomial. For example, when f(x)=x, for any non-principal Dirichlet character χ mod q, Pólya [1] and Vinogradov [2] independently proved that
|N+M∑x=N+1χ(x)|<√qlnq, |
and we call it Pólya-Vinogradov inequality.
When q=p is an odd prime, χ is a p-th order character modulo p, Weil [3] proved
N+M∑x=N+1χ(f(x))≪p12lnp, |
where f(x) is not a perfect p-th power modulo p, A≪B denotes |A|<kB for some constant k, which in this case depends on the degree of f.
Many authors have obtained numerous results for various forms of f(x). For example, W. P. Zhang and Y. Yi [4] constructed a special polynomial as f(x)=(x−r)m(x−s)n and deduced
|q∑a=1χ((a−r)m(a−s)n)|=√q, |
where (r−s,q)=1, and χ is a primitive character modulo q. This shows the power of q in Weil's result is the best possible!
Also, when χ is a primitive character mod q, W. P. Zhang and W. L. Yao [5] obtained
q∑a=1χ(am(1−a)m)=√q¯χ(4m), |
where q is an odd perfect square and m is any positive integer with (m,q)=1.
When q=pα11pα22⋯pαss is a square full number with pi≡3mod4, χ=χ1χ2…χs with χi being any primitive even character mod pαii(i=1,2,…,s), W. P. Zhang and T. T. Wang [6] obtained the identity
|q∑a=1′χ(ma2k−1+n¯a)|=√q∏p|q(1+(mn(2k−1)p)), | (1.1) |
where a⋅¯a≡1modq, and (∗p) denotes the Legendre symbol. Besides, k, m and n also satisfying some special conditions. Other related work about Dirichlet characters of the rational polynomials can be found in references [7,8,9,10,11,12,13,14]. Inspired by these, we will study the sum
q∑a=1′χ(ma+¯a). |
Following the way in [6], we obtain W. P. Zhang and T. T. Wang's identity (1.1) under a more relaxed situation. Then by adding some new ingredients, we derive some new identities for the fourth power mean of it.
Noting that if χ is an odd character modulo q, m is a positive integer with (m,q)=1, we can get
q∑a=1′χ(ma+¯a)=q∑a=1′χ(−ma+¯(−a))=−q∑a=1′χ(ma+¯a). |
That is to say, under this condition,
q∑a=1′χ(ma+¯a)=0. |
So, we will only discuss the case of χ an even character. To the best of our knowledge, the following identities dealing with arbitrary odd square-full number cases are new and have not appeared before.
Theorem 1.1. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the identity
|q∑a=1′χ(ma+¯a)|=√q∏p∣q(1+(mp)), |
where ∏p∣q denotes the product over all distinct prime divisors p of q.
Remark 1.1. It is obvious that Theorem 1.1 is W. P. Zhang and T. T. Wang's identity (1.1) with k=n=1 by removing the condition pi≡3mod4 (i=1,2,…,s). Besides, using our results, we can directly obtain the absolute values of the sums of Dirichlet characters satisfying some conditions, which avoids complex calculations. What's more, the result of Theorem 1.1 also shows that the order of q in Weil's result can not be improved.
To understand the result better, we give the following examples:
Example 1.1. Let q=32, χ be a Dirichlet character modulo 9 defined as follows:
χ(n)={e2πi⋅ind2n3,if (n,9)=1;0,if (n,9)>1. |
Obviously, χ is a primitive even character modulo 9. Taking m=1,2, then we have
|9∑a=1′χ(ma+¯a)|=|9∑a=1′χ(a+¯a)|=|3χ(2)+3χ(7)|=|3e2πi3+3e2πi⋅43|=6,|9∑a=1′χ(ma+¯a)|=|9∑a=1′χ(2a+¯a)|=|2χ(3)+2χ(6)+2χ(9)|=0. |
Example 1.2. Let q=52, χ be a primitive even character modulo 25 defined as follows:
χ(n)={e2πi⋅ind2n5,if (n,25)=1;0,if (n,25)>1. |
Taking m=1,2, then we have
|25∑a=1′χ(ma+¯a)|=|25∑a=1′χ(a+¯a)|=|5χ(2)+5χ(23)|=|5e2πi5+5e2πi⋅115|=10,|25∑a=1′χ(ma+¯a)|=|25∑a=1′χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(7)+4χ(8)+4χ(12)|=|4e2πi5+4e2πi⋅75+4e2πi⋅55+4e2πi⋅35+4e2πi⋅95|=0. |
Example 1.3. Let q=132, χ be a primitive even character modulo 169 defined as follows:
χ(n)={e2πi⋅ind2n13,if (n,169)=1;0,if (n,169)>1. |
Taking m=1,2, then we have
|169∑a=1′χ(ma+¯a)|=|169∑a=1′χ(a+¯a)|=|4χ(1)+26χ(2)+4χ(4)+4χ(9)+4χ(12)+4χ(14)+4χ(17)+4χ(22)+4χ(25)+4χ(27)+4χ(30)+4χ(35)+4χ(38)+4χ(40)+4χ(43)+4χ(48)+4χ(51)+4χ(53)+4χ(56)+4χ(61)+4χ(64)+4χ(66)+4χ(69)+4χ(74)+4χ(77)+4χ(79)+4χ(82)|=|8+8eπi13+34e2πi13+8e3πi13+8e4πi13+8e5πi13+8e6πi13+8e7πi13+8e8πi13+8e9πi13+8e10πi13+8e11πi13+8e12πi13|=26, |
|169∑a=1′χ(ma+¯a)|=|169∑a=1′χ(2a+¯a)|=|4χ(2)+4χ(3)+4χ(5)+4χ(8)+4χ(10)+4χ(11)+4χ(15)+4χ(16)+4χ(18)+4χ(21)+4χ(23)+4χ(24)+4χ(28)+4χ(29)+4χ(31)+4χ(34)+4χ(36)+4χ(37)+4χ(41)+4χ(42)+4χ(44)+4χ(47)+4χ(49)+4χ(50)+4χ(54)+4χ(55)+4χ(57)+4χ(60)+4χ(62)+4χ(63)+4χ(67)+4χ(68)+4χ(70)+4χ(73)+4χ(75)+4χ(76)+4χ(80)+4χ(81)+4χ(83)|=|12+12eπi13+12e2πi13+12e3πi13+12e4πi13+12e5πi13+12e6πi13+12e7πi13+12e8πi13+12e9πi13+12e10πi13+12e11πi13+12e12πi13|=0. |
The above examples can be easily achieved by our Theorem 1.1. From Theorem 1.1, we may immediately obtain the following two corollaries:
Corollary 1.1. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαi (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the identity
|q∑a=1′χ(ma+¯a)|={2ω(q)√q, if m is a quadratic residue modulo q;0, otherwise, |
where ω(q) denotes the number of all distinct prime divisors of q.
Corollary 1.2. Let q=pα11pα22⋯pαss be an odd number with αi≥1 (i=1,2,…,s), χi be any primitive even character mod pαii and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the inequality
|q∑a=1′χ(ma+¯a)|≤2ω(q)√q. |
Theorem 1.2. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integers k and m with k≥1 and (m,q)=1, we have the identity
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|2k=qk2ω(q)J(q)∏p∣q(1+(mp))2k, |
where J(q) denotes the number of primitive characters modulo q, and ∑χmodq∗ denotes the summation over all primitive characters modulo q.
Example 1.4. Taking q=52, m=1,2, then we have
∑∗χmod25χ(−1)=1|25∑a=1′χ(ma+¯a)|2k=∑∗χmod25χ(−1)=1|25∑a=1′χ(a+¯a)|2k=8⋅102k,∑∗χmod25χ(−1)=1|25∑a=1′χ(ma+¯a)|2k=∑∗χmod25χ(−1)=1|25∑a=1′χ(2a+¯a)|2k=0, |
which can be easily achieved by our Theorem 1.2.
Taking k=2 in Theorem 1.2, we may immediately obtain the followings:
Corollary 1.3. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then for any integer m with (m,q)=1, we have the identity
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|4=q22ω(q)J(q)∏p∣q(1+(mp))4. |
Corollary 1.4. Let q=pα11pα22⋯pαss be an odd square-full number, χi be any primitive even character mod pαii (i=1,2,…,s) and χ=χ1χ2⋯χs. Then we have the identity
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|4={8ω(q)q2J(q), if m is a quadratic residue modulo q;0, otherwise. |
Theorem 1.3. Let p be an odd prime, χ be any non-principal character mod p. Then for any integer m with (m,p)=1, we have the identity
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4={2p3−6p2+4−4(p2−3p+2)(mp)+(p−1)E,if p≡3mod4;2p3−6p2+4−4(p2+p−2)(mp)+(p−1)E,if p≡1mod4, |
where
E=p−1∑a=1p−1∑b=1((a2b−1)(b−1)bp)p−1∑d=1((¯a2d−1)(d−1)dp). |
Remark 1.2. From [8], we know that when f(x) is a polynomial of odd degree n≥3, Weil's estimate ([15,16])
|p−1∑x=0(f(x)p)|≤(n−1)√p, |
implies that E<4p2−8p. Noting that q∑a=1′χ(ma+¯a) can be regarded as a dual form of Kloosterman sums, which defined as q∑a=1′e2πima+ˉaq, we can obtain some distributive properties of q∑a=1′χ(ma+¯a) from Theorem 1.2 and 1.3.
From Theorem 1.3, we also have the following corollaries:
Corollary 1.5. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic residue m mod p, we have the identity
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4={2p3−10p2+12p−4+(p−1)E,if p≡3mod4;2p3−10p2−4p+12+(p−1)E,if p≡1mod4. |
Corollary 1.6. Let p be an odd prime, χ be any non-principal character mod p. Then for any quadratic non-residue m mod p, we have the identity
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4={2p3−2p2−12p+4+(p−1)E,if p≡3mod4;2p3−2p2+4p−4+(p−1)E,if p≡1mod4. |
To prove our Theorems, we need some Lemmas as the following:
Lemma 2.1. Let q, q1, q2 be integers with q=q1q2 and (q1,q2)=1, χi be any non-principal character mod qi (i=1,2). Then for any integer m with (m,q)=1 and χ=χ1χ2, we have the identity
q∑a=1′χ(ma+¯a)=q1∑b=1′χ1(mb+¯b)q2∑c=1′χ2(mc+¯c). |
Proof. From the properties of Dirichlet characters, we have
q∑a=1′χ(ma+¯a)=q1q2∑a=1′χ1χ2(ma+¯a)=q1∑b=1′q2∑c=1′χ1χ2(m(bq2+cq1)+¯bq2+cq1)=q1∑b=1′q2∑c=1′χ1(m(bq2+cq1)+¯bq2+cq1)χ2(m(bq2+cq1)+¯bq2+cq1)=q1∑b=1′χ1(mbq2+¯bq2)q2∑c=1′χ2(mcq1+¯cq1)=q1∑b=1′χ1(mb+¯b)q2∑c=1′χ2(mc+¯c). |
This completes the proof of Lemma 2.1.
Lemma 2.2. Let p be an odd prime, α and m be integers with α≥1 and (m,p)=1. Then for any primitive even character χ mod pα, we have the identity
pα∑a=1′χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)), |
where χ02=(∗p), τ(χ)=pα∑a=1χ(a)e(apα), χ1 is a primitive character mod pα and χ=χ21.
Proof. For any primitive even character χ mod pα, there exists one primitive character χ1 mod pα such that χ=χ21. From the properties of Gauss sum, we can obtain
pα∑a=1′χ(ma+¯a)=1τ(¯χ)pα∑a=1′pα∑b=1¯χ(b)e(b(ma+¯a)pα)=1τ(¯χ)pα∑a=1¯χ(a)pα∑b=1¯χ(b)e(b(ma2+1)pα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ(a)e(bma2pα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ1(a2)e(bma2pα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1(1+χ02(a))¯χ1(a)e(bmapα)=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ1(a)e(bmapα)+1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1χ02(a)¯χ1(a)e(bmapα):=B1+B2. |
Now we compute B1 and B2 respectively.
B1=1τ(¯χ)pα∑b=1¯χ(b)e(bpα)pα∑a=1¯χ1(a)e(bmapα)=1τ(¯χ)pα∑b=1¯χ(b)χ1(bm)e(bpα)pα∑a=1¯χ1(bma)e(bmapα)=χ1(m)τ(¯χ1)τ(¯χ)pα∑b=1¯χ(b)χ1(b)e(bpα)=χ1(m)τ(¯χ1)τ(¯χ)pα∑b=1¯χ1(b)e(bpα)=χ1(m)τ2(¯χ1)τ(¯χ). |
Similarly, we have
B2=χ1(m)χ02(m)τ2(χ02¯χ1)τ(¯χ). |
Therefore, we can obtain
pα∑a=1′χ(ma+¯a)=χ1(m)τ2(¯χ1)τ(¯χ)(1+χ02(m)τ2(χ02¯χ1)τ2(¯χ1)). |
Lemma 2.3. Let p be an odd prime. Then for any integer n, we have the identity
p∑a=1(a2+np)={−1,if (n,p)=1;p−1,if (n,p)=p. |
Proof. See Theorem 8.2 of [17].
Lemma 2.4. Let p be an odd prime. Then we have the identity
p−2∑a=2p−1∑b=1((a2b−1)(b−1)bp)=2×(−1)p−12+2. |
Proof. From the properties of character sum, we have
p−2∑a=2p−1∑b=1((a2b−1)(b−1)bp)=p−1∑b=1(b−1p)p−2∑a=2((a2b−1)bp)=p−1∑b=1(b−1p)p−2∑a=2(b2(a2−¯b)p)=p−1∑b=1(b−1p)p−2∑a=2(a2−¯bp)=p−1∑b=1(b−1p)(p∑a=1(a2−¯bp)−(1−¯bp)−((p−1)2−¯bp)−(p2−¯bp))=p−1∑b=1(b−1p)(−1−2(1−¯bp)−(−¯bp))=−p−1∑b=1(b−1p)−2p−1∑b=1(b−1p)(1−¯bp)−p−1∑b=1(b−1p)(−¯bp)=−p−2∑b=0(bp)−2p−1∑b=1(b−1p)((1−¯b)b2p)−p−1∑b=1(¯b−1p)=−2p−2∑b=0(bp)−2p−1∑b=1((b−1)2bp)=−2(p−1∑b=0(bp)−(p−1p))−2×(−1)=2×(−1)p−12+2. |
This completes the proof of Lemma 2.4.
Now we come to prove our Theorems.
Firstly, we prove Theorem 1.1. With the help of Lemma 2 in [6], when α≥2, we have
τ2(χ02¯χ1)τ2(¯χ1)=(1p)2=1, |
which implies from Lemma 2.2, we can obtain
|pα∑a=1′χ(ma+¯a)|=|χ1(m)τ2(¯χ1)τ(¯χ)(1+(mp))|=√pα(1+(mp)). |
Then, applying Lemma 2.1, we can obtain
|q∑a=1′χ(ma+¯a)|=|pα11∑a1=1′χ1(ma1+¯a1)|⋯|pαss∑as=1′χs(mas+¯as)|=√q∏p∣q(1+(mp)). |
This completes the proof of Theorem 1.1.
Then, from Lemma 2.1 and Lemma 2.2, we can prove Theorem 1.2 as following:
∑∗χmodqχ(−1)=1|q∑a=1′χ(ma+¯a)|2k=∑∗χ1modpα11χ1(−1)=1|pα11∑a1=1′χ1(ma1+¯a1)|2k⋯∑∗χsmodpαssχs(−1)=1|pαss∑as=1′χs(mas+¯as)|2k=s∏i=1[12J(pαii)pkαii|1+(mpi)|2k]=qk2ω(q)J(q)∏p∣q(1+(mp))2k. |
Finally, we prove Theorem 1.3. For any integer m with (m,p)=1, we have
p−1∑a=1χ(ma+¯a)=p−1∑u=1χ(u)p−1∑a=1am+¯a≡umodp1=p−1∑u=1χ(u)p−1∑a=1a2m2−amu+m≡0modp1=p−1∑u=1χ(u)p−1∑a=0(2am−u)2≡u2−4mmodp1=p−1∑u=1χ(u)p−1∑a=0a2≡u2−4mmodp1=p−1∑u=1χ(u)(1+(u2−4mp))=p−1∑u=1χ(u)(u2−4mp)=χ(2)p−1∑u=1χ(u)(u2−mp). |
So from the orthogonality of Dirichlet characters and the properties of reduced residue system modulo p, we have
∑χmodpχ(−1)=1|p−1∑a=1χ(ma+¯a)|4=∑χmodpχ(−1)=1|χ(2)p−1∑u=1χ(u)(u2−mp)|2|χ(2)p−1∑u=1χ(u)(u2−mp)|2=∑χmodpχ(−1)=1p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1χ(ac¯bd)(a2−mp)(b2−mp)(c2−mp)(d2−mp)=∑χmodpχ(−1)=1p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1χ(ac)(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)=p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)∑χmodpχ(−1)=1χ(ac)=p−12p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1a≡¯cmodp(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)+p−12p−1∑a=1p−1∑b=1p−1∑c=1p−1∑d=1a≡−¯cmodp(a2b2−mp)(b2−mp)(c2d2−mp)(d2−mp)=(p−1)p−1∑a=1p−1∑b=1p−1∑d=1(a2b2−mp)(b2−mp)(¯a2d2−mp)(d2−mp)=(p−1)p−1∑a=1p−1∑b=1(1+(bp))(a2b−mp)(b−mp)p−1∑d=1(1+(dp))(¯a2d−mp)(d−mp)=(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(¯a2d−1p)(d−1p)+(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(mp)((¯a2d−1)(d−1)dp)+(p−1)p−1∑a=1p−1∑b=1(mp)((a2b−1)(b−1)bp)p−1∑d=1(¯a2d−1p)(d−1p)+(p−1)p−1∑a=1p−1∑b=1(mp)((a2b−1)(b−1)bp)p−1∑d=1(mp)((¯a2d−1)(d−1)dp):=A1+A2+A3+A4. |
Now we compute A1, A2, A3, A4 respectively. Noticing that χ(−1)=1, from the properties of the complete residue system modulo p, we have
p−1∑b=1(a2b−1p)(b−1p)=p−1∑b=0(a2b−1p)(b−1p)−1=p−1∑b=0(4a2p)((a2b−1)(b−1)p)−1=p−1∑b=0((2a2b−a2−1)2−(a2−1)2p)−1=p−1∑b=0(b2−(a2−1)2p)−1. |
Applying Lemma 2.3, we can get
A1=(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(¯a2d−1p)(d−1p)=(p−1)p−1∑a=1(p−1∑b=0(b2−(a2−1)2p)−1)(p−1∑d=0(d2−(¯a2−1)2p)−1)=(p−1)[2p−1∑b=0(b2p)p−1∑d=0(d2p)+p−2∑a=2p−1∑b=0(b2−(a2−1)2p)p−1∑d=0(d2−(¯a2−1)2p)]−2(p−1)p−1∑a=1p−1∑b=0(b2−(a2−1)2p)+(p−1)2=2p3−6p2+4. |
Then, we compute A2. With the aid of Lemma 2.4, we have
A2=(p−1)p−1∑a=1p−1∑b=1(a2b−1p)(b−1p)p−1∑d=1(mp)((¯a2d−1)(d−1)dp)=(p−1)p−1∑a=1[p−1∑b=0(b2−(a2−1)2p)−1]p−1∑d=1(mp)((¯a2d−1)(d−1)dp)=(p−1)2p−1∑d=1(mp)((d−1)2dp)−(p−1)p−2∑a=2p−1∑d=1(mp)((¯a2d−1)(d−1)dp)+(p−1)2p−1∑d=1(mp)(((p−1)2d−1)(d−1)dp)−(p−1)p−1∑a=1p−1∑d=1(mp)((¯a2d−1)(d−1)dp)=(p2−3p+2)[p−1∑d=1(mp)((d−1)2dp)+p−1∑d=1(mp)(((p−1)2d−1)(d−1)dp)]−2(p−1)p−2∑a=2p−1∑d=1(mp)((a2d−1)(d−1)dp)=2(p2−3p+2)(mp)p−1∑d=1((d−1)2dp)−4(p−1)[(−1)p−12+1](mp)=2(p2−3p+2)(mp)p−1∑b=2(bp)−4(p−1)[(−1)p−12+1](mp)=−2(p2−3p+2)(mp)−4(p−1)[(−1)p−12+1](mp). |
Similarly, we have
A3=−2(p2−3p+2)(mp)−4(p−1)[(−1)p−12+1](mp). |
Note that
A4=(p−1)p−1∑a=1p−1∑b=1((a2b−1)(b−1)bp)p−1∑d=1((¯a2d−1)(d−1)dp), |
which completes the proof of Theorem 1.3.
Three Theorems are stated in the main results. The Theorem 1.1 obtains an exact computational formula for q∑a=1′χ(ma+¯a), which broadens the scope of q by removing the condition p≡3mod4 in the previous article, where p is the prime divisor of q. The Theorem 1.2 derives a new identity for the mean value of it by adding some different ingredients. What's more, the Theorem 1.3 bridges the fourth power of Dirichlet characters with Legendre symbols of certain polynomials, which may be useful in the related future research. However, due to some technical reasons, we can only deal with the odd square-full number q case.
The authors would like to thank the referees for their very helpful and detailed comments, which have significantly improved the presentation of this paper. This work is supported by the National Natural Science Foundation of China (No. 11871317), and the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (No. 2021JC-29).
The authors declare that there are no conflicts of interest regarding the publication of this paper.
[1] |
H. Beirão da Veiga, A sufficient condition on the pressure for the regularity of weak solutions to the Navier-Stokes equations, J. Math. Fluid Mech., 2 (2000), 99–106. http://doi.org/10.1007/PL00000949 doi: 10.1007/PL00000949
![]() |
[2] | H. Beirão da Veiga, Concerning the regularity of the solutions to the Navier-Stokes equations via the truncation method Ⅱ, In: Équations aux dérivées partielles et applications, Paris: Gauthier-Villars, Éd. Sci. Méd. Elsevier, 1998,127–138. |
[3] | J. Bergh, J. Löfström, Interpolation spaces: An introduction, Berlin, Heidelberg: Springer, 1976. http://doi.org/10.1007/978-3-642-66451-9 |
[4] |
L. C. Berselli, G. P. Galdi, Regularity criteria involving the pressure for the weak solutions of the Navier-Stokes equations, Proc. Amer. Math. Soc., 130 (2002), 3585–3595. http://doi.org/10.1090/S0002-9939-02-06697-2 doi: 10.1090/S0002-9939-02-06697-2
![]() |
[5] |
S. Bosia, V. Pata, J. C. Robinson, A weak-Lp Prodi-Serrin type regularity criterion for the Navier-Stokes equations, J. Math. Fluid Mech., 16 (2014), 721–725. http://doi.org/10.1007/s00021-014-0182-5 doi: 10.1007/s00021-014-0182-5
![]() |
[6] |
J. Chen, Z. M. Chen, B. Q. Dong, Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains, Nonlinearity, 20 (2007), 1619–1635. http://doi.org/10.1088/0951-7715/20/7/005 doi: 10.1088/0951-7715/20/7/005
![]() |
[7] |
Q. Chen, C. Miao, Global well-posedness for the micropolar fluid system in critical Besov spaces, J. Differ. Equ., 252 (2012), 2698–2724. https://doi.org/10.1016/j.jde.2011.09.035 doi: 10.1016/j.jde.2011.09.035
![]() |
[8] |
Z. M. Chen, W. G. Price, Decay estimates of linearized micropolar fluid flows in R3 space with applications to L3 -strong solutions, Int. J. Eng. Sci., 44 (2006), 859–873. https://doi.org/10.1016/j.ijengsci.2006.06.003 doi: 10.1016/j.ijengsci.2006.06.003
![]() |
[9] |
B. Q. Dong, Z. M. Chen, Regularity criteria of weak solutions to the three-dimensional micropolar flows, J. Math. Phys., 50 (2009), 103525. http://doi.org/10.1063/1.3245862 doi: 10.1063/1.3245862
![]() |
[10] |
B. Q. Dong, W. Zhang, On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces, Nonlinear Anal., 73 (2010), 2334–2341. https://doi.org/10.1016/j.na.2010.06.029 doi: 10.1016/j.na.2010.06.029
![]() |
[11] |
B. Q. Dong, Y. Jia, Z. M. Chen, Pressure regularity criteria of the three-dimensional micropolar fluid flows, Math. Method. Appl. Sci., 34 (2011), 595–606. http://doi.org/10.1002/mma.1383 doi: 10.1002/mma.1383
![]() |
[12] | A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. |
[13] |
S. Gala, On regularity criteria for the three-dimensional micropolar fluid equations in the critical Morrey-Campanato space, Nonlinear Anal. Real, 12 (2011), 2142–2150. https://doi.org/10.1016/j.nonrwa.2010.12.028 doi: 10.1016/j.nonrwa.2010.12.028
![]() |
[14] |
S. Gala, M. A. Ragusa, A regularity criterion for 3D micropolar fluid flows in terms of one partial derivative of the velocity, Ann. Pol. Math., 116 (2016), 217–228. http://doi.org/10.4064/ap3829-11-2015 doi: 10.4064/ap3829-11-2015
![]() |
[15] |
S. Gala, J. Yan, Two regularity criteria via the logarithmic of the weak solutions to the micropolar fluid equations, J. Part. Diff. Eq., 25 (2012), 32–40. http://doi.org/10.4208/jpde.v25.n1.3 doi: 10.4208/jpde.v25.n1.3
![]() |
[16] |
S. Gala, A remark on the logarithmically improved regularity criterion for the micropolar fluid equations in terms of the pressure, Math. Method. Appl. Sci., 34 (2011), 1945–1953. http://doi.org/10.1002/mma.1488 doi: 10.1002/mma.1488
![]() |
[17] |
G. P. Galdi, S. Rionero, A note on the existence and uniqueness of solutions of micropolar fluid equations, Int. J. Eng. Sci., 15 (1977), 105–108. https://doi.org/10.1016/0020-7225(77)90025-8 doi: 10.1016/0020-7225(77)90025-8
![]() |
[18] | L. Grafakos, Classical Fourier analysis, 2 Eds., New York: Springer, 2008. http://doi.org/10.1007/978-0-387-09432-8 |
[19] |
X. Ji, Y. Wang, W. Wei, New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations, J. Math. Fluid Mech., 22 (2020), 13. http://doi.org/10.1007/s00021-019-0476-8 doi: 10.1007/s00021-019-0476-8
![]() |
[20] |
Y. Jia, W. Zhang, B. Q. Dong, Remarks on the regularity criterion of the 3D micropolar fluid flows in terms of the pressure, Appl. Math. Lett., 24 (2011), 199–203. https://doi.org/10.1016/j.aml.2010.09.003 doi: 10.1016/j.aml.2010.09.003
![]() |
[21] |
Y. Jia, J. Zhang, B. Q. Dong, Logarithmical regularity criteria of the three-dimensional micropolar fluid equations in terms of the pressure, Abstr. Appl. Anal., 2012 (2012), 395420. http://doi.org/10.1155/2012/395420 doi: 10.1155/2012/395420
![]() |
[22] |
H. Kozono, M. Yamazaki, Exterior problem from the stationary Navier-Stokes equations in the Lorentz space, Math. Ann., 310 (1998), 279–305. http://doi.org/10.1007/s002080050149 doi: 10.1007/s002080050149
![]() |
[23] | G. Łukaszewicz, Micropolar fluids: Theory and applications, Boston, MA: Birkhäuser, 1999. http://doi.org/10.1007/978-1-4612-0641-5 |
[24] |
M. Loayza, M. A. Rojas-Medar, A weak-Lp Prodi-Serrin type regularity criterion for the micropolar fluid equations, J. Math. Phys., 57 (2016), 021512. http://doi.org/10.1063/1.4942047 doi: 10.1063/1.4942047
![]() |
[25] | J. Malý, Advanced theory of differentiation-Lorentz spaces, Lect. Notes, 2003, 8. |
[26] |
B. Pineau, X. Yu, A new Prodi-Serrin type regularity criterion in velocity directions, J. Math. Fluid Mech., 20 (2018), 1737–1744. http://doi.org/10.1007/s00021-018-0388-z doi: 10.1007/s00021-018-0388-z
![]() |
[27] |
B. Pineau, X. Yu, On Prodi-Serrin type conditions for the 3D Navier-Stokes equations, Nonlinear Anal., 190 (2020), 111612. https://doi.org/10.1016/j.na.2019.111612 doi: 10.1016/j.na.2019.111612
![]() |
[28] |
M. A. Rojas-Medar, Magneto-micropolar fluid motion: Existence and uniqueness of strong solution, Math. Nachr., 188 (1997), 301–319. http://doi.org/10.1002/mana.19971880116 doi: 10.1002/mana.19971880116
![]() |
[29] |
T. Suzuki, Regularity criteria of weak solutions in terms of the pressure in Lorentz spaces to the Navier-Stokes equations, J. Math. Fluid Mech., 14 (2012), 653–660. http://doi.org/10.1007/s00021-012-0098-x doi: 10.1007/s00021-012-0098-x
![]() |
[30] |
T. Suzuki, A remark on the regularity of weak solutions to the Navier-Stokes equations in terms of the pressure in Lorentz spaces, Nonlinear Anal., 75 (2012), 3849–3853. https://doi.org/10.1016/j.na.2012.02.006 doi: 10.1016/j.na.2012.02.006
![]() |
[31] | H. Triebel, Theory of function spaces, Basel: Birkhäuser, 1983. http://doi.org/10.1007/978-3-0346-0416-1 |
[32] |
Y. Wang, H. Zhao, Logarithmically improved blow up criterion for smooths solution to the 3D micropolar fluid equations, J. Appl. Math., 2012 (2012), 541203. http://doi.org/10.1155/2012/541203 doi: 10.1155/2012/541203
![]() |
[33] |
N. Yamaguchi, Existence of global strong solution to the micropolar fluid equations, Math. Method. Appl. Sci., 28 (2005), 1507–1526. http://doi.org/10.1002/mma.617 doi: 10.1002/mma.617
![]() |
[34] |
B. Yuan, On regularity criteria for weak solutions to the micropolar fluid equations in Lorentz space, Proc. Amer. Math. Soc., 138 (2010), 2025–2036. http://doi.org/10.1090/S0002-9939-10-10232-9 doi: 10.1090/S0002-9939-10-10232-9
![]() |
[35] |
Y. Zhou, Regularity criteria in terms of pressure for the 3-D Navier-Stokes equations in a generic domain, Math. Ann., 328 (2004), 173–192. http://doi.org/10.1007/s00208-003-0478-x doi: 10.1007/s00208-003-0478-x
![]() |
[36] |
Y. Zhou, On regularity criteria in terms of pressure for the Navier-Stokes equations in R3, Proc. Amer. Math. Soc., 134 (2006), 149–156. http://doi.org/10.1090/S0002-9939-05-08312-7 doi: 10.1090/S0002-9939-05-08312-7
![]() |
[37] |
Y. Zhou, On a regularity criterion in terms of the gradient of pressure for the Navier-Stokes equations in R3, Z. angew. Math. Phys., 57 (2006), 384–392. http://doi.org/10.1007/s00033-005-0021-x doi: 10.1007/s00033-005-0021-x
![]() |
[38] |
Y. Zhou, Regularity criteria for the 3D MHD equations in terms of the pressure, Int. J. Nonlin. Mech., 41 (2006), 1174–1180. https://doi.org/10.1016/j.ijnonlinmec.2006.12.001 doi: 10.1016/j.ijnonlinmec.2006.12.001
![]() |
1. | Donghui Wu, Ying Zhao, Hong Sang, Shuanghe Yu, Reachable set estimation for switched T-S fuzzy systems with a switching dynamic memory event-triggered mechanism, 2024, 490, 01650114, 109050, 10.1016/j.fss.2024.109050 |