In this paper, a kind of bivariate multiquadric quasi-interpolant with the derivatives of a approximated function is studied by combining the known multiquadric quasi-interpolant with the generalized Taylor polynomials that act as the bivariate Lidstone interpolation polynomials. For practical purposes, a kind of improved approximation operator without any derivative of the approximated function is given by using bivariate divided differences to approximate the derivatives. It has the property of high-degree polynomial reproducing. In addition, the improved bivariate quasi-interpolation operators only demand information of the location points rather than the derivatives of the function approximated. Some error bounds in terms of the modulus of continuity of high order and Peano representations for the error are given. Several numerical comparisons with other existing methods are carried out to verify a higher degree of accuracy based on the obtained scheme. Furthermore, the advantage of our method is that the algorithm is very simple and easy to implement.
Citation: Ruifeng Wu. Bivariate multiquadric quasi-interpolation operators of Lidstone type[J]. AIMS Mathematics, 2023, 8(9): 20914-20932. doi: 10.3934/math.20231065
[1] | D. L. Suthar, D. Baleanu, S. D. Purohit, F. Uçar . Certain k-fractional calculus operators and image formulas of k-Struve function. AIMS Mathematics, 2020, 5(3): 1706-1719. doi: 10.3934/math.2020115 |
[2] | Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Thabet Abdeljawad, Kottakkaran Sooppy Nisar . Integral transforms of an extended generalized multi-index Bessel function. AIMS Mathematics, 2020, 5(6): 7531-7547. doi: 10.3934/math.2020482 |
[3] | Gauhar Rahman, Shahid Mubeen, Kottakkaran Sooppy Nisar . On generalized k-fractional derivative operator. AIMS Mathematics, 2020, 5(3): 1936-1945. doi: 10.3934/math.2020129 |
[4] | Saima Naheed, Shahid Mubeen, Gauhar Rahman, M. R. Alharthi, Kottakkaran Sooppy Nisar . Some new inequalities for the generalized Fox-Wright functions. AIMS Mathematics, 2021, 6(6): 5452-5464. doi: 10.3934/math.2021322 |
[5] | Khaled Mehrez, Abdulaziz Alenazi . Bounds for certain function related to the incomplete Fox-Wright function. AIMS Mathematics, 2024, 9(7): 19070-19088. doi: 10.3934/math.2024929 |
[6] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[7] | Muajebah Hidan, Mohamed Akel, Hala Abd-Elmageed, Mohamed Abdalla . Solution of fractional kinetic equations involving extended (k,τ)-Gauss hypergeometric matrix functions. AIMS Mathematics, 2022, 7(8): 14474-14491. doi: 10.3934/math.2022798 |
[8] | D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096 |
[9] | Ji Hyang Park, Hari Mohan Srivastava, Nak Eun Cho . Univalence and convexity conditions for certain integral operators associated with the Lommel function of the first kind. AIMS Mathematics, 2021, 6(10): 11380-11402. doi: 10.3934/math.2021660 |
[10] | Kanagaraj Muthuselvan, Baskar Sundaravadivoo, Suliman Alsaeed, Kottakkaran Sooppy Nisar . New interpretation of topological degree method of Hilfer fractional neutral functional integro-differential equation with nonlocal condition. AIMS Mathematics, 2023, 8(7): 17154-17170. doi: 10.3934/math.2023876 |
In this paper, a kind of bivariate multiquadric quasi-interpolant with the derivatives of a approximated function is studied by combining the known multiquadric quasi-interpolant with the generalized Taylor polynomials that act as the bivariate Lidstone interpolation polynomials. For practical purposes, a kind of improved approximation operator without any derivative of the approximated function is given by using bivariate divided differences to approximate the derivatives. It has the property of high-degree polynomial reproducing. In addition, the improved bivariate quasi-interpolation operators only demand information of the location points rather than the derivatives of the function approximated. Some error bounds in terms of the modulus of continuity of high order and Peano representations for the error are given. Several numerical comparisons with other existing methods are carried out to verify a higher degree of accuracy based on the obtained scheme. Furthermore, the advantage of our method is that the algorithm is very simple and easy to implement.
Fractional calculus is an essential research area, which is equally useful not only in pure mathematics but also in applied mathematics, physics, biology, engineering, economics and control theory etc. In recent years, study on fractional differential equations is very dynamic and widespread around the world. Some of its applications in diverse fields are discussed in [1,2]. Optical solitons of time-fractional higher-order nonlinear Schr¨odinger equation and soliton molecule solutions of nonlinear Schr¨odinger equations are established by Dai et al. [3,4]. A hybrid analytical solution to examine the fractional model of the nonlinear wave-like equation is explored by Kumar et al. [5]. Numerical solutions with linearization techniques of the fractional Harry Dym equation are established in [6].
Many researchers have discussed fractional calculus operators [7,8]. The composition of Erdélyi-Kober fractional operators is presented in [9]. Mishra et al. discussed the Marichev-Saigo-Maeda fractional calculus operators on the product of Srivastava polynomials and generalized Mittag-Leffler function [10]. Certain Integral operators involving the Gauss hypergeometric functions are elaborated in [11,12]. A brief study of fractional calculus operators on generalized multivariable Mittag-Leffler function is presented by Suthar et al. [13]. A brief systematic history of the generalized fractional calculus operators and their applications is being profoundly analyzed in [14,15]. A concise description of generalized fractional calculus operators together with their applications is available in [16,17,18].
A variety of research publications are continuously in progress regarding the generalization of classical fractional calculus operators. In this continuation, many researchers established generalized fractional operator and their applications[19,20]. Smraiz et al. modified the (k,s) fractional integral operator involving k-Mittag-Leffler function and also discussed the applications of (k,s)-Hilfer-Prabhakar fractional derivative in mathematical physics [21,22]. Can et al. have discussed the global existence for a mild solution of fractional Volterra integro-differential equations [23] and inverse source problem for the time-fractional diffusion equation with Mittag-Leffler kernel [24]. They also explored regularized solution approximation for the fractional pseudo-parabolic problem with a nonlinear source term in [25].
For our study, we start with k versions of Saigo fractional integral and derivative operators involving the k-hypergeometric function in the kernel which were introduced by Gupta and Parihar [26] and are defined as follows:
For w∈R+, ϵ,ϱ,χ∈C with Re(ϵ)>0, k>0, we have
(Iϵ,ϱ,χ0+,kf)(w)=w−ϵ−ϱkkΓk(ϵ)∫w0(w−t)ϵk−1×2F1,k((ϵ+ϱ,k),(−χ,k);(ϵ,k);(1−tw))f(t)dt. | (1.1) |
(Iϵ,ϱ,χ−,kf)(w)=1kΓk(ϵ)∫∞w(t−w)ϵk−1t−ϵ−ϱk×2F1,k((ϵ+ϱ,k),(−χ,k);(ϵ,k);(1−wt))f(t)dt. | (1.2) |
(Dϵ,ϱ,χ0+,kf)(w)=(ddw)n(I−ϵ+n,−ϱ−n,ϵ+χ−n0+,kf)w,n=[Re(ϵ)+1]=(ddw)nwϵ+ϱkkΓk(−ϵ+n)∫w0(w−t)−ϵk+n−1×2F1,k((−ϵ−ϱ,k),(−χ−ϵ+n,k);(−ϵ+n,k);(1−tw))f(t)dt. | (1.3) |
(Dϵ,ϱ,χ−,kf)(w)=(ddw)n(I−ϵ+n,−ϱ−n,ϵ+χ−,kf)w,n=[Re(ϵ)+1]=(ddw)n1kΓk(−ϵ+n)∫∞w(t−w)−ϵ−nk−1tϵ+ϱk×2F1,k((−ϵ−ϱ,k),(−χ−ϵ+n,k);(−ϵ+n,k);(1−wt))f(t)dt. | (1.4) |
Where [Re(ϵ)] is the integer part of Re(ϵ) and 2F1,k((ϵ,k),(ϱ,k);(χ,k);w) is the k-hypergeometric function defined by Mubeen and Habibullah in [19] as:
For w∈C, |w|<1, Re(χ)>Re(ϱ)>0,
2F1,k((ϵ,k),(ϱ,k);(χ,k);w)=∞∑n=0(ϵ)n,k(ϱ)n,kwn(χ)n,kn!. | (1.5) |
The benefit of the generalized k-fractional calculus operators is that they generalize classical Saigo's fractional operators and classical Riemann-Liouville operators. For k→1, (1.1)–(1.4) condense to the Saigo's fractional integral and differential operators [11]. If we take ϱ=−ϵ in (1.1)–(1.4), we have the k- Riemann-Liouville operators as follows:
(Iϵ,ϱ,χ0+,kf)(w)=(Iϵ0+,kf)(w), | (1.6) |
(Iϵ,ϱ,χ−,kf)(w)=(Iϵ−,kf)(w), | (1.7) |
(Dϵ,ϱ,χ0+,kf)(w)=(Dϵ0+,kf)(w), | (1.8) |
(Dϵ,ϱ,χ−,kf)(w)=(Dϵ−,kf)(w) | (1.9) |
and for k→1, Eqs (1.6)–(1.9) reduce to classical Riemann-Liouville fractional operators.
Now, we will state the lemmas presented in [26] which will be helpful to prove our main results.
Lemma 1.1. Let ϵ,ρ,χ,λ∈C, k∈R+(0,∞), Re(λ)>max[0,Re(ϱ−χ)]. Then
(Iϵ,ϱ,χ0+,ktλk−1)(w)=∞∑n=0knΓk(λ)Γk(λ−ϱ+χ)Γk(λ−ϱ)Γk(λ+ϵ+χ)wλ−ϱk−1. | (1.10) |
Lemma 1.2. Let ϵ,ρ,χ,λ∈C, k∈R+(0,∞), Re(λ)>max[Re(−ϱ),Re(−χ)]. Then
(Iϵ,ϱ,χ−,kt−λk)(w)=∞∑n=0knΓk(λ+ϱ)Γk(λ+χ)Γk(λ)Γk(λ+ϵ+ϱ+χ)w−λ−ϱk. | (1.11) |
Lemma 1.3. Let ϵ,ρ,χ,λ∈C, k∈R+(0,∞), n=Re[ϵ]+1 such that Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then
(Dϵ,ϱ,χ0+,ktλk−1)(w)=∞∑n=0Γk(λ)Γk(λ+ϱ+χ+ϵ)Γk(λ+χ)Γk(λ+ϱ+n−nk)wλ+ϱ+nk−n−1. | (1.12) |
Lemma 1.4. Let ϵ,ρ,χ,λ∈C, n=Re[ϵ]+1, k∈R+(0,∞) such that Re(λ)>max[Re(−ϵ−χ),Re(ϱ−nk+n)]. Then
(Dϵ,ϱ,χ−,kt−λk)(w)=∞∑n=0Γk(λ−ϱ−n+nk)Γk(λ+ϵ+χ)Γk(λ)Γk(λ−ϱ+χ)w−λ−ϱ+nk−n. | (1.13) |
Gehlot and Prajapati in [27] defined the k-Wright function as follows:
For k∈R+, w,ai,bj∈C, Ai,Bj∈R(Ai,Bj)≠0 where i=1,2,..u;j=1,2,..v and (ai+Ain),(bj+Bjn)∈C∖kZ−,
uψkv[(a1,A1),..(au,Au);(b1,B1),..(bv,Bv);z]=∞∑n=0Γk(a1,nA1)..Γk(au,nAu)znΓk(b1,nB1)..Γk(bv,nBv)n!, | (1.14) |
with convergence condition
1+u∑j=1Bjk−v∑i=1Aik>0, | (1.15) |
for reasonably bounded values of |z|.
The Lommel-Wright k-function is defined as follows:
J℘,mℵ,ℏ,k(z)=(z2)ℵ+2ℏk∞∑n=0(−1)n(z2)2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘), | (1.16) |
where z∈C|(−∞,0],℘>0,m∈N,k∈R,ℵ,ℏ∈C and Γk(Z) is the k-gamma function introduced by Diaz and Pariguan [28] given by
Γk(z)=limn→∞n!kn(nk)ωk−1(ω)n,k, |
with k-Pochhammer symbol (ω)n,k given by
(ω)n,k=ω(ω+k)(ω+2k)....(ω+(n−1)k),x∈C,k∈R,n∈N+. |
The classical Eulers Gamma function and Gamma k-function are related with following relation
Γk(ω)=kωk−1Γ(ωk). |
The Lommel-Wright k-function can also be expressed in the form of k-Wright function as:
J℘,mℵ,ℏ,k(z)=(z2)ℵ+2ℏk1ψkm+1[(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘);−z24k]. | (1.17) |
For m=1 in (1.16), we define the generalized Bessel-Maitland k-function as:
J℘ℵ,ℏ,k(z)=(z2)ℵ+2ℏk∞∑n=0(−1)n(z2)2nΓk(ℏ+k+nk)Γk(ℵ+ℏ+k+n℘). | (1.18) |
It is observed that for k=1, generalized Lommel-Wright k-function reduces to generalized Lommel-Wright function as given in [29] and for m=k=1, we get the Bessel-Maitland function presented in [29]. It also capitulates connection with the classical Bessel function Jℵ(z) mentioned in [30] for m=℘=k=1 and ℏ=0.
As various kinds of generalized fractional calculus operators involving different special functions are in consistent development. The papers on certain generalized fractional operators and integral transform [31,32,33] serve as inspiration for our presented work. This work backs up the prior results and contributes to the field by making broad generalizations.
The layout of the paper is as follows: In section 2, we established the formulas for generalized Saigo fractional integrals involving generalized Lommel-Wright function and some of its cases are also discussed as corollaries. Section 3 is devoted to developing the generalized Saigo fractional differentiation formulas involving generalized Lommel-Wright function along with its special consequences. In Section 4, extended Beta transform is applied to the generalized Lommel-Wright function. The last section contains concluding remarks.
In this section, we develop the formulas for Saigo k-fractional integrals (1.1) and (1.2) associated with Lommel-Wright k-function. These results are expressed in terms of k-Wright function.
Theorem 2.1. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. If condition given by (1.15) is satisfied and Iϵ,ϱ,χ0+,k is the left sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula
(Iϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ);−w2σk4] | (2.1) |
holds.
Proof. Using Eq (1.16) in the left hand side of Eq (2.1), we get
=[Iϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)(tσk2)ℵ+2ℏk+2n](w) | (2.2) |
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Iϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w). | (2.3) |
Applying Lemma 1.1, we obtain
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)(−kw2σk4)n. | (2.4) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(k+nk)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)(−kw2σk4)n. | (2.5) |
Using Eq (1.14) in (2.5), we have the desired formula.
Theorem 2.2. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). If condition (1.15) is satisfied and Iϵ,ϱ,χ−,k is the right sided integral operator of the generalized k-fractional integration considering k-hypergeometric function. Then the subsequent formula
(Iϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ);−w−2σk4] | (2.6) |
holds.
Proof. The proof of Theorem 2.2 runs parallel to Theorem 2.1.
The findings in (2.1) and (2.6) are very general in nature and can result in a large number of individual cases. Allocating some acceptable values to the parameters involved, we have the following corollaries.
Using m=1, the results (2.1) and (2.6) take the form.
Corollary 2.3. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. Then the subsequent formula
(Iϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ);−w2σk4] | (2.7) |
is true.
Corollary 2.4. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). Then the subsequent formula
(Iϵ,ϱ,χ−,kt−ϵ−λkJ℘ℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ);−w−2σk4] | (2.8) |
is true.
Letting k=1, we have the generalized Lommel-Wright function and the corresponding formulas are presented in subsequent corollaries.
Corollary 2.5. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. Then the subsequent formula
(Iϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(tσ))(w)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ−ϱ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ);−w2σ4] | (2.9) |
holds.
Corollary 2.6. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). Then the subsequent formula
(Iϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(t−σ))(w)=w−σ(ℵ+2ℏ)+ϵ+λ+ϱ(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏ)+ϵ+λ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+ϵ+λ,2σ),(σ(ℵ+2ℏ)+2ϵλ+ϱ+χ,2σ);−w−2σ4] | (2.10) |
holds.
For m=k=℘=1 and ℏ=0, the corresponding corollaries are as given below.
Corollary 2.7. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)] and Re(λ+χ−ϱ)>0. Then the subsequent formula holds
(Iϵ,ϱ,χ0+tλ−1J1,1ℵ(tσ))(w)=wσ(ℵ+)+λ−ϱ−1(12)ℵ×2ψ3[(σℵ+λ,2σ),(σℵ+λ−ϱ+χ,2σ);(ℵ+1,1),(σℵ+λ−ϱ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ);−w2σ4]. | (2.11) |
Corollary 2.8. Let ϵ,ϱ,χ,λ,σ∈C, m∈N, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)] and Re(ϱ)≠Re(χ). Then the subsequent formula holds
(Iϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(t−σ))(w)=w−σℵ+ϵ+λ+ϱ(12)ℵ×2ψ3[(σℵ+ϵ+λ+ϱ,2σ),(σℵ+ϵ+λ+χ,2σ);(ℵ+1,1),(σℵ+ϵ+λ,2σ),(σℵ+2ϵλ+ϱ+χ,2σ);−w−2σ4]. | (2.12) |
In this part, we will present formulas for differentiation using Saigo k-fractional differential operators given by (1.3) and (1.4) involving generalized Lomme-Wright k-function. These formulae are presented in terms of k-Wright function.
Theorem 3.1. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition (1.15) holds and Dϵ,ϱ,χ0+,k is the left sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the following formula
(Dϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1);−w(2σ+1k)−14k] | (3.1) |
holds true.
Proof. By means of Eq (1.16) we can write the left hand side of Eq (3.1) as follows:
=[Dϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)(tσk2)ℵ+2ℏk+2n](w), | (3.2) |
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Dϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w). | (3.3) |
Using Lemma 1.3 in Eq (3.3), we obtain
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n).(−w2σ+1k−14)n. | (3.4) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(nk+k)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n)(−w2σ+1k−14)n. | (3.5) |
By means of Definition (1.14) in (3.5), we obtain the formula (3.1).
Theorem 3.2. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1] If condition (1.15) is satisfied and (Dϵ,ϱ,χ−,k is the right sided operator of the generalized k-fractional differentiation considering k-hypergeometric function. Then the subsequent formula
(Dϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)×3ψkm+3[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ);−w−2σ+1k−14k] | (3.6) |
holds.
Proof. The proof of Theorem 3.2 is similiar to Theorem 3.1.
Now, we discuss some special cases.
For m=1 the results (3.1) and (3.6) are established in the form of following corollaries.
Corollary 3.3. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula
(Dϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(tσk))(w)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1);−w(2σ+1k)−14k] | (3.7) |
is true.
Corollary 3.4. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds
(Dϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(t−σk))(w)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)×3ψk4[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ);−w−2σ+1k−14k]. | (3.8) |
For k=1, in Eqs. (3.1) and (3.6), the obtained corollaries are given below.
Corollary 3.5. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true
(Dϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(tσ))(w)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ+χ,2σ),(σ(ℵ+2ℏ)+λ,2σ);−w2σ4]. | (3.9) |
Corollary 3.6. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1]. If condition in (1.15) is satisfied then the subsequent formula holds
(Dϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(t−σ))(w)=w−σ(ℵ+2ℏ)+ϵ−λ+ϱ(12)(ℵ+2ℏ)×3ψm+3[(σ(ℵ+2ℏ)+λ−ϵ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+χ,2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϵ,2σ),(σ(ℵ+2ℏ)+λ−ϵ−ϱ+χ,2σ);−w−2σ4]. | (3.10) |
For m=k=℘=1 and ℏ=0, the subsequent corollaries are as follows:
Corollary 3.7. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)] and Re(λ+χ+ϱ)>0. If condition in (1.15) holds then the subsequent formula is true
(Dϵ,ϱ,χ0+tλ−1J1,1ℵ(tσ))(w)=wσℵ)+λ−ϱ−1(12)(ℵ)×2ψ3[(σℵ)+λ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ);(ℵ+1,1),(σℵ+λ+χ,2σ),(σℵ+λ,2σ);−w2σ4]. | (3.11) |
Corollary 3.8. Let ϵ,ϱ,χ,λ,σ∈C such that Re(ϵ)>0, Re(ϱ)>max[Re(ϵ+ϱ)+n−Re(χ)] and Re(ϵ+ϱ−χ)+n≠0, where n=[Re(ϵ)+1] If condition in (1.15) is satisfied then the subsequent formula holds
(Dϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(t−σ))(w)=w−σℵ+ϵ−λ+ϱ(12)ℵ×2ψ3[(σℵ+λ−ϵ−ϱ,2σ),(σℵ+λ+χ,2σ),(1,1);(ℵ+1,1),(σℵ+λ−ϵ,2σ),(σℵ+λ−ϵ−ϱ+χ,2σ);−w−2σ4]. | (3.12) |
In this part, we will discuss some theorems on integral transforms of generalized Lommel-Wright k-function connecting with the results established in previous sections.
The k-beta function presented in [34] as:
For r,s>0
Bk(r,s)=1k∫10trk−1(1−t)sk−1dt. | (4.1) |
It can also be written as
Bk(l(t);r,s)=1k∫10trk−1(1−t)sk−1l(t)dt. | (4.2) |
The relation between k-beta function and the classical one is
Bk(r,s)=1kB(rk,sk)=Γk(r)Γk(s)Γk(r+s). | (4.3) |
Theorem 4.1. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
Bk((Iϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(zt)σk))(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(r+σ(ℵ+2ℏk),2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w2σk4]. | (4.4) |
Proof. Using Eqs (1.16) and (4.2) in the left hand side of Eq (4.4), we can write
=1k∫10zrk−1(1−z)sk−1[Iϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×((zt)σk2)ℵ+2ℏk+2n](w)dz, | (4.5) |
which implies
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Iϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w)×∫10zr+σ(ℵ+2ℏk)+2σnk−1(1−z)sk−1dz. | (4.6) |
Applying Lemma 1.1 and using Eq (4.3), we obtain
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−kw2σk4)n. | (4.7) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ−ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(k+nk)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ−ϱ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϱ+ϵ+χ+2σn)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−w2σk4)n. | (4.8) |
By combining Eqs (1.14) and (4.8), we get our required result (4.4).
Theorem 4.2. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then the following formula is true
Bk((Iϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σk4]. | (4.9) |
Proof. The proof is similar to Theorem 4.1.
Theorem 4.3. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ0+,ktλk−1J℘,mℵ,ℏ,k(zt)σk)(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1),(r+s+σ(ℵ+2ℏk,2σ);−w(2σ+1k)−14k]. | (4.10) |
Proof. By means of Eqs (1.16) and (4.2) in the left hand side of Eq (4.10), we have
=1k∫10zrk−1(1−z)sk−1[Dϵ,ϱ,χ0+,ktλk−1∞∑n=0(−1)n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×(tσk2)ℵ+2ℏk+2n](w)dz. | (4.11) |
On simplification, we obtain
=∞∑n=0(−1)n12ℵ+2ℏk+2n(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)[Dϵ,ϱ,χ0+,k(tσ(ℵ+2ℏk)+λ+2σnk−1)](w)×∫10zr+σ(ℵ+2ℏk)+2σnk−1(1−z)sk−1dz. | (4.12) |
Using Lemma 1.3 and relation (4.3), we get
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=01(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−w2σ+1k−14)n. | (4.13) |
Multiplying and dividing by Γ(n+1) and using Γ(n+1)=k−nΓk(nk+k), we get
=wσ(ℵ+2ℏk)+λ+ϱk−1(12)ℵ+2ℏk∞∑n=0k−nΓk(nk+k)(Γk(ℏ+k+nk))mΓk(ℵ+ℏ+k+n℘)n!×Γk(σ(ℵ+2ℏk)+λ+2σn)Γk(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+χ+2σn)Γk(σ(ℵ+2ℏk)+λ+2σn−kn+n)×Γk(r+σ(ℵ+2ℏk)+2σn)Γk(s)Γk(r+s+σ(ℵ+2ℏk)+2σn)(−w2σ+1k−14)n. | (4.14) |
By means of definition (1.14), the proof is done.
Theorem 4.4. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)−nk+n]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ−,kt−ϵ−λkJ℘,mℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)Γk(s)×4ψkm+4[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k)⏟m−times,(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σ+1k−14k]. | (4.15) |
Proof. The proof of Theorem 4.4 runs parallel to Theorem 4.3.
Now, we will discuss some special cases.
By substituting m=1 in Eqs (4.4), (4.9), (4.10) and (4.15), we establish the following corollaries.
Corollary 4.5. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
Bk((Iϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(zt)σk))(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ−ϱ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϱ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w2σk4]. | (4.16) |
Corollary 4.6. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then prove the following formula
Bk((Iϵ,ϱ,χ−,kt−ϵ−λkJ℘ℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ+λ−ϱk(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏk)+ϵ+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σk4]. | (4.17) |
Corollary 4.7. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, k∈R+, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ0+,ktλk−1J℘ℵ,ℏ,k(zt)σk)(w);r,s)=wσ(ℵ+2ℏk)+λ−ϱk−1(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+λ,2σ),(σ(ℵ+2ℏk)+λ+ϵ+ϱ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ+χ,2σ),(σ(ℵ+2ℏk)+λ,2σ−k+1),(r+s+σ(ℵ+2ℏk,2σ);−w(2σ+1k)−14k]. | (4.18) |
Corollary 4.8. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, k∈R+, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)−nk+n]. Then the subsequent formula is true
Bk((Dϵ,ϱ,χ−,kt−ϵ−λkJ℘ℵ,ℏ,k(zt)−σk)(w);r,s)=w−σ(ℵ+2ℏk)+ϵ−λ+ϱk(12)(ℵ+2ℏk)Γk(s)×4ψk5[(σ(ℵ+2ℏk)+λ−ϵ−ϱ,2σ+k−1),(σ(ℵ+2ℏk)+λ+χ,2σ),(r+σ(ℵ+2ℏk,2σ),(k,k);(ℏ+k,k),(ℵ+ℏ+k,℘),(σ(ℵ+2ℏk)+λ−ϵ,2σ),(σ(ℵ+2ℏk)+λ−ϵ−ϱ+χ,2σ),(r+s+σ(ℵ+2ℏk,2σ);−w−2σ+1k−14k]. | (4.19) |
For k=1, we establish the following formulas from Eqs (4.4), (4.9), (4.10) and (4.15).
Corollary 4.9. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
B((Iϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(zt)σ))(w);r,s)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)ℵ+2ℏΓ(s)×4ψm+4[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ−ϱ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w2σ4]. | (4.20) |
Corollary 4.10. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then the following formula is true
B((Iϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(zt)−σ)(w);r,s)=w−σ(ℵ+2ℏ)+ϵ+λ−ϱ(12)(ℵ+2ℏ)Γ(s)×4ψm+4[(σ(ℵ+2ℏ)+ϵ+λ+ϱ,2σ),(σ(ℵ+2ℏ)+ϵ+λ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+ϵ+λ,2σ),(σ(ℵ+2ℏk)+2ϵ+λ+ϱ+χ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w−2σ4]. | (4.21) |
Corollary 4.11. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ0+tλ−1J℘,mℵ,ℏ(zt)σ)(w);r,s)=wσ(ℵ+2ℏ)+λ−ϱ−1(12)(ℵ+2ℏ)Γ(s)×4ψm+4[(σ(ℵ+2ℏ)+λ,2σ),(σ(ℵ+2ℏ)+λ+ϵ+ϱ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ+χ,2σ),(σ(ℵ+2ℏ)+λ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w2σ4]. | (4.22) |
Corollary 4.12. Let ϵ,ϱ,χ,λ,σ∈C, ℘>0, m∈N, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ−t−ϵ−λJ℘,mℵ,ℏ(zt)−σ)(w);r,s)=w−σ(ℵ+2ℏ)+ϵ−λ+ϱ(12)(ℵ+2ℏ)Γ(s)×4ψm+4[(σ(ℵ+2ℏ)+λ−ϵ−ϱ,2σ),(σ(ℵ+2ℏ)+λ+χ,2σ),(r+σ(ℵ+2ℏ),2σ),(1,1);(ℏ+1,1)⏟m−times,(ℵ+ℏ+1,℘),(σ(ℵ+2ℏ)+λ−ϵ,2σ),(σ(ℵ+2ℏ)+λ−ϵ−ϱ+χ,2σ),(r+s+σ(ℵ+2ℏ),2σ);−w−2σ4]. | (4.23) |
For m=k=℘=1 and ℏ=0, the subsequent corollaries are as follows.
Corollary 4.13. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Reλ>max[0,Re(ϱ−χ)]. Then the following formula is true
B((Iϵ,ϱ,χ0+tλ−1J1,1ℵ(zt)σ))(w);r,s)=wσℵ+λ−ϱ−1(12)ℵΓ(s)×3ψ4[(σℵ+λ,2σ),(σℵ+λ−ϱ+χ,2σ),(r+σℵ,2σ);(ℵ+1,1),(σℵ+λ−ϱ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ),(r+s+σℵ,2σ);−w2σ4]. | (4.24) |
Corollary 4.14. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Re(λ+ϵ)>max[−Re(ϱ)−Re(χ)]. Then the following formula is true
B((Iϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(zt)−σ)(w);r,s)=w−σℵ+ϵ+λ−ϱ(12)ℵΓ(s)×3ψ4[(σℵ+ϵ+λ+ϱ,2σ),(σℵ+ϵ+λ+χ,2σ),(r+σℵ,2σ);(ℵ+1,1),(σℵ+ϵ+λ,2σ),(σℵ+2ϵ+λ+ϱ+χ,2σ),(r+s+σℵ,2σ);−w−2σ4]. | (4.25) |
Corollary 4.15. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Re(λ)>max[0,Re(−ϵ−ϱ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ0+tλ−1J1,1ℵ(zt)σ)(w);r,s)=wσℵ+λ−ϱ−1(12)ℵΓ(s)×3ψ4[(σℵ+λ,2σ),(σℵ+λ+ϵ+ϱ+χ,2σ),(r+σℵ,2σ);(ℵ+1,1),(σℵ+λ+χ,2σ),(σℵ+λ,2σ),(r+s+σℵ,2σ);−w2σ4]. | (4.26) |
Corollary 4.16. Let ϵ,ϱ,χ,λ,σ∈C, such that Re(ϵ)>0, Re(λ)>max[Re(−ϵ−χ)]. Then the subsequent formula is true
B((Dϵ,ϱ,χ−t−ϵ−λJ1,1ℵ(zt)−σ)(w);r,s)=w−σℵ+ϵ−λ+ϱ(12)ℵΓ(s)×3ψ4[(σℵ+λ−ϵ−ϱ,2σ),(σℵ+λ+χ,2σ),(r+σℵ+,2σ);(ℵ+1,1),(σℵ+λ−ϵ,2σ),(σℵ+λ−ϵ−ϱ+χ,2σ),(r+s+σℵ,2σ);−w−2σ4]. | (4.27) |
In this article, we established the relations of fractional integration and differentiation associated with the generalized Lommel-Wright function. We conclude that many other interesting image formulas can be derived as the specific cases of our main results. Like the generalized Lommel-Wright function certain other special functions can also be discussed in the same perspective. Briefly, the recent study confirms the earlier results and plays a significant role by making generalizations. Furthermore, for the choice ϱ=−ϵ in our main results and corollaries, we obtain the results for k-Riemann-Liouville fractional operators. We also deduce the results for Saigo's fractional operators by substituting k=1 and for Riemann-Liouville fractional operators, we need to opt k=1 and ϱ=−ϵ in our main results.
The authors declares that there is no conflict of interests regarding the publication of this paper.
[1] |
R. L. Hardy, Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76 (1971), 1905–1915. https://doi.org/10.1029/JB076i008p01905 doi: 10.1029/JB076i008p01905
![]() |
[2] |
R. Franke, Scattered data interpolation: tests of some methods, Math. Comput., 38 (1982), 181–200. https://doi.org/10.2307/2007474 doi: 10.2307/2007474
![]() |
[3] | C. A. Micchelli, Interpolation of scattered data: distance matrices and conditionally positive definite functions, Constr. Approx., 2 (1986), 11–22. |
[4] | M. D. Buhmann, Multivariate Interpolation with Radial Basis Functions, London: University of Cambridge, 1988. |
[5] | M. J. D. Powell, Univariate multiquadric approximation: Reproduction of linear polynomials, in: Multivariate Approximation and Interpolation, Basel: Springer, 1990. |
[6] |
R. K. Beatson, M. J. D. Powell, Univariate multiquadric approximation: Quasi-interpolation to scattered data, Constr. Approx., 8 (1992), 275–288. https://doi.org/10.1007/BF01279020 doi: 10.1007/BF01279020
![]() |
[7] |
Z. M. Wu, R. Schaback, Shape preserving properties and convergence of univariate multiquadric quasi-interpolation, Acta. Math. Appl. Sin. Engl. Ser., 10 (1994), 441–446. https://doi.org/10.1007/BF02016334 doi: 10.1007/BF02016334
![]() |
[8] |
R. H. Wang, M. Xu, A kind of Bernoulli-type quasi-interpolation operator with univariate multiquadrics, Comput. Appl. Math., 29 (2010), 47–60. https://doi.org/10.1590/S1807-03022010000100004 doi: 10.1590/S1807-03022010000100004
![]() |
[9] |
R. H. Wang, M. Xu, Q. Fang, A kind of improved univariate multiquadric quasi-interpolation operators, Comput. Math. Appl., 59 (2010), 451–456. https://doi.org/10.1016/j.camwa.2009.06.023 doi: 10.1016/j.camwa.2009.06.023
![]() |
[10] |
S. Waldron, Increasing the polynomial reproduction of a quasi-interpolation operator, J. Approx. Theory, 161 (2009), 114–126. https://doi.org/10.1016/j.jat.2008.08.011 doi: 10.1016/j.jat.2008.08.011
![]() |
[11] |
C. Rabut, Multivariate divided differences with simple knots, SIAM J. Numer. Anal., 38 (2001), 1294–1311. https://doi.org/10.1137/S003614299935104 doi: 10.1137/S003614299935104
![]() |
[12] |
R. Z. Feng, X. Zhou, A kind of multiquadric quasi-interpolation operator satisfying any degree polynomial reproduction property to scattered data, J. Comput. Appl. Math., 235 (2011), 1502–1514. https://doi.org/10.1016/j.cam.2010.08.037 doi: 10.1016/j.cam.2010.08.037
![]() |
[13] |
G. J. Lidstone, Notes on the extension of Aitken's theorem (for polynomial interpolation) to the Everett types, Proc. Edinb. Math. Soc., 2 (1929), 16–19. https://doi.org/10.1017/S0013091500007501 doi: 10.1017/S0013091500007501
![]() |
[14] |
R. F. Wu, H. L. Li, T. R. Wu, Univariate Lidstone-type multiquadric quasi-interpolants, Comput. Appl. Math., 39 (2020), 141. https://doi.org/10.1007/s40314-020-01159-x doi: 10.1007/s40314-020-01159-x
![]() |
[15] | T. Cǎtinaş, The combined Shepard-Lidstone bivariate operator, In: Trends an Applications in Constructive Approximation. International Series of Numerical Mathematics, 151 (2005), 77–89. https://doi.org/10.1007/3-7643-7356-3 |
[16] |
F. A. Costabile, F. Dell'Accio, F. Di Tommaso, Complementary Lidstone interpolation on scattered data sets, Numer. Algor., 67 (2013), 157–180. https://doi.org/10.1007/s11075-012-9659-6 doi: 10.1007/s11075-012-9659-6
![]() |
[17] |
R. Caira, F. Dell'Accio, F. Di Tommaso, On the bivariate Shepard-Lidstone operators, J. Comput. Appl. Math., 236 (2012), 1691–1707. https://doi.org/10.1016/j.cam.2011.10.001 doi: 10.1016/j.cam.2011.10.001
![]() |
[18] | Z. J. Sun, Y. Y. Gao, High order multiquadric trigonometric quasi-interpolation method for solving time-dependent partial differential equations, Numer. Algor., 2022. https://doi.org/10.1007/s11075-022-01486-6 |
[19] |
F. A. Costabile, F. Dell'Accio, Expansion over a rectangle of real functions in Bernoulli polynomials and applications, BIT Numer. Math., 41 (2001), 451–464. https://doi.org/10.1023/A:1021958910686 doi: 10.1023/A:1021958910686
![]() |
[20] |
F. A. Costabile, F. Di Tommaso, E. Longo, A mixed Lagrange-Bernoulli tensor product expansion on the rectangle with applications, Math. Comput. Simulat., 147 (2019), 73–89. https://doi.org/10.1109/MELECON53508.2022.9842881 doi: 10.1109/MELECON53508.2022.9842881
![]() |
[21] |
L. Ling, Multivariate quasi-interpolation schemes for dimension-splitting multiquadric, Appl. Math. Comput., 161 (2005), 195–209. https://doi.org/10.1016/j.amc.2003.12.022 doi: 10.1016/j.amc.2003.12.022
![]() |
[22] |
R. Z. Feng, X. Zhou, A multivariate multiquadric quasi-interpolation with quadric reproduction, J. Comput. Math., 30 (2012), 311–323. https://doi.org/10.4208/jcm.1111-m3495 doi: 10.4208/jcm.1111-m3495
![]() |
[23] |
R. F. Wu, T. R. Wu, H. L. Li, A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction, J. Comput. Appl. Math., 274 (2015), 88–108. https://doi.org/10.1016/j.cam.2014.07.008 doi: 10.1016/j.cam.2014.07.008
![]() |
[24] |
R. Z. Feng, S. Peng, Quasi-interpolation scheme for arbitrary dimensional scattered data approximation based on natural neighbors and RBF interpolation, J. Comput. Appl. Math., 329 (2018), 95–105. https://doi.org/10.1016/j.cam.2017.02.026 doi: 10.1016/j.cam.2017.02.026
![]() |
[25] |
S. L. Zhang, H. Q. Yang, Y. Yang, A multiquadric quasi-interpolations method for CEV option pricing model, J. Comput. Appl. Math., 347 (2019), 1–11. https://doi.org/10.1016/j.cam.2018.03.046 doi: 10.1016/j.cam.2018.03.046
![]() |
[26] |
S. S. Li, Y. Duan, L. B. Li, On the meshless quasi-interpolation methods for solving 2D sine-Gordon euqations, Comput. Appl. Math., 41 (2022), 348. https://doi.org/10.1007/s40314-022-02054-3 doi: 10.1007/s40314-022-02054-3
![]() |
[27] | R. P. Agarwal, P. J. Y. Wong, Error Inequalities in Polynomial Interpolation and their Applications, Dordrecht: Kluwer Academic Publishers, 1993. |
[28] |
D. D. Stancu, The remainder of certain linear approximaation formulas in two variables, J. Soc. Indust. Appl. Math. Numer. Anal. Ser. B, 1 (1964), 137–163. https://doi.org/10.1137/0701013 doi: 10.1137/0701013
![]() |
[29] | A. Sard, Linear Approximation, New York: AMS, 1963. |
[30] | R. A. Devore, G. G. Lorentz, Constructive Approximation, Berlin: Springer, 1993. |
[31] | Z. Ditzian, V. Totik, Moduli of Smoothness, Berlin: Springer, 1987. |
[32] |
R. J. Renka, A. K. Cline, A triangle-based C1 interpolation method, Rocky Mt. J. Math., 14 (1984), 223–237. https://doi.org/10.1216/RMJ-1984-14-1-223 doi: 10.1216/RMJ-1984-14-1-223
![]() |