In this paper, we compute the projective class ring of the new type restricted quantum group $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $. First, we describe the principal indecomposable projective $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $-modules and study their radicals, composition series, Cartan matrix of $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $ and so on. Then, we deconstruct the tensor products between two simple modules, two indecomposable projective modules and a simple module and an indecomposable projective module, into direct sum of some indecomposable representations. At last, we characterize the projective class ring by generators and relations explicitly.
Citation: Pengcheng Ji, Jialei Chen, Fengxia Gao. Projective class ring of a restricted quantum group $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $[J]. AIMS Mathematics, 2023, 8(9): 19933-19949. doi: 10.3934/math.20231016
In this paper, we compute the projective class ring of the new type restricted quantum group $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $. First, we describe the principal indecomposable projective $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $-modules and study their radicals, composition series, Cartan matrix of $ \overline{U}_{q}(\mathfrak{sl}^{*}_2) $ and so on. Then, we deconstruct the tensor products between two simple modules, two indecomposable projective modules and a simple module and an indecomposable projective module, into direct sum of some indecomposable representations. At last, we characterize the projective class ring by generators and relations explicitly.
[1] | E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funct. Anal. Appl., 16 (1982), 263–270. http://dx.doi.org/10.1007/bf01077848 doi: 10.1007/bf01077848 |
[2] | E. K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation. Representations of quantum algebras, Funct. Anal. Appl., 17 (1983), 273–284. http://dx.doi.org/10.1007/BF01076718 doi: 10.1007/BF01076718 |
[3] | P. P. Kulish, N. Yu. Reshetikhin, Quantum linear problem for the Sine-Gordon equation and higher representations, J. Sov. Math., 23 (1983), 2435–2441. http://dx.doi.org/10.1007/bf01084171 doi: 10.1007/bf01084171 |
[4] | V. G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Dokl. Akad. Nauk SSSR, 283 (1985), 1060–1064. |
[5] | V. G. Drinfeld, Quantum groups, In: A. M. Gleason, Proceedings of the international congress of mathematicians, American Mathematical Society, 1986,798–820. |
[6] | M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys., 10 (1985), 63–69. http://dx.doi.org/10.1007/BF00704588 doi: 10.1007/BF00704588 |
[7] | M. Jimbo, A q-analogue of $U(gl(N + 1))$, Hecke algebra, and the Yang-Baxter equation, Lett. Math. Phys., 11 (1986), 247–252. http://dx.doi.org/10.1007/BF00400222 doi: 10.1007/BF00400222 |
[8] | R. Suter, Modules over $U_{q}(\mathfrak{sl}_2)$, Commun. Math. Phys., 163 (1994), 359–393. http://dx.doi.org/10.1007/BF02102012 doi: 10.1007/BF02102012 |
[9] | J. Xiao, Finite dimensional representation of $U_{t}(\mathfrak{sl}_2)$ at roots of unity, Canad. J. Math., 49 (1997), 772–787. http://dx.doi.org/10.4153/CJM-1997-038-4 doi: 10.4153/CJM-1997-038-4 |
[10] | D. Su, S. Yang, Representation rings of small quantum groups $\overline{U}_{q}(\mathfrak{sl}_2)$, J. Math. Phys., 58 (2017), 091704. http://dx.doi.org/10.1063/1.4986839 doi: 10.1063/1.4986839 |
[11] | K. Aziziheris, H. Fakhri, S. Laheghi, The quantum group $SL_q^*(2)$ and quantum algebra $U_q(\mathfrak{sl}_2^*)$ based on a new associative multiplication on $2 \times 2$ matrices, J. Math. Phys., 61 (2020), 063504. http://dx.doi.org/10.1063/5.0008961 doi: 10.1063/5.0008961 |
[12] | Y. Xu, J. Chen, Hopf PBW-deformations of a new type quantum group, arXiv, 2023. https://doi.org/10.48550/arXiv.2305.00819 |
[13] | Y. Xu, J. Chen, A new type restricted quantum group, J. Math. Phys., 64 (2023), 061701. http://dx.doi.org/10.1063/5.0142193 doi: 10.1063/5.0142193 |
[14] | R. Yang, S. Yang, Representations of a non-pointed Hopf algebra, AIMS Math., 6 (2021), 10523–10539. http://dx.doi.org/10.3934/math.2021611 doi: 10.3934/math.2021611 |
[15] | J. Chen, S. Yang, D. Wang, The Grothendieck rings of a class of Hopf Algebras of Kac-Paljutkin type, Front. Math. China, 16 (2021), 29–47. http://dx.doi.org/10.1007/s11464-021-0893-x doi: 10.1007/s11464-021-0893-x |
[16] | C. Cibils, The projective class ring of basic and split Hopf algebras, K-Theory, 17 (1999), 385–393. http://dx.doi.org/10.1023/A:1007703709638 doi: 10.1023/A:1007703709638 |