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Abstract: In this paper, we compute the projective class ring of the new type restricted quantum
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their radicals, composition series, Cartan matrix of Uq(sl∗2) and so on. Then, we deconstruct the tensor
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1. Introduction

In the theory of quantum groups, the quantum universal enveloping algebra of three-dimensional
simple Lie algebras sl2 plays an important role [1]. In 1983, the one-parameter quantized enveloping
algebra Uq(sl2) was introduced by Kulish and Reshetikhin in the context of the Yang-Baxter equation
for the integrable statistical models in the quantum inverse scattering method, and later its Hopf
algebraic structure was discovered by Sklyanin [1–3]. A few years later, Drinfeld and Jimbo [4–7]
independently discovered quantized enveloping algebras with higher ranks of complex simple-Lie
algebras, which are quasi-triangular Hopf algebras. When q is not a root of unity, the representation
theory of Uq(sl2) is very similar to that of the Lie algebra sl2, and has been basically solved. However,
when q is a root of unity, the quantum group Uq(sl2) will become very complex. Many authors study
representations of Uq(sl2) when q is a root of unity, and get some interesting results, see [8–10] for
example.

In 2020, Aziziheris et al. [11] defined the classical Lie algebra sl∗2(C) based on a new associative
multiplication on the 2 × 2 matrix, and then obtained a new type quantum group Uq(sl∗2). In [12], Xu
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and Chen investigated the above new type quantum group Uq(sl∗2) and classified its all Hopf PBW-
deformations in which the classical Drinfeld-Jimbo quantum group Uq(sl2) was almost the unique
nontrivial one. In [13], the authors defined a new type restricted quantum group Uq(sl∗2) and determined
its Hopf PBW-deformations Uq(sl∗2, κ) in which Uq(sl∗2, 0) = Uq(sl∗2) and the classical restricted
Drinfeld-Jimbo quantum group Uq(sl2) was included. They showed that Uq(sl∗2) was a basic Hopf
algebra, then uniformly realize Uq(sl∗2) and Uq(sl2) via some quotients of (deformed) preprojective
algebras corresponding to the Gabriel quiver of Uq(sl∗2).

One of the basic problems in the theory of quantum groups is to decompose a tensor product
of modules into a direct sum of indecomposable ones and hence to elucidate the structure of
the corresponding fusion rule algebra. In [8], Suter decomposed the restricted quantum universal
enveloping algebra Uq(sl2) in a canonical way into a direct sum of indecomposable left (or right) ideals.
The indecomposable finite-dimensional Uq(sl2)-modules were classified and the tensor products of two
simple modules, simple and projective modules were decomposed into indecomposable ones. Su and
Yang [10] accurately characterized the structure of the representation ring of the restricted quantum
group Uq(sl2) when q is a primitive 2p-th (p ≥ 2) root of unity. In [14], the authors classified all
the finite dimensional indecomposable D(n) modules, and then gave the tensor product decomposition
formulas between two indecomposables, at last described the representation ring by generators and
relations clearly. In [15], for a class of 2n2 dimensional semisimple Hopf algebras H2n2 , the authors
classified all irreducible H2n2-modules, established the decomposition formulas of the tensor product of
two irreducible H2n2-modules and described the Grothendieck rings r(H2n2) by generators and relations
explicitly. In the present paper, we will consider the decomposition of tensor products and try to
describe the projective class ring of Uq(sl∗2).

The paper is organized as follows. In Section 2, we recall the definition of the new type restricted
quantum group Uq(sl∗2) and its Hopf algebra structure, and some preliminaries used in the following
sections. In Section 3, we construct the principal indecomposable projective module P j through the
primitive orthogonal idempotents of Uq(sl∗2), and then study its composition series, radical series, socle
series and some other related properties. In Section 4, we give the decomposition formulas of tensor
products between two simple modules, two indecomposable projective modules and a simple module
and an indecomposable projective module of Uq(sl∗2). Furthermore, we describe the projective class
ring by generators and relations explicitly.

Throughout the paper, we work over the complex field C. The notations Z and Z≥0 denote the set of
all integers, and the set of all nonnegative integers respectively.

2. The restricted quantum group Uq(sl∗2)

Fix an integer n ≥ 3 (n , 4). From now on, we always assume that q is a primitive n-th root of
unity, and

d =

{
n, if n is odd,
n
2 , if n is even.

First, we recall the definition of the new type restricted quantum group Uq(sl∗2) and some properities
as follows.
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Definition 2.1. [13] The restricted quantum algebra Uq(sl∗2) is an associative unital algebra generated
by K,K−1, E, F and subject to the following relations

KK−1 = K−1K = 1, Kd = 1, Ed = Fd = 0,
KE = q2EK, KF = q−2FK, EF = FE.

Lemma 2.2. [13] (1) The set
{
F iKkE j|i, j, k ∈ Z, 0 ≤ i, j, k < d

}
is a basis of Uq(sl∗2), and the dimension

of Uq(sl∗2) is d3.
(2) Uq(sl∗2) is a Hopf algebra with coproduct ∆, counit ε and antipode S defined by

∆(K) = K ⊗ K, ∆(E) = E ⊗ K + 1 ⊗ E, ∆(F) = F ⊗ 1 + K−1 ⊗ F,

ε(E) = 0, ε(F) = 0, ε(K) = ε(K−1) = 1,

S (E) = −EK−1, S (F) = −KF, S (K) = K−1.

(3) Uq(sl∗2) is a pointed, basic but not semisimple Hopf algebra.

Lemma 2.3. [13] Let M be a finite dimensional simple Uq(sl∗2)-module. Then dim(M) = 1 and the
module structure on M = Cv0 can be given as follows:

Kv0 = qlv0, Ev0 = Fv0 = 0, (2.1)

where l ∈ {0, 1, · · · , d − 1} when n is odd, l ∈ {0, 2, · · · , 2(d − 1)} when n is even.

Lemma 2.4. [13] For any i ∈ Zd, set εi = 1
d

d−1∑
l=0

q−2ilKl. Obviously one has

εiK = q2iεi, εiE = Eεi−1, εiF = Fεi+1.

{εi|i ∈ Zd} is a complete set of primitive orthogonal idempotents of Uq(sl∗2).

3. The projective representations of the restricted quantum group Uq(sl∗2)

Using the primitive orthogonal idempotents {εi|i ∈ Zd} of Uq(sl∗2), one has

Uq(sl∗2) = Uq(sl∗2)ε0 ⊕ Uq(sl∗2)ε1 ⊕ · · · ⊕ Uq(sl∗2)εd−1.

Let P j = Uq(sl∗2)ε j, then {P j| j ∈ Zd} is the set of the nonisomorphic principal indecomposable projective
modules of Uq(sl∗2). As in [8], P j can be showed in Figure 1.
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Figure 1. The structure of P j.

Each point represents a one-dimensional vector space generated by the vector at that point, the
downward arrows indicate the left action of E, the right-oblique upward arrows indicate the left action
of F. Figure 1 shows that there are d2 black dots, so the dimension of P j is d2.

From Figure 1, it is easy to see that if we delete one point and the arrows connecting it at a time,
from left to right, and from top to bottom, then we get a modules series, in which the former module
modulo the next one is a 1-dimensional simple module. Therefore, we obtain the composition series
of P j as follows.

Proposition 3.1. The principal indecomposable projective module P j ( j ∈ Zd) has the following
composition series:

P j = M j
0 ⊃ M j

1 ⊃ M j
2 ⊃ · · · ⊃ M j

d2 = 0,
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where for all i ∈ {0, 1, . . . , d − 1},

M j
i =

⊕
0≤k<d
1≤l<d

CEkF lε j ⊕
⊕
i≤k<d

CEkε j,

M j
d+i =

⊕
0≤k<d
2≤l<d

CEkF lε j ⊕
⊕
i≤k<d

CEkFε j,

...

M j
d2−d+i

=
⊕
i≤k<d

CEkFd−1ε j.

We can make the figures of M j
1 and M j

2 as follows (see Figures 2 and 3):

Fd−1ε j
•

· · ·
EFd−1ε j
•

F2ε j
• · · ·

E2Fd−1ε j
•

Fε j
•

EF2ε j
• · · · · · ·

EFε j
•

E2F2ε j
• · · ·

Ed−1Fd−1ε j
•

Eε j
•

E2Fε j
• · · · · · ·

E2ε j
• · · ·

Ed−1F2ε j
•

· · ·
Ed−1Fε j
•

Ed−1ε j
•

��

��

��

��

<<

��

<<

��

<<

��

<<

��

<<

==

��

==

��

==

��

==

��

==

;;

��

;;

��

;;

��

;;

��

;;

==

��

==

��

==

��

==

Figure 2. The structure of M j
1.
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Figure 3. The structure of M j
2.

Proposition 3.2. The principal indecomposable projective module P j has a radical series as follows:

P j ⊃ rad(P j) ⊃ rad2(P j) ⊃ · · · ⊃ rad2d−1(P j) = 0,

for all i ∈ {0, 1, . . . , 2d − 1},

radi(P j) =
⊕

0≤k,l<d
i≤k+l

CEkF lε j.

Proof. Recall that rad(P j) is exactly the intersection of all the maximal submodules of P j, and P j has
a unique maximal submodule M j

1, so that rad(P j) = M j
1, the figure is shown as before. rad2(P j) is the

intersection of the maximal submodules of rad(P j), and is the submodule obtained by removing CEε j

and CFε j and the connecting arrows, as shown in Figure 4. Proceed this way, we have rad2d−2(P j) =

CEd−1Fd−1ε j, rad2d−1(P j) = 0. �
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Figure 4. The structure of rad2(P j).

Proposition 3.3. The principal indecomposable projective module P j has a socle series as follows:

0 = soc0(P j) ⊂ soc(P j) ⊂ soc2(P j) ⊂ · · · ⊂ soc2d−1(P j) = P j,

for all i ∈ {0, 1, . . . , 2d − 1},
soci(P j) =

⊕
0≤k,l<d

2d−1−i≤k+l

CEkF lε j.

Proof. Recall that for i ∈ Z≥0, soci(P j) is defined inductively as follows: soc0(P j) = 0, and if soci(P j)
is already defined and p : P j → soc(P j) denotes the canonical epimorphism, we get soci+1(P j) =

p−1(soc(P j/soci(P j))). Thus, by the definition, we have soc0(P j) = 0, and as P j has only one simple
submodule CEd−1Fd−1ε j, so soc(P j) = CEd−1Fd−1ε j. Inductively, we have soc2(P j) = CEd−1Fd−1ε j ⊕

CEd−1Fd−2ε j ⊕ CEd−2Fd−1ε j; and we obtain a general expression of the socle series of the module P j

as soci(P j) =
⊕

0≤k,l<d
2d−1−i≤k+l

CEkF lε j, where i ∈ {0, 1, . . . , 2d − 1}. �
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More intuitively, we can draw the figures soc(P j), soc2(P j), soc3(P j) as follows (see Figure 5):
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Figure 5. The structures of soc(P j), soc2(P j) and soc3(P j).

Observe the radical series and socle series of P j, it is easy to see that

socs(P j) = radt(P j),

where s + t = 2d − 1, s, t ∈ {0, 1, · · · 2d − 1}, and the length of the radical series(resp., the socle series)
is 2d − 1.

Note that dimCεiUq(sl∗2)ε j = d, we have

Proposition 3.4. (1) The dimensional vector of P j is

dim P j =
[

d, d, · · · , d
]T
.

(2) The Cartan matrix of the algebra Uq(sl∗2) is
d d · · · d
d d · · · d
...

...
. . .

...

d d · · · d

 ∈ Mn(Z).

4. The projective class ring of Uq(sl∗2)

Let H be a finite dimensional Hopf algebra and M and N be two finite dimensional H-modules.
Then M ⊗ N is also a H-module defined by

h · (m ⊗ n) =
∑
(h)

h(1) · m ⊗ h(2) · n
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for all h ∈ H and m ∈ M, n ∈ N, where ∆(h) =
∑

(h) h(1) ⊗ h(2). By the Krull-Schmidt Theorem, any
finite dimensional H-module can be decomposed into a direct sum of indecomposable H-modules.

Now we consider the tensor products of two irreducible Uq(sl∗2)-modules.
From Lemma 2.3, we know that for Uq(sl∗2) there are d non-isomorphic simple modules S i = Cvi, i ∈

{0, 1, . . . , d − 1}. Specifically, the module structure is:

E · vi = F · vi = 0, K · vi = q2ivi.

We have the following theorem:

Theorem 4.1. S i ⊗ S j � S (i+ j)(mod d), (0 ≤ i, j ≤ d − 1).

Proof. Suppose that S i and S j are two simple modules of Uq(sl∗2), with basis vi, v j respectively. Then
S i ⊗ S j is also a Uq(sl∗2)-module, with basis vi ⊗ v j and the actions of the generators are as follows

E · (vi ⊗ v j) = (E ⊗ K + 1 ⊗ E)(vi ⊗ v j) = 0,
F · (vi ⊗ v j) = (F ⊗ 1 + K−1 ⊗ F)(vi ⊗ v j) = 0,
K · (vi ⊗ v j) = (K ⊗ K)(vi ⊗ v j) = q2(i+ j)vi ⊗ v j.

Therefore S i ⊗ S j � S (i+ j)(mod d), (0 ≤ i, j ≤ d − 1). �

For the tensor products of a simple module with a projective module, we have

Theorem 4.2. S i ⊗ P j � P(i+ j)(mod d) � P j ⊗ S i, 0 ≤ i, j ≤ d − 1.

Proof. Note that the basis of P j is
{
EkF lε j|0 ≤ k, l ≤ d − 1

}
, let

l1 = ε j, l2 = Eε j, · · · , ld = Ed−1ε j,

ld+1 = Fε j, ld+2 = EFε j, · · · , l2d = Ed−1Fε j, · · · ,

ld2−d+1 = Fd−1ε j, ld2−d+2 = EFd−1ε j, · · · , ld2 = Ed−1Fd−1ε j.

Then the matrix of K on the basis of l1, l2, · · · , ld, ld+1, ld+2, · · · , l2d, · · · , ld2−d+1, ld2−d+2, · · · , ld2 is

A1 =


A1

1 0 · · · 0
0 A2

1 · · · 0
...

...
. . .

...

0 0 · · · Ad
1


d2×d2

,

where

A1
1 =


q2 j 0 · · · 0
0 q2 j+2 · · · 0
...

...
. . .

...

0 0 · · · q2 j+2d−2


d×d

,

A2
1 =


q2 j−2 0 · · · 0

0 q2 j · · · 0
...

...
. . .

...

0 0 · · · q2 j+2d−4


d×d

,
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...

Ad
1 =


q2 j−2d+2

q2 j−2d+4

. . .

q2 j


d×d

.

The matrix of E acting on this basis is

B1 =


N 0 · · · 0
0 N · · · 0
...

...
. . .

...

0 0 · · · N


d2×d2

,

where

N =



0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 0


d×d

.

The matrix of F acting on this basis is

C1 =



0 0 · · · 0 0
I 0 · · · 0 0
0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0


d2×d2

,

where I represents the identity matrix of order d.
Next we consider S i ⊗ P j. Note that the bases of S i and P j are vi and EkF lε j, {0 ≤ i, k, l ≤ d − 1},

respectively, it is obvious that

s1 = vi ⊗ ε j, s2 = vi ⊗ Eε j, · · · , sd = vi ⊗ Ed−1ε j,

sd+1 = vi ⊗ Fε j, sd+2 = vi ⊗ EFε j, · · · , s2d = vi ⊗ Ed−1Fε j,

s2d+1 = vi ⊗ F2ε j, s2d+2 = vi ⊗ EF2ε j, · · · , s3d = vi ⊗ Ed−1F2ε j,

...

sd2−d+1 = vi ⊗ Fd−1ε j, sd2−d+2 = vi ⊗ EFd−1ε j, · · · , sd2 = vi ⊗ Ed−1Fd−1ε j

is a basis of S i ⊗ P j. Let

t1 = vi ⊗ ε j, t2 = vi ⊗ Eε j, · · · , td = vi ⊗ Ed−1ε j,

td+1 = q−2ivi ⊗ Fε j, td+2 = q−2ivi ⊗ EFε j, · · · , t2d = q−2ivi ⊗ Ed−1Fε j,
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t2d+1 = q−4ivi ⊗ F2ε j, t2d+2 = q−4ivi ⊗ EF2ε j, · · · , t3d = q−4ivi ⊗ Ed−1F2ε j,

...

td2−d+1 = q−2(d−1)ivi ⊗ Fd−1ε j, td2−d+2 = q−2(d−1)ivi ⊗ EFd−1ε j, · · · ,

td2 = q−2(d−1)ivi ⊗ Ed−1Fd−1ε j.

Then t1, t2, · · · , td2 is also a basis of S i ⊗ P j, since

(t1, t2, . . . , td2) = (s1, s2, . . . , sd2)


P1 0 · · · 0
0 P2 · · · 0
...

...
. . .

...

0 0 · · · Pd


d2×d2

,

where

P1 =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1


d×d

,

P2 =


q−2i 0 · · · 0
0 q−2i · · · 0
...

...
. . .

...

0 0 · · · q−2i


d×d

,

...

Pd =


q−2(d−1)i 0 · · · 0

0 q−2(d−1)i · · · 0
...

...
. . .

...

0 0 · · · q−2(d−1)i


d×d

,

and the transition matrix is invertible as q is a primitive n-th root of unity. The matrix of K on the basis
of t1, t2, · · · , td2 is

A2 =


A1

2 0 · · · 0
0 A2

2 · · · 0
...

...
. . .

...

0 0 · · · Ad
2


d2×d2

where

A1
2 =


q2i+2 j 0 · · · 0

0 q2i+2 j+2 · · · 0
...

...
. . .

...

0 0 · · · q2i+2 j+2d−2


d×d

,
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A2
2 =


q2i+2 j−2 0 · · · 0

0 q2i+2 j · · · 0
...

...
. . .

...

0 0 · · · q2i+2 j+2d−4


d×d

,

...

Ad
2 =


q2i+2 j−2d+2

q2i+2 j−2d+4

. . .

q2i+2 j


d×d

.

The matrix of E acting on this basis is B2 = B1; the matrix of F is C2 = C1. Therefore we have
S i ⊗ P j � P(i+ j)(mod d), (0 ≤ i, j ≤ d − 1).

Now we consider P j ⊗ S i. The bases of P j and S i are ε j, Eε j, · · · , Ed−1Fd−1ε j and vi respectively.
Then we can take a basis of P j ⊗ S i as

r1 = ε j ⊗ vi, r2 = q2iEε j ⊗ vi, · · · , rd = q2(d−1)iEd−1ε j ⊗ vi,

rd+1 = Fε j ⊗ vi, rd+2 = q2iEFε j ⊗ vi, · · · , r2d = q2(d−1)iEd−1Fε j ⊗ vi,

· · · ,

rd2−d+1 = Fd−1ε j ⊗ vi, td2−d+2 = q2iEFd−1ε j ⊗ vi, · · · , td2 = q2(d−1)iEd−1Fd−1ε j ⊗ vi.

Then the matrix of K acting on this set of basis is A3 = A2; the matrix of E acting on this set of basis
is B3 = B1; the matrix of F acting on this set of basis is C3 = C1. In summary,

S i ⊗ P j � P(i+ j)(mod d) � P j ⊗ S i, (0 ≤ i, j ≤ d − 1).

�

As in [8], we can show the tensor product by the following diagram.

Example 4.3. Let n = 3, d = 3 and q3 = 1, we can make the following structure diagram of K-
eigenvalue, where a number l stands for the K-eigenvalue ql.

P0 S 1 P1 P1 S 2 P0
2

1 1
0 0 0
2 2
1


⊗


2


→


1

0 0
2 2 2
1 1
0


,


1

0 0
2 2 2
1 1
0


⊗


1


→


2

1 1
0 0 0
2 2
1


.

Observe that, we have P0⊗S 1 � P1, P1⊗S 2 � P0. Other results can be showed similarly, such that
both P j ⊗ S i and S i ⊗ P j are consistent with the K-eigenvalue of P(i+ j)(mod 3), and we have

S i ⊗ P j � P(i+ j)(mod 3) � P j ⊗ S i, 0 ≤ i, j ≤ 2.
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Now we consider the tensor products of two projective Uq(sl∗2)-modules. We have

Theorem 4.4. Pi ⊗ P j � (P0 ⊕ P1 ⊕ · · · Pd−1)d, 0 ≤ i, j ≤ d − 1.

Proof. Let P be a projective Uq(sl∗2)-module. For any Uq(sl∗2)-module M, P ⊗ M, M ⊗ P are also
projective modules. Suppose there is a Uq(sl∗2)-module short exact sequence

0→ K → M → N → 0,

then there exists a projective short exact sequence

0→ K ⊗ P(V)→ M ⊗ P(V)→ N ⊗ P(V)→ 0,

where P(V) is the projective cover of V , and we have

M ⊗ P(V) � K ⊗ P(V) ⊕ N ⊗ P(V).

Now we calculate Pi ⊗ P j.
Note that Pi is the projective cover of S i, and there is an epimorphism

Pi → S i → 0.

Let Ω(S i) be the kernel of the epimorphism, and we have the short exact sequence

0→ Ω(S i)→ Pi → S i → 0,

then
0→ Ω(S i) ⊗ P j → Pi ⊗ P j → S i ⊗ P j → 0,

and therefore
Pi ⊗ P j � Ω(S i) ⊗ P j ⊕ S i ⊗ P j.

We write the composition series of Pi below and find its composition factors. Let

N i
0 = {0},

N i
1 = CEd−1Fd−1εi,

N i
2 = CEd−1Fd−1εi + CEd−2Fd−1εi,

...

N i
d2 = Pi.

Then
0 = N i

0 ⊂ N i
1 ⊂ N i

2 ⊂ · · · ⊂ N i
d2 = Pi

is the composition series of Pi. By the short exact sequences

0→ N i
d2−1 → N i

d2 → N i
d2/N i

d2−1 → 0,

0→ N i
d2−2 → N i

d2−1 → N i
d2−1/N

i
d2−2 → 0,
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...

0→ N i
1 → N i

2 → N i
2/N

i
1 → 0,

we have
N i

d2 ⊗ P j � N i
d2−1 ⊗ P j ⊕ N i

d2/N i
d2−1 ⊗ P j,

N i
d2−1 ⊗ P j � N i

d2−2 ⊗ P j ⊕ N i
d2−1/N

i
d2−2 ⊗ P j,

...

N i
2 ⊗ P j � N i

1 ⊗ P j ⊕ N i
2/N

i
1 ⊗ P j,

it follows that

Pi ⊗ P j � N i
1 ⊗ P j ⊕ N i

2/N
i
1 ⊗ P j ⊕ N i

3/N
i
2 ⊗ P j ⊕ · · · ⊕ N i

d2/N i
d2−1 ⊗ P j.

Note that
KEd−1Fd−1εi = q2iFd−1Ed−1εi,

KEd−2Fd−2εi = q2iFd−2Ed−2εi, · · · ,Kεi = q2iεi,

then
N i

1 � N i
d+2/N

i
d+1 � N i

2d+3/N
i
2d+2 � · · · � N i

d2/N i
d2−1 � S i,

since
KEd−2Fd−1εi = q2i−2Fd−1Ed−2εi,

KEd−3Fd−2εi = q2i−2Fd−2Ed−3εi, · · · ,KFεi = q2i−2εi,

then
N i

2/N
i
1 � N i

d+3/N
i
d+2 � N i

2d+4/N
i
2d+3 � · · · � N i

d2−d+1/N
i
d2−d � S i−1+d(mod d),

...

as
KFd−1εi = q2i+2Fd−1εi,KEd−1Fd−2εi = q2i+2Fd−2Ed−1εi,

KEd−2Fd−3εi = q2i+2Fd−3Ed−2εi, · · · ,KEεi = q2i+2εi,

then
N i

d/N
i
d−1 � N i

d+1/N
i
d � N i

2d+2/N
i
2d+1 � · · · � N i

d2−1/N
i
d2−2 � S i+1(mod d).

By Theorem 4.2, we have

Pi ⊗ P j � (S i ⊗ P j ⊕ S i−1(mod d) ⊗ P j ⊕ · · · ⊕ S i+1(mod d) ⊗ P j)
⊕ (S i+1(mod d) ⊗ P j ⊕ S i ⊗ P j ⊕ · · · ⊕ S i+2(mod d) ⊗ P j)
⊕ · · ·

⊕ (S i−1(mod d) ⊗ P j ⊕ S i−2(mod d) ⊗ P j ⊕ · · · ⊕ S i ⊗ P j)
� (Pi+ j(mod d) ⊕ Pi+ j−1(mod d) ⊕ · · · ⊕ Pi+ j+1(mod d))
⊕ (Pi+ j+1(mod d) ⊕ Pi+ j(mod d) ⊕ · · · ⊕ Pi+ j+2(mod d))
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⊕ · · ·

⊕ (Pi+ j−1(mod d) ⊕ Pi+ j−2(mod d) ⊕ · · · ⊕ Pi+ j(mod d))
� (P0 ⊕ P1 ⊕ · · · ⊕ Pd−1)d.

�

Let H be a finite dimensional Hopf algebra. The Green ring r(H) is defined as follows. r(H)
is the Abelian group generated by the isomorphism classes [M] of finite dimensional H-modules M
modulo the relations [M ⊕ N] = [M] + [N]. The multiplication of r(H) is given by the tensor product
[M][N] = [M ⊗ N]. The Green ring r(H) is an associative ring with identity given by [kε], the trivial
1-dimensional H-module. The projective class ring P(H) of H is the subring of r(H) generated by
projective modules and simple modules (see [16]).

In this section we will describe the projective class ring P(Uq(sl∗2)) of the quantum group Uq(sl∗2)
explicitly by generators and generating relations.

Let t = [S 1] be the isomorphism class of the simple module S 1, and f = [P1] the isomorphism class
of the indecomposable projective module P1. Then we have:

Lemma 4.5. The following statements hold in P(Uq(sl∗2)).
(1) td = 1,
(2) t f = f t,
(3) f 2 = d( f + t f + t2 f + · · · + td−1 f ).

Proof. By Theorem 4.1, we know that [S 1]d = [S 0] = 1, hence we get (1). By Theorem 4.2, we have
t f = [S 1] [P1] = [S 1 ⊗ P1] = [P1 ⊗ S 1] = [P1] [S 1] = f t, so we obtain that t f = f t. By Theorems 4.1,
4.2 and 4.4, we have

f 2 = [P1]2 = [P1 ⊗ P1] = [(P0 ⊕ P1 ⊕ · · · ⊕ Pd−1)d] = d( f + t f + t2 f + · · · + td−1 f ).

�

Corollary 4.6. The set {ti f j | 0 ≤ i ≤ d − 1, 0 ≤ j ≤ 1} is a set of Z-basis of P(Uq(sl∗2)).

Proof. P(Uq(sl∗2)) has a set of Z-basis {[S i] , [Pi] | 0 ≤ i ≤ d − 1}, so the rank of P(Uq(sl∗2)) is 2d. From
Lemma 3.5, it is known that [S i] , [Pi] is Z-spanned by the set

{
ti f j | 0 ≤ i ≤ d − 1, 0 ≤ j ≤ 1

}
, so{

ti f j | 0 ≤ i ≤ d − 1, 0 ≤ j ≤ 1
}

is actually a set of Z-basis of P(Uq(sl∗2)). �

Theorem 4.7. The projective class ring P(Uq(sl∗2)) is isomorphic to the quotient ring Z
[
x, y

]
/I, where

I is the ideal generated by the relationship

xd − 1, xy − yx, y2 − d(y + xy + x2y + · · · xd−1y).

Proof. Let π : Z
[
x, y

]
→ Z

[
x, y

]
/I be the natural epimorphism such that for any v ∈ Z

[
x, y

]
,

v̄ = π(v). We can straightforward to verify that the ring Z
[
x, y

]
/I is Z-spanned by the set{

xiy j | 0 ≤ i ≤ d − 1, 0 ≤ j ≤ 1
}
. On the other hand, because P(Uq(sl∗2)) is an commutative ring

generated by t, f , there exists an unique ring epimorphism Φ : Z
[
x, y

]
→ P(Uq(sl∗2)), where

Φ (x) = t, Φ (y) = f . From Lemma 4.5, it is easily verified that

Φ
(
xd − 1

)
= 0, Φ (xy − yx) = 0,
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Φ
(
y2 − d(y + xy + x2y + · · · xd−1y)

)
= 0,

that is Φ(I) = 0, thus Φ induces a ring epimorphism

Φ : Z
[
x, y

]
/I → P(Uq(sl∗2)),

such that for any v ∈ Z
[
x, y

]
, Φ(v̄) = Φ(v). Then from Corollary 4.6, we can define a Z-module

homomorphism
Ψ : P(Uq(sl∗2))→ Z

[
x, y

]
/I,

with Ψ(ti f j) = xiy j for 0 ≤ i ≤ d − 1, 0 ≤ j ≤ 1. Assume v̄ ∈
{
xiy j | 0 ≤ i ≤ d − 1, 0 ≤ j ≤ 1

}
, it is easy

to check that Ψ ◦ Φ(v̄) = v̄. Therefore Ψ ◦ Φ = id, which means Φ is a ring isomorphism. �

5. Conclusions

For the new type restricted quantum group Uq(sl∗2) we give the decomposition formulas of tensor
products between two simple modules, two indecomposable projective modules, and a simple module
and an indecomposable projective module of Uq(sl∗2). Furthermore, we describe the projective class
ring by generators and relations explicitly.
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