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1. Introduction

In the theory of quantum groups, the quantum universal enveloping algebra of three-dimensional
simple Lie algebras sl, plays an important role [1]. In 1983, the one-parameter quantized enveloping
algebra U,(sl,) was introduced by Kulish and Reshetikhin in the context of the Yang-Baxter equation
for the integrable statistical models in the quantum inverse scattering method, and later its Hopf
algebraic structure was discovered by Sklyanin [1-3]. A few years later, Drinfeld and Jimbo [4-7]
independently discovered quantized enveloping algebras with higher ranks of complex simple-Lie
algebras, which are quasi-triangular Hopf algebras. When ¢ is not a root of unity, the representation
theory of U,(sl,) is very similar to that of the Lie algebra sl,, and has been basically solved. However,
when g is a root of unity, the quantum group U,(sl,) will become very complex. Many authors study
representations of U,(sl,) when ¢ is a root of unity, and get some interesting results, see [8—10] for
example.

In 2020, Aziziheris et al. [11] defined the classical Lie algebra sI;(C) based on a new associative
multiplication on the 2 X 2 matrix, and then obtained a new type quantum group U,(sl;). In [12], Xu
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and Chen investigated the above new type quantum group U,(sl;) and classified its all Hopf PBW-
deformations in which the classical Drinfeld-Jimbo quantum group U,(sl,) was almost the unique
nontrivial one. In [13], the authors defined a new type restricted quantum group Uq(sIZ) and determined
its Hopf PBW-deformations Uq(SI;,K) in which ﬁq(slz,O) = ﬁq(slz) and the classical restricted
Drinfeld-Jimbo quantum group ﬁq(slz) was included. They showed that ﬁq(le) was a basic Hopf
algebra, then uniformly realize Uq(slz) and ﬁq(slz) via some quotients of (deformed) preprojective
algebras corresponding to the Gabriel quiver of Eq(sIZ).

One of the basic problems in the theory of quantum groups is to decompose a tensor product
of modules into a direct sum of indecomposable ones and hence to elucidate the structure of
the corresponding fusion rule algebra. In [8], Suter decomposed the restricted quantum universal
enveloping algebra U,(sl,) in a canonical way into a direct sum of indecomposable left (or right) ideals.
The indecomposable finite-dimensional U,(sl,)-modules were classified and the tensor products of two
simple modules, simple and projective modules were decomposed into indecomposable ones. Su and
Yang [10] accurately characterized the structure of the representation ring of the restricted quantum
group Uq(slz) when ¢ is a primitive 2p-th (p > 2) root of unity. In [14], the authors classified all
the finite dimensional indecomposable D(n) modules, and then gave the tensor product decomposition
formulas between two indecomposables, at last described the representation ring by generators and
relations clearly. In [15], for a class of 2n?> dimensional semisimple Hopf algebras H,,, the authors
classified all irreducible H,,2-modules, established the decomposition formulas of the tensor product of
two irreducible H,,2-modules and described the Grothendieck rings r(H,,2) by generators and relations
explicitly. In the present paper, we will consider the decomposition of tensor products and try to
describe the projective class ring of Uq(sl’g).

The paper is organized as follows. In Section 2, we recall the definition of the new type restricted
quantum group Eq(sIZ) and its Hopf algebra structure, and some preliminaries used in the following
sections. In Section 3, we construct the principal indecomposable projective module P; through the
primitive orthogonal idempotents of ﬁq(s@), and then study its composition series, radical series, socle
series and some other related properties. In Section 4, we give the decomposition formulas of tensor
products between two simple modules, two indecomposable projective modules and a simple module
and an indecomposable projective module of Uq(slé). Furthermore, we describe the projective class
ring by generators and relations explicitly.

Throughout the paper, we work over the complex field C. The notations Z and Z=° denote the set of
all integers, and the set of all nonnegative integers respectively.

2. The restricted quantum group ﬁq(sq)
Fix an integer n > 3 (n # 4). From now on, we always assume that ¢ is a primitive n-th root of

unity, and

J= n, if nis odd,
5, if niseven.

First, we recall the definition of the new type restricted quantum group ﬁq(slz) and some properities
as follows.
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Definition 2.1. [/3] The restricted quantum algebra ﬁq(SIZ) is an associative unital algebra generated
by K, K=, E, F and subject to the following relations

KK'=K'K=1, K‘=1, E‘=F'=0,
KE = ¢°EK, KF =q*FK, EF =FE.

Lemma2.2. [13] (1) The set{F'K*E/li, jk € Z,0 < i, j,k < d} is a basis of U,(sl3), and the dimension
of U,(shy) is d°.

(2) Uq(SI;) is a Hopf algebra with coproduct A, counit € and antipode S defined by

AK)=K®K, AE)y=E®K+1®E, AF)=F®1+K'®F,

gE)=0, e(F)=0, &K)=eK™" =1,

S(E)=-EK™', S(F)=-KF, S(K)=K".
3) Uq(ﬂ;) is a pointed, basic but not semisimple Hopf algebra.

Lemma 2.3. [13] Let M be a finite dimensional simple EQ(SIE)—module. Then dim(M) = 1 and the
module structure on M = Cvy can be given as follows:

Kvo = ¢'vg, Evy=Fvy=0, 2.1)
wherel € {0,1,--- ,d— 1} whennisodd [ €{0,2,---,2(d — 1)} when n is even.

-1
Lemma 2.4. [13] Foranyi € Z,, set € = %1 > g7 ¥'K!. Obviously one has
1=0

€K = quei, 6F = Ee_,, ¢F = Feyy.
{eli € Z,} is a complete set of primitive orthogonal idempotents of Uq(slé).
3. The projective representations of the restricted quantum group ﬁq(slg)
Using the primitive orthogonal idempotents {¢;|i € Z,;} of vq(slé), one has
ﬁq(le) = ﬁq(sIZ)eo ® Uq(sIZ)el @D Uq(faI;)ed_l.

LetP; = ﬁq(_slz)ej, then {P}|j € Z4} is the set of the nonisomorphic principal indecomposable projective
modules of U,(sl;). As in [8], P; can be showed in Figure 1.

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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Figure 1. The structure of P;.

Each point represents a one-dimensional vector space generated by the vector at that point, the
downward arrows indicate the left action of E, the right-oblique upward arrows indicate the left action
of F. Figure 1 shows that there are d* black dots, so the dimension of P; is d°.

From Figure 1, it is easy to see that if we delete one point and the arrows connecting it at a time,
from left to right, and from top to bottom, then we get a modules series, in which the former module
modulo the next one is a 1-dimensional simple module. Therefore, we obtain the composition series
of P; as follows.

Proposition 3.1. The principal indecomposable projective module P; (j € Z4) has the following
composition series:

Pj=Mj>M/>M;>--->M, =0,
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where forall i € {0, 1,...,d — 1},
M/

M

d+i

d?—d+i
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Figure 2. The structure of M { .
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Figure 3. The structure of Mg .

Proposition 3.2. The principal indecomposable projective module P; has a radical series as follows:
P; > rad(P)) D rad*(P;) > -+ D> rad*'(P;) = 0,

forallie{0,1,...,2d -1},
radi(Pj) = @ CEkFlej.

0<k,l<d
i<k+l

Proof. Recall that rad(P;) is exactly the intersection of all the maximal submodules of P;, and P; has
a unique maximal submodule M’ , so that rad(P;) = M{ , the figure is shown as before. rad*(P ;) is the
intersection of the maximal submodules of rad(P;), and is the submodule obtained by removing CEE;
and CFe; and the connecting arrows, as shown in Figure 4. Proceed this way, we have rad**(P;) =
CEY'F*¢;, rad*!(P;) = 0. ]
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Figure 4. The structure of rad*(P;).

Proposition 3.3. The principal indecomposable projective module P; has a socle series as follows:
0= socO(Pj) C soc(P;) C socz(Pj) Cc---C socz‘H(Pj) =P,

forallie{0,1,...,2d — 1},
soc'(P)) = (P CE'Fle;.
O<k,i<d
2d—1-i<k+l
Proof. Recall that for i € Z2°, soc/(P ;) is defined inductively as follows: soc’(P ) =0, and if soci(P )
is already defined and p : P; — soc(P;) denotes the canonical epimorphism, we get soc™*!(P;) =
p~'(soc(P;/soc(P,)))). Thus, by the definition, we have soc’(P;) = 0, and as P; has only one simple
submodule CE/'F¥'¢;, so soc(P;) = CE*'F9'¢;. Inductively, we have soc*(P;) = CE/'F¥'¢; &
CEY'F"2¢; ® CE“?F“'¢;; and we obtain a general expression of the socle series of the module P,

assoc'(P;))= P CE'F'e;, wherei€ {0,1,...,2d - 1}. ]
O<k,l<d
2d-1—i<k+l

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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More intuitively, we can draw the figures soc(P;), soc’(P ) soc*(P ;) as follows (see Figure 5):

E4-2 pd-1 € E4-3 pd-1 €
[ ] ([ ] [ ]
Ed_]Fd_'ej
E E
[ ] [ ]
Ed-1pd-1¢ Ed—ZFd—lej
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[ ([ ] [ ]
Ed-1pd-2 € Ed—2Fd—ZEj Ed-1Fpd-1 €
E
l F
([ ]
Ed-1 FII—ZE].
/Z
[ ]
Ed-1Fpd-3 €

Figure 5. The structures of soc(P;), soc*(P;) and soc*(P)).

Observe the radical series and socle series of P;, it is easy to see that
soc’(P;) = rad'(P;),

where s +t =2d - 1,s,t € {0, 1,---2d — 1}, and the length of the radical series(resp., the socle series)
is 2d — 1.
Note that dimc€;U ,(s13)e; = d, we have

Proposition 3.4. (1) The dimensional vector of P; is
T
dimP;=|d, d.---, d].

(2) The Cartan matrix of the algebra Uq(SI;) is

€ M, (2).

4. The projective class ring of U, (s[})

Let H be a finite dimensional Hopf algebra and M and N be two finite dimensional H-modules.
Then M ® N is also a H-module defined by

h-(m®n):Zh(1)-m®h(2)-n
(h)
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forallh € Hand m € M,n € N, where A(h) = ;) hay ® h(z). By the Krull-Schmidt Theorem, any
finite dimensional H-module can be decomposed into a direct sum of indecomposable H-modules.
Now we consider the tensor products of two irreducible ﬁq(slz)—modules.
From Lemma 2.3, we know that for ﬁq(slz) there are d non-isomorphic simple modules S; = Cv;,i €
{0,1,...,d — 1}. Specifically, the module structure is:

E-vi= F-v;=0, K-v; = ¢°v,.
We have the following theorem:
Theorem 4.1. S; ®S; = S (i j\moaay, (0=L10,j<d—1).

Proof. Suppose that S; and S ; are two simple modules of ﬁq(sI;), with basis v;, v; respectively. Then
§;®S§ jisalso a U,(sl;)-module, with basis v; ® v; and the actions of the generators are as follows

E-(viev)=(E®K+1Q®E)v;®v;) =0,
F-viev)=F&l+K'®F)(v,®v) =0,
K-(vi®v)=KeK)©v,®v)=g""vev,
Therefore S, ® S = S 4 jmod a)» (0 L4, j <d—1). O
For the tensor products of a simple module with a projective module, we have
Theorem 4.2. S;® P; = P jymoaay = P;®S;, 0<i,j<d—-1.
Proof. Note that the basis of P; is {E"FlejIO <kl<d- 1}, let

l] =€), lz = EEJ', e, ld = Ed_lfj,
lis = Fej, lyoo = EFe€j, -+, by = E'Fej, -+,
ldz—d+l = Fd_lfj, ldz—d+2 = EFd_IGj, e, ldz = Ed_le_lfj.
Then the matrix of K on the basis of [y, 0, -+ , 1y, lgs1, laso, - s hoay s+ S lp_gits lpp—gens -+ 5 Lp 18
A} 0O --- 0
0 A% e 0
Ar=| . . ) ,
0 O Af P
where
g7 0 0
0 q2j+2 0
Aj = . :
2j+2d-2
0 0 q a dxd
g2 0 0
0 g% 0
Al = . :
2j+2d—4
0 0 q a dxd

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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q2j—2d+2
2j-2d+4
q
Ad =
)i
q ! dxd
The matrix of E acting on this basis is
N O 0
O N --- 0
Bl = . . . . ’
0 O NJp.p
where
000 0 0
1 00 00
010 0 0
N=10 01 00
000 - 1 0),.,
The matrix of F acting on this basis is
00 .- 00
I 0 00
c,=0 1 - 00 ,
00 - 10),.,

where [ represents the identity matrix of order d.
Next we consider S; ® P;. Note that the bases of S; and P; are v; and E*F'e;,{0 < i,k,l < d — 1},
respectively, it is obvious that

d—1
S1:V,‘®€j, S2:Vi®EEj, "',Sd:V,'(X)E €j,

d-1
Si+1 = Vi® F€j, 5400 = vi® EF€j,- -, 500 =Vv; ® E“ Fej,

_ 2 _ 2 _ d-1 2
$24+1 = Vi ® F7€j, $20020 = Vi® EF7€j,- -+, 530 =v;® E“ F~¢;,

-1 -1 -1 d-1
S2_d+1 = Vi®Fd €jy S2—q+2 = V,‘®EFd €jyrr oy Sz = Vi®Ed Fd €;

is a basis of §; ® P;. Let
Hh =v,®c¢€j, [2:Vi®EEj, s, ld:V,'(X)Ed_léj,
_ 2 _ 2 ) d—1
tiy1 = ¢ V,’®F6j, lygvo = ¢ Vi®EF6j,"',l2d—q VviFE FEJ',

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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bari =q Vi ® szj, hava = ¢ Vi ® EFZEJ', e g =q M ® Ed_lefj,

t—gr = 4 Vi@ F e, g = g @ EF e, -
e = g 24Dy, @ E1 Rl

Then t1,1,,--+ , 1, is also a basis of §; ® P;, since

P, O -~ 0
0 P, 0
(t17t2’~~-7td2):(Sl’s2a-~~asd2) : »
0 0 ce. Pd P
where
1 0 - 0
o1 - 0
Pi=|. . ,
00 - 1 dxd
g 0 0
0 g% 0
P, = q, )
—2i
0 0 4q dxd
q—2(d—l)i 0 ... 0
0 -2(d-bi . 0
Py = . ! . , ) ,
. =2(d-1)i
0 0 4q dxd

and the transition matrix is invertible as ¢ is a primitive n-th root of unity. The matrix of K on the basis
Ofl’l,lg, R 0} 1S

Al o -0
0 A% o 0
A= . . )
o 0 --- A‘ZI A
where
q2i+2j 0 0
0 2042j+2 .., 0
a=l T . ,
6 0 . q2i+2 }+2d—2

dxd

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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0
2i+2j
e 0 q 0
2 = . : ’
. 2i+2j+2d—-4
0 0 q dxd
2i+2 j-2d+2
q J
2i+2 j-2d+4
Al = 1
5 =
q2i+2 Jj

dxd

The matrix of E acting on this basis is B, = Bj; the matrix of F' is C, = C;. Therefore we have
Si®P; = Puijmod ), (01, j<d—1).

Now we consider P; ® S;. The bases of P; and S; are €;, Ee;,--- , E*"'Fi"'¢; and v; respectively.
Then we can take a basis of P; ® §; as

2i 2d-1)i pd-1
r =€ Qv rzzq’Eej®vi,~--,rd:q(d ipd €V,

ran = F&;®v, 1400 = "EF€® v, .1 = ¢"VE" Fe; @ v;,

)

Fee_g+1 = Fd_lEj Vit g0 = q2iEFd_16j S qz(d_l)iEd_le_IEj X v;.
Then the matrix of K acting on this set of basis is A; = A,; the matrix of E acting on this set of basis
is B3 = By; the matrix of F acting on this set of basis is C3 = Cy. In summary,

Si®PjEP(i+j)(modd)EP/‘®S{, (OSl,]Sd—l)

As in [8], we can show the tensor product by the following diagram.

Example 4.3. Letn = 3, d = 3 and ¢* =

1, we can make the following structure diagram of K-
eigenvalue, where a number | stands for the K-eigenvalue q'.

PO S] P] P] S2 PO

—_ N O
N O =
S = N
—_ N O
N O =
—_ N O
N O =
N O =
S = N

2
1
0

S = N
—_ N O

Observe that, we have Py ® S| = P;, P1®S, = Py. Other results can be showed similarly, such that
both P;® S and S ; ® P; are consistent with the K-eigenvalue of P jmoa 3, and we have

Si®P;= Plsjmoas =P;j®S:, 01, j<2.

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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Now we consider the tensor products of two projective ﬁq(s@)—modules. We have
Theorem 4.4. Pi®Pj = (P()@P] @"'Pd_])d, 0< l,]Sd— 1.

Proof. Let P be a projective Uq(slz)—nfdule. For any ﬁq(sIZ)—module M, P®M, M® P are also
projective modules. Suppose there is a U,(sl;)-module short exact sequence

0DK—-M-—>N-—>0,
then there exists a projective short exact sequence
0->KQPV)>MPV)>N®PV) -0,
where P(V) is the projective cover of V, and we have
M®P(V)2=K®P(V)®NQ®P(V).

Now we calculate P; ® P;.
Note that P; is the projective cover of S, and there is an epimorphism

P,—-S,—>0.
Let (S ;) be the kernel of the epimorphism, and we have the short exact sequence
0-QS)—>P,—>85,—0,

then
OQQ(S,')®PJ'—>P5®Pj—)Si®Pj—>O,

and therefore
Pi®PjEQ(S,')®Pj@S,'®Pj.

We write the composition series of P; below and find its composition factors. Let
Ny = {0},
Ni = CE*'F"lg,
Ny = CE“'F"'e+CE"?F" ¢,

i _
&L Pi'

Then
0=NycN cNyc---cN,=P

is the composition series of P;. By the short exact sequences
0—->N, 6 —N,—>N,/N, —0,
0— N;z_z — N;z_l — Nzlz_l/Nélz_2 - 0,

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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0 — Nj — Nj — N)/Ni — 0,

we have
Np®Pj=Np, ®P;®Ny/N, QP

N;z_] ®P/ = N;z_z ®PJ@N22_1/N;2_2 ®P_/’
N;®P;=N,®P;®N,/N, ® P;,
it follows that

P;®P; =N ®@P;®N,/N®P;®Nj/NyQ®P;®---®N,/N,  ®P;.

Note that
KE“ Fi-lg = ' F- -1,
KE“2Fi2¢ = ' F2E4 2, ... Ke = q¥,
then
Ny = Ny /Nyyy = Ny [Ny == = Np /N, =S,
since
KE“2 R4l = g2 F4- 1 E42,
KE“3Fi2¢ = 2 FI2E4 3 .. KFe = ¢ e,
then
N5/Nj = N} 3 /Ny = Niyy oy INsy o3 = - = Ntiiz—d+1/N:12—d = Sit+dmod d)>
as
KFle = 22 F 6, KE© F' 2 = ¢ F2E* g,
KE2F43¢ = "2 FI3E 2, ... KEe = ¢,
then

N;'/N(ii—l = N2+1/Ni = Néd+2/Néd+l == Néz_l/Nfzz_z = Siti(mod a)-
By Theorem 4.2, we have

IR

P;®P; Si®P;®Sicimodady ®P;j® - ®Sitimod ) ® P;)

(Si+imod oy ®P; @S @ P; @ - @S i12mod a) ® P)

© & &

(Sicimod ) ®P;j® S i 2mod ay ®P;j®---®S5; ® Pj)

IR

(Pitjimod d) @ Pivj—1mod @) @ * ** ® Pisjr1(mod a))
® (Pitrjritmod &) ® Pitjmod @) @« ® Pitjr2(mod )

AIMS Mathematics Volume 8, Issue 9, 19933-19949.
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(Pitj-1(mod @) @ Pisj—2mod @) @ * ** ® Pis jtmod a))
(Py®P, & ®Ps)".

[l

O

Let H be a finite dimensional Hopf algebra. The Green ring r(H) is defined as follows. r(H)
is the Abelian group generated by the isomorphism classes [M] of finite dimensional H-modules M
modulo the relations [M & N] = [M] + [N]. The multiplication of r(H) is given by the tensor product
[M][N] = [M ® N]. The Green ring r(H) is an associative ring with identity given by [k,], the trivial
I-dimensional H-module. The projective class ring P(H) of H is the subring of r(H) generated by
projective modules and simple modules (see [16]).

In this section we will describe the projective class ring P(ﬁq(slﬁ)) of the quantum group vq(slz)
explicitly by generators and generating relations.

Let r = [S 1] be the isomorphism class of the simple module S, and f = [P;] the isomorphism class
of the indecomposable projective module P,. Then we have:

Lemma 4.5. The following statements hold in P(Uq(sI;)).

(1 t“=1,

(2) tf =11,

Q) f=d(f +tf+f+---+171f).
Proof. By Theorem 4.1, we know that [S ¢ = [So] = 1, hence we get (1). By Theorem 4.2, we have
tf =[S51]1[P1]=[S1®P] =[P, ®S1] =[P1][S1] = ft, so we obtain that tf = ft. By Theorems 4.1,
4.2 and 4.4, we have

P=PP =[PP ]=[(Po®P & - ®P )1 =d(f +tf +Ef+---+17"f)

Corollary 4.6. The set {f'f/ |0 <i<d—1,0 < j < 1}is a set of Z-basis ofP(ﬁq(SI;)).

Proof. P(ﬁq(sg)) has a set of Z-basis {[S;],[P;] | 0 <i < d — 1}, so the rank of P(ﬁq(slz)) is 2d. From
Lemma 3.5, it is known that [S;],[P;] is Z-spanned by the set {tifj |0<i<d-1,0<j< 1}, SO
{t’fj |10<i<d-1,0<j< 1} is actually a set of Z-basis of P(U,(s1y)). o

Theorem 4.7. The projective class ring P(ﬁq(slp) is isomorphic to the quotient ring Z | x,y| /| I, where
I is the ideal generated by the relationship

xd_l’ Xy — Y&, y2—d(y+xy+x2y+...xd—1y).

Proof. Let m : Z[x,y] — Z][x,y] /I be the natural epimorphism such that for any v € Z[x,y],
v = m(v). We can straightforward to verify that the ring Z[)i y] /I is Z-spanned by the set
{x"yf |0<i<d-1,0<j< 1}. On the other hand, because P(U,(sl;)) is an commutative ring

generated by 1, f, there exists an unique ring epimorphism ® : Z[x,y] — PU,(sl})), where
®(x) =1, ®(y) = f. From Lemma 4.5, it is easily verified that

(D(xd—l):O, O (xy—yx) =0,
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(D(yz—d(y+xy+x2y+---xd_ly)):0,

that is ®@(Z) = 0, thus ® induces a ring epimorphism
@ : Z[x,y] /T - PU,sD)),

such that for any v € Z|[x,y], @(7) = ®(v). Then from Corollary 4.6, we can define a Z-module
homomorphism
Y PU, () = Z[x,y] /T,

with W(f7) = xiyi for 0 <i<d - 1,0 < j< 1. Assume ¥ € {x'y/ | 0 < i <d - 1,0 < j < 1}, itis easy
to check that ¥ o @(7) = 7. Therefore ¥ o @ = id, which means ® is a ring isomorphism. O

5. Conclusions

For the new type restricted quantum group ﬁq(sIZ) we give the decomposition formulas of tensor
products between two simple modules, two indecomposable projective modules, and a simple module
and an indecomposable projective module of Uq(sIZ). Furthermore, we describe the projective class
ring by generators and relations explicitly.
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