Research article Special Issues

A priori estimate for resolving the boundary fractional problem

  • Received: 20 February 2022 Revised: 12 June 2022 Accepted: 20 June 2022 Published: 12 October 2022
  • MSC : 76D03, 76N10

  • The energy inequality method (or a priori estimation) known in classical cases has been adopted for fractional evolution equations associated with initial conditions and boundary integral conditions. We prove the existence and uniqueness of the solution to the problem described in the following.

    Citation: Hacene Mecheri, Maryam G. Alshehri. A priori estimate for resolving the boundary fractional problem[J]. AIMS Mathematics, 2023, 8(1): 765-774. doi: 10.3934/math.2023037

    Related Papers:

  • The energy inequality method (or a priori estimation) known in classical cases has been adopted for fractional evolution equations associated with initial conditions and boundary integral conditions. We prove the existence and uniqueness of the solution to the problem described in the following.



    加载中


    [1] A. A. Alikhanov, A priori estimates for solutions of boundary value problems for fractional-order equations, Diff. Equat., 46 (2010), 660–666. https://doi.org/10.1134/S0012266110050058 doi: 10.1134/S0012266110050058
    [2] N. H. Abel, Resolution d'un probleme de mecanique, In: Oeuvres completes de Niels Henrik Abel, Cambridge University Press, 2012, 97–101. https://doi.org/10.1017/CBO9781139245807.010
    [3] M. Caputo, Elasticita e Dissipazione, Bologna: Zanichelli, 1969.
    [4] A. M. Keightley, J. C. Myland, K. B. Oldham, P. G. Symons, Reversible cyclic voltammetry in the presence of product, J. Electroanal. Chem., 322 (1992), 25–54. https://doi.org/10.1016/0022-0728(92)80065-C doi: 10.1016/0022-0728(92)80065-C
    [5] O. A. Ladyzhenskaya, Kraevye zadachi matematicheskoi fiziki, (Russian), Moscow: Nauka, 1973.
    [6] S. Messloub, Existence and uniqueness results for a fractional two-times evolution problem with constraints of purely integral type, Math. Method. Appl. Sci., 39 (2016), 1558–1567. https://doi.org/10.1002/mma.3589 doi: 10.1002/mma.3589
    [7] S. Mesloub, A nonlinear nonlocal mixed problem for a second order pseudoparabolic equation, J. Math. Anal. Appl., 316 (2006), 189–209. https://doi.org/10.1016/j.jmaa.2005.04.072 doi: 10.1016/j.jmaa.2005.04.072
    [8] A. M. Nakhushev, Drobnoe ischislenie i ego primenenie, (Russian), Moscow, 2003.
    [9] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, (Russian), Moscow: Nauka, 2005.
    [10] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, (Russian), Minsk: Naukai Tekhnika, 1987.
    [11] F. I. Taukenova, M. Kh. Shkhanukov-Lafishev, Difference methods for solving boundary value problems for fractional differential quations, Comput. Math. and Math. Phys., 46 (2006), 1785–1795. https://doi.org/10.1134/S0965542506100149 doi: 10.1134/S0965542506100149
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1050) PDF downloads(74) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog