Constructing mathematical models of fractional order for real-world problems and developing numeric-analytic solutions are extremely significant subjects in diverse fields of physics, applied mathematics and engineering problems. In this work, a novel analytical treatment technique called the Laplace residual power series (LRPS) technique is performed to produce approximate solutions for a non-linear time-fractional gas dynamics equation (FGDE) in a multiple fractional power series (MFPS) formula. The LRPS technique is a coupling of the RPS approach with the Laplace transform operator. The implementation of the proposed technique to handle time-FGDE models is introduced in detail. The MFPS solution for the target model is produced by solving it in the Laplace space by utilizing the limit concept with fewer computations and more accuracy. The applicability and performance of the technique have been validated via testing three attractive initial value problems for non-linear FGDEs. The impact of the fractional order β on the behavior of the MFPS approximate solutions is numerically and graphically described. The jth MFPS approximate solutions were found to be in full harmony with the exact solutions. The solutions obtained by the LRPS technique indicate and emphasize that the technique is easy to perform with computational efficiency for different kinds of time-fractional models in physical phenomena.
Citation: Mohammad Alaroud, Osama Ababneh, Nedal Tahat, Shrideh Al-Omari. Analytic technique for solving temporal time-fractional gas dynamics equations with Caputo fractional derivative[J]. AIMS Mathematics, 2022, 7(10): 17647-17669. doi: 10.3934/math.2022972
Constructing mathematical models of fractional order for real-world problems and developing numeric-analytic solutions are extremely significant subjects in diverse fields of physics, applied mathematics and engineering problems. In this work, a novel analytical treatment technique called the Laplace residual power series (LRPS) technique is performed to produce approximate solutions for a non-linear time-fractional gas dynamics equation (FGDE) in a multiple fractional power series (MFPS) formula. The LRPS technique is a coupling of the RPS approach with the Laplace transform operator. The implementation of the proposed technique to handle time-FGDE models is introduced in detail. The MFPS solution for the target model is produced by solving it in the Laplace space by utilizing the limit concept with fewer computations and more accuracy. The applicability and performance of the technique have been validated via testing three attractive initial value problems for non-linear FGDEs. The impact of the fractional order β on the behavior of the MFPS approximate solutions is numerically and graphically described. The jth MFPS approximate solutions were found to be in full harmony with the exact solutions. The solutions obtained by the LRPS technique indicate and emphasize that the technique is easy to perform with computational efficiency for different kinds of time-fractional models in physical phenomena.
[1] | K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, New York: Wiley, 1993. |
[2] | D. Baleanu, J. A. T. Machado, A. C. Luo, Fractional Dynamics and Control, Berlin/Heidelberg, Germany: Springer, 2012. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, 1 Eds., Amsterdam: Elsevier, 2004. |
[4] | A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A. doi: 10.2298/TSCI160111018A |
[5] | M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam, Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics, AIMS Math., 4 (2019), 397–411. https://doi.org/10.3934/math.2019.3.397 doi: 10.3934/math.2019.3.397 |
[6] | S. Momani, A. Freihat, M. AL-Smadi, Analytical study of fractional-order multiple chaotic FitzHugh-Nagumo neurons model using multistep generalized differential transform method, Abstr. Appl. Anal., 2014, Article ID 276279, 10 pages. https://doi.org/10.1155/2014/276279. |
[7] | M. Alabedalhadi, M. Al-Smadi, S. Al-Omari, D. Baleanu, S. Momani, Structure of optical soliton solution for nonliear resonant space-time Schrödinger equation in conformable sense with full nonlinearity term, Physica Scripta, 95 (2020), 105215. https://doi.org/10.1088/1402-4896/abb739 doi: 10.1088/1402-4896/abb739 |
[8] | B. West, M. Bologna, P. Grigolini, Physics of Fractal Operators, New York: Springer, 2003. |
[9] | S. M. Ali, W. Shatanawi, M. Kassim, M. S. Abdo, S. Saleh, Investigating a class of generalized Caputo-type fractional integro-differential equations, J. Funct. Spaces, 2022, Article ID 8103046, 9 pages. https://doi.org/10.1155/2022/8103046. |
[10] | S. Etemad, M. M. Matar, M. A. Ragusa, S. Rezapour., Tripled fixed points and existence study to a tripled impulsive fractional differential system via measures of noncompactness, Mathematics, 10 (2022), 25. https://doi.org/10.3390/math10010025. doi: 10.3390/math10010025. |
[11] | P. Kumar, V. S. Erturk, M. Vellappandi, H. Trinh, V. Govindaraj, A study on the maize streak virus epidemic model by using optimized linearization-based predictor-corrector method in Caputo sense, Chaos Soliton. Fract., 158 (2022), 112067, https://doi.org/10.1016/j.chaos.2022.112067. doi: 10.1016/j.chaos.2022.112067 |
[12] | Z. Odibat, V. S. Erturk, P. Kumar, A. B. Makhlouf, V. Govindaraj, An implementation of the generalized differential transform scheme for simulating impulsive fractional differential equations, Math. Probl. Eng., 2022 (2022), Article ID 8280203, 11 pages, https://doi.org/10.1155/2022/8280203. |
[13] | V. S. Erturk, A. Ahmadkhanlu, P. Kumar, V. Govindaraj, Some novel mathematical analysis on a corneal shape model by using Caputo fractional derivative, Optik, 261 (2022), 169086, https://doi.org/10.1016/j.ijleo.2022.169086. doi: 10.1016/j.ijleo.2022.169086 |
[14] | Z. Odibat, V. S. Erturk, P. Kumar, V. Govindaraj, Dynamics of generalized Caputo type delay fractional differential equations using a modified Predictor-Corrector scheme, Phy. Scripta, 96 (2021), 125213. https://doi.org/10.1088/1402-4896/ac2085. doi: 10.1088/1402-4896/ac2085 |
[15] | V. S. Erturk, E. Godwe, D. Baleanu, P. Kumar, J. Asad, A. Jajarmi, Novel fractional-order Lagrangian to describe Motion of Beam on nanowire, Acta Phys. Pol., 140 (2021), 265–272. https://doi.org/10.12693/APhysPolA.140.265. doi: 10.12693/APhysPolA.140.265 |
[16] | R. Hilfer, Application of Fractional Calculus in Physics, World Scientific, 2000. |
[17] | G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics Oxford University Press, 2005. |
[18] | M. Alaroud, M. Al-Smadi, R. R. Ahmad, U. K. Salma Din, An analytical numerical method for solving fuzzy fractional volterra integro-differential equations, Symmetry, 11 (2019), 205. https://doi.org/10.3390/sym11020205. doi: 10.3390/sym11020205 |
[19] | H. Aljarrah, M. Alaroud, A. Ishak, M. Darus, Adaptation of Residual-Error series algorithm to handle fractional system of partial differential equations, Mathematics, 9 (2021), 2868. https://doi.org/10.3390/math9222868. doi: 10.3390/math9222868 |
[20] | M. Al-Smadi, Fractional residual series for conformable time-fractional Sawada-Kotera-Ito, Lax, and Kaup-Kupershmidt equations of seventh order, Mathematical Methods in the Applied Sciences, 2021. https://doi.org/10.1002/mma.7507. doi: 10.1002/mma.7507 |
[21] | A. Freihet, S. Hasan, M. Al-Smadi, M. Gaith, S. Momani, Construction of fractional power series solutions to fractional stiff system using residual functions algorithm, Adv. Differ. Equ., 95 (2019), 1–15, https://doi.org/10.1186/s13662-019-2042-3. doi: 10.1186/s13662-019-2042-3 |
[22] | A. Freihet, S. Hasan, M. Alaroud, M. Al-Smadi, R. R. Ahmad, U. K. Salma Din, Toward computational algorithm for time-fractional Fokker-Planck models, Adv. Mech. Eng., 11 (2019), 1687814019881039. https://doi.org/10.1177/1687814019881039. doi: 10.1177/1687814019881039 |
[23] | S. Hasan, A. El-Ajou, S Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos, Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624. doi: 10.1016/j.chaos.2020.109624 |
[24] | M. Al-Smadi, Simplified iterative reproducing kernel method for handling time-fractional BVPs with error estimation, Ain Shams Eng. J., 9 (2018), 2517–2525. https://doi.org/10.1016/j.asej.2017.04.006. doi: 10.1016/j.asej.2017.04.006 |
[25] | M. Al-Smadi, O. Abu Arqub, M. Gaith, Numerical simulation of telegraph and Cattaneo fractional-type models using adaptive reproducing kernel framework, Math. Meth. Appl. Sci., 44 (2021), 8472–8489. https://doi.org/10.1002/mma.6998. doi: 10.1002/mma.6998 |
[26] | A. G. Talafha, S. M. Alqaraleh, M. Al-Smadi, S. Hadid, S. Momani, Analytic solutions for a modified fractional three wave interaction equations with conformable derivative by unified method, Alex. Eng. J., 59 (2020), 3731–3739. https://doi.org/10.1016/j.aej.2020.06.027. doi: 10.1016/j.aej.2020.06.027 |
[27] | J. S. Duan, R. Rach, A. M. Wazwaz, Higher order numeric solutions of the Lane-Emden-type equations derived from the multi-stage modified Adomian decomposition method, Int. J. Comput. Math., 94 (2017), 197–215. https://doi.org/10.1080/00207160.2015.1100299. doi: 10.1080/00207160.2015.1100299 |
[28] | Q. M. Al-Mdallal, On the numerical solution of fractional Sturm Liouville problems, Int. J. Comput. Math., 87 (2010), 2837–2845. https://doi.org/10.1080/00207160802562549 doi: 10.1080/00207160802562549 |
[29] | H. Jafari, M. Ghorbani, S. Ghasempour, A note on exact solutions for nonlinear integral equations by a modified homotopy perturbation method, New Trends Math. Sci., 2013 (2013), 22–26. |
[30] | A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 1–22, https://doi.org/10.1140/epjp/s13360-020-01061-9. doi: 10.1140/epjp/s13360-020-01001-7 |
[31] | J. L. Steger, R. F. Warming, Flux vector splitting of the inviscid gas dynamic equations with application to finite-difference methods, J. Comput. Phys., 40 (1981), 263293. https://doi:10.1016/0021-9991(81)90210-2. doi: 10.1016/0021-9991(81)90210-2 |
[32] | S. Kumar, H. Kocak, A. A. Yıldırım, Fractional model of gas dynamics equations and its analytical approximate solution using Laplace transform, Zeitschrift für Naturforschung A, 67 (2012), 389–396. https://doi.org/10.5560/zna.2012-0038. doi: 10.1515/znb-2012-0413 |
[33] | J. Biazar, M. Eslami, Differential transform method for nonlinear fractional gas dynamics equation, Inter. J. Phys. Sci., 6 (2011), 1203. https://doi.org/10.5897/IJPS11.132. doi: 10.5897/IJPS11.132 |
[34] | M. Tamsir, V. K. Srivastava, Revisiting the approximate analytical solution of fractional-order gas dynamics equation, Alex. Eng. J., 55 (2016), 867–874, https://doi.org/10.1016/j.aej.2016.02.009. doi: 10.1016/j.aej.2016.02.009 |
[35] | S. R. Balachandar, K. Krishnaveni, K. Kannan, S. G. Venkatesh, Analytical solution for fractional gas dynamics equation, Natl. Acad. Sci. Lett., 42 (2019), 51–57, https://doi.org/10.1007/s40009-018-0662-x. doi: 10.1007/s40009-018-0662-x |
[36] | O. S. Iyiola, On the solutions of non-linear time-fractional gas dynamic equations: An analytical approach, Int. J. Pure Appl. Math., 98 (2015), 491–502. https://doi.org/10.12732/IJPAM.V98I4.8. doi: 10.12732/IJPAM.V98I4.8 |
[37] | S. Kumar, M. M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Comm., 185 (2014), 1947–1954. https://doi.org/10.1016/j.cpc.2014.03.025. doi: 10.1016/j.cpc.2014.03.025 |
[38] | M. Alaroud, M. Al-Smadi, R. R. Ahmad, U. K. Salma Din, Computational optimization of residual power series algorithm for certain classes of fuzzy fractional differential equations, Int. J. Differ. Equat., 2018 (2018), 8686502. https://doi.org/10.1155/2018/8686502. doi: 10.1155/2018/8686502 |
[39] | D. G. Prakasha, P. Veeresha, H. M. Baskonus, Residual power series method for fractional Swift-Hohenberg equation, Fractal Fract., 3 (2019), 9. https://doi.org/10.3390/fractalfract3010009 doi: 10.3390/fractalfract3010009 |
[40] | M. Bataineh, M. Alaroud, S. Al-Omari, P. Agarwal, Series representations for uncertain fractional I IVPs in the fuzzy conformable fractional sense, Entropy, 23 (2021), 1646. https://doi.org/10.3390/e23121646. doi: 10.3390/e23121646 |
[41] | R. Amryeen, F. N. Harun, M. Al-Smadi, A. Alias, Adaptation of conformable residual series algorithm for solving temporal fractional gas dynamics models, Arab J. Basic Appl. Sci., 29 (2022), 65–76. doi: 10.1080/25765299.2022.2044595 |
[42] | M. Alaroud, Application of Laplace residual power series method for approximate solutions of fractional IVP's, Alex. Eng. J., 61 (2022), 1585–1595, https://doi.org/10.1016/j.aej.2021.06.065. doi: 10.1016/j.aej.2021.06.065 |
[43] | A. Burqan, A. El-Ajou, R. Saadeh, M. Al-Smadi, A new efficient technique using Laplace transforms and smooth expansions to construct a series solution to the time-fractional Navier-Stokes equations, Alex. Eng. J., 61 (2022), 1069–1077. https://doi.org/10.1016/j.aej.2021.07.020. doi: 10.1016/j.aej.2021.07.020 |
[44] | M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. https://doi.org/10.1016/j.rinp.2020.103667. doi: 10.1016/j.rinp.2020.103667 |
[45] | M. Alaroud, N. Tahat, S. Al-Omari, D. L. Suthar, Selma G. Ozyurt, An attractive approach associated with transform functions for solving certain fractional Swift-Hohenberg equation, J. Funct. Space., 2021 (2021), 14 pages. https://doi.org/10.1155/2021/3230272. doi: 10.1155/2021/3230272 |
[46] | M. Şenol, M. Alquran, H. D. Kasmaei, On the comparison of perturbation-iteration algorithm and residual power series method to solve fractional Zakharov-Kuznetsov equation, Results Phys., 9 (2018), 321–327. https://doi.org/10.1016/j.rinp.2018.02.056. doi: 10.1016/j.rinp.2018.02.056 |