The purpose of this paper is to investigate the oscillatory behaviour of a class of first-order sublinear and superlinear neutral difference equations. Some conditions are established by applying Banach's Contraction mapping principle, Knaster-Tarski fixed point theorem and using several inequalities. We provide some examples to illustrate the outreach of the main results.
Citation: Mohamed Altanji, Gokula Nanda Chhatria, Shyam Sundar Santra, Andrea Scapellato. Oscillation criteria for sublinear and superlinear first-order difference equations of neutral type with several delays[J]. AIMS Mathematics, 2022, 7(10): 17670-17684. doi: 10.3934/math.2022973
The purpose of this paper is to investigate the oscillatory behaviour of a class of first-order sublinear and superlinear neutral difference equations. Some conditions are established by applying Banach's Contraction mapping principle, Knaster-Tarski fixed point theorem and using several inequalities. We provide some examples to illustrate the outreach of the main results.
[1] | R. P. Agarwal, Difference equations and inequalities: Theory, methods, and applications, Marcel Dekker, New York, 2000. |
[2] | R. P. Agarwal, M. Bohner, S. R. Grace, D. O'Regan, Discrete oscillation theory, Hindawi Publishing Corporation, New York, 2005. |
[3] | T. Candan, Existence of nonoscillatory solutions to first order neutral differential equations, Electon. J. Differ. Equ., 2016 (2016), 1–11. |
[4] | G. E. Chatzarakis, G. N. Miliaras, Asymptotic behaviour in neutral difference equations with variable coefficients and more than one day arguments, J. Math. Comput. Sci., 1 (2012), 32–52. |
[5] | L. H. Erbe, Q. Kong, B. G. Zhang, Oscillation theory for functional differential equations, Marcel Dekker Inc., New York, 1995. |
[6] | Y. Gao, G. Zhang, Oscillation of nonlinear first order neutral difference equations, Appl. Math. E-Notes, 1 (2001), 5–10. |
[7] | D. A. Georgiou, E. A Grove, G. Ladas, Oscillations of neutral difference equations, Appl. Anal., 33 (1989), 243–253. https://doi.org/10.1080/00036818908839876 doi: 10.1080/00036818908839876 |
[8] | G. Gomathi Jawahar, Oscillation properties of certain types of first order neutral delay difference equations, Int. J. Sci. Eng. Res., 4 (2013), 1197–1201. |
[9] | I. Györi, G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford, 1991. |
[10] | J. R. Graef, E. Thandapani, S. Elizabeth, Oscillation of first order nonlinear neutral difference equations, Indian J. Pure Appl. Math., 36 (2005), 503–512. |
[11] | B. Karpuz, Sharp conditions for oscillation and nonoscillation of neutral difference equations, In: M. Bohner, S. Siegmund, R. Simon Hilscher, P. Stehlik, Difference equations and discrete dynamical systems with applications, ICDEA 2018, Springer Proceedings in Mathematics & Statistics, Vol. 312, Springer, Cham, 2020. https://doi.org/10.1007/978-3-030-35502-9_11 |
[12] | V. Kolmanovski, A. Myshkis, Introduction to the theory and applications of functional differential equations, Kluwer, Dordrecht, 1999. |
[13] | F. Kong, Existence of nonoscillatory solutions of a kind of first order neutral differential equation, Math. Commun., 22 (2017), 151–164. |
[14] | X. Lin, Oscillation of solutions of neutral difference equations with a nonlinear neutral term, Comput. Math. Appl., 52 (2006), 439–448. https://doi.org/10.1016/j.camwa.2006.02.009 doi: 10.1016/j.camwa.2006.02.009 |
[15] | Q. Li, C. Wang, F. Li, H. Liang, Z. Zhang, Oscillation of sublinear difference equations with positive neutral term, J. Appl. Math. Comput., 20 (2006), 305–314. https://doi.org/10.1007/BF02831940 doi: 10.1007/BF02831940 |
[16] | A. Murugesan, R. Suganthi, Oscillation behaviour of first order nonlinear functional neutral delay difference equations, Int. J. Differ. Equ., 12 (2017), 1–13. |
[17] | A. D. Myschkis, Lineare Differentialgleichungen mit nacheilendem Argument, VEB Deutscher Verlag der Wissenschaften, Berlin, 1955. |
[18] | S. S. Santra, D. Baleanu, K. M. Khedher, O. Moaaz, First-order impulsive differential systems: Sufficient and necessary conditions for oscillatory or asymptotic behavior, Adv. Differ. Equ., 2021 (2021), 283 https://doi.org/10.1186/s13662-021-03446-1 doi: 10.1186/s13662-021-03446-1 |
[19] | O. Öcalan, Oscillation criteria for systems of difference equations with variable coefficients, Appl. Math. E-Notes, 6 (2006), 119–125. |
[20] | O. Öcalan, O. Duman, Oscillation analysis of neutral difference equations with delays, Chaos, Solitons, Fract., 39 (2009), 261–270. https://doi.org/10.1016/j.chaos.2007.01.094 doi: 10.1016/j.chaos.2007.01.094 |
[21] | O. Öcalan, Linearized oscillation of nonlinear difference equation with advanced arguments, Arch. Math. (Brno), 45 (2009), 203–212. |
[22] | N. Parhi, A. K. Tripathy, Oscillation of forced nonlinear neutral delay difference equations of first order, Czech. Math. J., 53 (2003), 83–101. |
[23] | N. Parhi, A. K. Tripathy, Oscillation of a class neutral difference equations of higher order, J. Math. Anal. Appl., 28 (2003), 756–774. https://doi.org/10.1016/S0022-247X(03)00298-1 doi: 10.1016/S0022-247X(03)00298-1 |
[24] | H. Péics, Positive solutions of neutral delay difference equations, Novi. Sad. J. Math., 35 (2005), 111–122. |
[25] | S. H. Saker, M. A. Arahet, New oscillation criteria of first order neutral delay difference equations of Emden-Fowler type, J. Comput. Anal. Appl., 29 (2021), 252–265. |
[26] | S. S. Santra, D. Majumder, R. Bhattacharjee, T. Ghosh, Asymptotic behaviour for first-order difference equations I, In: Applications of networks, sensors and autonomous systems analytics, Studies in Autonomic, Data-driven and Industrial Computing, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-7305-4_4 |
[27] | X. H. Tang, X. Lin, Necessary and sufficient conditions for oscillation of first-order nonlinear neutral difference equations, Comput. Math. Appl., 55 (2008), 1279–1292. https://doi.org/10.1016/j.camwa.2007.06.009 doi: 10.1016/j.camwa.2007.06.009 |
[28] | M. K. Yildiz, H. Öğünmez, Oscillatory results of higher order nonlinear neutral delay difference equations with a nonlinear neutral term, Hacet. J. Math. Stat., 43 (2014), 809–814. |
[29] | G. Zhang, Oscillation for nonlinear neutral difference equations, Appl. Math. E-Notes, 2 (2002), 22–24. |