In the attractive research field of nonlinear differential equations, there are a few studies devoted to finding exact and explicit harmonic and isochronous periodic solutions and limit cycles. In this contribution, we present some classes of polynomial mixed Lienard-type differential equations that can generate many equations with exact solutions. These classes of equations constitute counterexamples of the classical existence theorems.
Citation: K. K. D. Adjaï, J. Akande, A. V. R. Yehossou, M. D. Monsia. Periodic solutions and limit cycles of mixed Lienard-type differential equations[J]. AIMS Mathematics, 2022, 7(8): 15195-15211. doi: 10.3934/math.2022833
In the attractive research field of nonlinear differential equations, there are a few studies devoted to finding exact and explicit harmonic and isochronous periodic solutions and limit cycles. In this contribution, we present some classes of polynomial mixed Lienard-type differential equations that can generate many equations with exact solutions. These classes of equations constitute counterexamples of the classical existence theorems.
[1] | D. W. Jordan, P. Smith, Nonlinear ordinary differential equations: An introduction for scientists and engineers, New York: Oxford University press, 2007. |
[2] | R. E. Mickens, Oscillations in planar dynamic systems, Vol. 37, Series on Advances in Mathematics for Applied Sciences, World Scientific, 1996. |
[3] | S. Saha, G. Gangopadhyay, D. S. Ray, Reduction of kinetic equations to Lienard-Levinson-Smith form: Counting limit cycles, Int. J. Appl. Comput. Math., 5 (2019), 2–11. https://doi.org/10.1007/s40819-019-0628-9 doi: 10.1007/s40819-019-0628-9 |
[4] | S. Saha, G. Gangopadhyay, Where the Lienard-Levinson-Smith (LLS) theorem cannot be applied for a generalised Lienard system, arXiv, 2021. https://doi.org/10.48550/arXiv.2104.06043 |
[5] | R. Benterki, J. Llibre, Centers and limit cycles of polynomial differential systems of degree 4 via averaging theory, J. Comput. Appl. Math., 313 (2016), 273–283. https://doi.org/10.1016/j.cam.2016.08.047 doi: 10.1016/j.cam.2016.08.047 |
[6] | N. Levinson, O. K. Smith, A general equation for relaxation oscillations, Duke Math. J., 9 (1942), 382–403. https://doi.org/10.1215/S0012-7094-42-00928-1 doi: 10.1215/S0012-7094-42-00928-1 |
[7] | G. Villari, F. Zanolin, On the qualitative behavior of a class of generalized lienard planar systems, J. Dyn. Differ. Equ., 34 (2021), 179–207. https://doi.org/10.1007/s10884-021-09984-2 doi: 10.1007/s10884-021-09984-2 |
[8] | K. K. D. Adjaï, J. Akande, M. Nonti, M. D. Monsia, Limit cycles of polynomial and nonpolynomial systems of differential equations, 2021. |
[9] | K. K. D. Adjaï, J. Akande, M. Nonti, M. D. Monsia, Truly nonlinear oscillators with limit cycles and harmonic solutions, 2021. |
[10] | J. Akande, K. K. D. Adjaï, A. V. R. Yehossou, M. D. Monsia, Limit cycles of truly nonlinear oscillator equations, 2021. |
[11] | J. Akande, K. K. D. Adjaï, M. Nonti, M. D. Monsia, Counter-examples to the existence theorems of limit cycles of differential equations, 2021. |
[12] | J. Akande, M. Nonti, K. K. D. Adjaï, M. D. Monsia, A modified hybrid Rayleigh-Van der Pol oscillator equation with exact harmonic solution, 2021. |