Research article

Equivalent characterizations of harmonic Teichmüller mappings

  • Received: 22 January 2022 Revised: 17 March 2022 Accepted: 27 March 2022 Published: 06 April 2022
  • MSC : Primary 30C62; Secondary 31A05, 31A35

  • In this paper, three equivalent conditions of $ \rho $-harmonic Teichmüller mapping are given firstly. As an application, we investigate the relationship between a $ \rho $-harmonic Teichmüller mapping and its associated holomorphic quadratic differential and obtain a relatively simple method to prove Theorem 2.1 in [1]. Furthermore, the representation theorem of $ 1/|\omega|^{2} $-harmonic Teichmüller mappings is given as a by-product. Our results extend the corresponding researches of harmonic Teichmüller mappings.

    Citation: Qingtian Shi. Equivalent characterizations of harmonic Teichmüller mappings[J]. AIMS Mathematics, 2022, 7(6): 11015-11023. doi: 10.3934/math.2022615

    Related Papers:

  • In this paper, three equivalent conditions of $ \rho $-harmonic Teichmüller mapping are given firstly. As an application, we investigate the relationship between a $ \rho $-harmonic Teichmüller mapping and its associated holomorphic quadratic differential and obtain a relatively simple method to prove Theorem 2.1 in [1]. Furthermore, the representation theorem of $ 1/|\omega|^{2} $-harmonic Teichmüller mappings is given as a by-product. Our results extend the corresponding researches of harmonic Teichmüller mappings.



    加载中


    [1] X. Chen, A. Fang, Harmonic Teichmüller mappings, Proc. Japan Acad. Ser. A Math. Sci., 82 (2006), 101–105. http://dx.doi.org/10.3792/pjaa.82.101 doi: 10.3792/pjaa.82.101
    [2] X. Chen, Hyperbolically bi-Lipschitz continuity for $1/|\omega|^{2}$-harmonic quasiconformal mappings, International Journal of Mathematics and Mathematical Sciences, 2012 (2012), 569481. http://dx.doi.org/10.1155/2012/569481 doi: 10.1155/2012/569481
    [3] J. Clunie, T. Sheil-Small, Harmonic univalent functions, Annales Academie Scientiarum Fennice Series A. I. Mathematica, 9 (1984), 3–25. http://dx.doi.org/10.5186/aasfm.1984.0905 doi: 10.5186/aasfm.1984.0905
    [4] P. Duren, Harmonic mappings in the plane, Cambridge: Cambridge University Press, 2004.
    [5] X. Feng, S. Tang, A note on the $\rho$-Nitsche conjecture, Arch. Math., 107 (2016), 81–88. http://dx.doi.org/10.1007/s00013-016-0906-2 doi: 10.1007/s00013-016-0906-2
    [6] D. Kalaj, M. Mateljević, Inner estimate and quasiconformal harmonic maps between smooth domains, J. Anal. Math., 100 (2006), 117–132. http://dx.doi.org/10.1007/BF02916757 doi: 10.1007/BF02916757
    [7] P. Li, L. Tam, Uniqueness and regularity of proper harmonic maps, Ann. Math., 137 (1993), 167–201. http://dx.doi.org/10.2307/2946622 doi: 10.2307/2946622
    [8] P. Li, L. Tam, Uniqueness and regularity of proper harmonic maps II, Indiana U. Math. J., 42 (1993), 591–635.
    [9] V. Markovic, Harmonic maps and the Schoen conjecture, J. Amer. Math. Soc., 30 (2017), 799–817. http://dx.doi.org/10.1090/jams/881 doi: 10.1090/jams/881
    [10] Y. Qi, Q. Shi, Quasi-isometricity and equivalent moduli of continuity of planar $1/|\omega|^2$-harmonic mappings, Filomat, 31 (2017), 335–345. http://dx.doi.org/10.2298/FIL1702335Y doi: 10.2298/FIL1702335Y
    [11] E. Reich, Quasiconformal mappings of the disk with given boundary values, In: Lecture notes in mathematics, Berlin: Springer, 1976,101–137. http://dx.doi.org/10.1007/BFb0081102
    [12] E. Reich, Harmonic mappings and quasiconformal mappings, J. Anal. Math., 60 (1993), 239–245. http://dx.doi.org/10.1007/BF02786611 doi: 10.1007/BF02786611
    [13] Q. Shi, Y. Qi, Quasihyperbolic quasi-isometry and Schwarz lemma of planar flat harmonic mappings, Filomat, 32 (2018), 5371–5383. http://dx.doi.org/10.2298/FIL1815371S doi: 10.2298/FIL1815371S
    [14] R. Schoen, S. Yau, Lectures on harmonic maps, Cambridge: American Mathematical Society Press, 1997.
    [15] V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Cham: Springer, 2019. http://dx.doi.org/10.1007/978-3-030-22591-9
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1361) PDF downloads(48) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog