In this paper, three equivalent conditions of $ \rho $-harmonic Teichmüller mapping are given firstly. As an application, we investigate the relationship between a $ \rho $-harmonic Teichmüller mapping and its associated holomorphic quadratic differential and obtain a relatively simple method to prove Theorem 2.1 in [
Citation: Qingtian Shi. Equivalent characterizations of harmonic Teichmüller mappings[J]. AIMS Mathematics, 2022, 7(6): 11015-11023. doi: 10.3934/math.2022615
In this paper, three equivalent conditions of $ \rho $-harmonic Teichmüller mapping are given firstly. As an application, we investigate the relationship between a $ \rho $-harmonic Teichmüller mapping and its associated holomorphic quadratic differential and obtain a relatively simple method to prove Theorem 2.1 in [
[1] | X. Chen, A. Fang, Harmonic Teichmüller mappings, Proc. Japan Acad. Ser. A Math. Sci., 82 (2006), 101–105. http://dx.doi.org/10.3792/pjaa.82.101 doi: 10.3792/pjaa.82.101 |
[2] | X. Chen, Hyperbolically bi-Lipschitz continuity for $1/|\omega|^{2}$-harmonic quasiconformal mappings, International Journal of Mathematics and Mathematical Sciences, 2012 (2012), 569481. http://dx.doi.org/10.1155/2012/569481 doi: 10.1155/2012/569481 |
[3] | J. Clunie, T. Sheil-Small, Harmonic univalent functions, Annales Academie Scientiarum Fennice Series A. I. Mathematica, 9 (1984), 3–25. http://dx.doi.org/10.5186/aasfm.1984.0905 doi: 10.5186/aasfm.1984.0905 |
[4] | P. Duren, Harmonic mappings in the plane, Cambridge: Cambridge University Press, 2004. |
[5] | X. Feng, S. Tang, A note on the $\rho$-Nitsche conjecture, Arch. Math., 107 (2016), 81–88. http://dx.doi.org/10.1007/s00013-016-0906-2 doi: 10.1007/s00013-016-0906-2 |
[6] | D. Kalaj, M. Mateljević, Inner estimate and quasiconformal harmonic maps between smooth domains, J. Anal. Math., 100 (2006), 117–132. http://dx.doi.org/10.1007/BF02916757 doi: 10.1007/BF02916757 |
[7] | P. Li, L. Tam, Uniqueness and regularity of proper harmonic maps, Ann. Math., 137 (1993), 167–201. http://dx.doi.org/10.2307/2946622 doi: 10.2307/2946622 |
[8] | P. Li, L. Tam, Uniqueness and regularity of proper harmonic maps II, Indiana U. Math. J., 42 (1993), 591–635. |
[9] | V. Markovic, Harmonic maps and the Schoen conjecture, J. Amer. Math. Soc., 30 (2017), 799–817. http://dx.doi.org/10.1090/jams/881 doi: 10.1090/jams/881 |
[10] | Y. Qi, Q. Shi, Quasi-isometricity and equivalent moduli of continuity of planar $1/|\omega|^2$-harmonic mappings, Filomat, 31 (2017), 335–345. http://dx.doi.org/10.2298/FIL1702335Y doi: 10.2298/FIL1702335Y |
[11] | E. Reich, Quasiconformal mappings of the disk with given boundary values, In: Lecture notes in mathematics, Berlin: Springer, 1976,101–137. http://dx.doi.org/10.1007/BFb0081102 |
[12] | E. Reich, Harmonic mappings and quasiconformal mappings, J. Anal. Math., 60 (1993), 239–245. http://dx.doi.org/10.1007/BF02786611 doi: 10.1007/BF02786611 |
[13] | Q. Shi, Y. Qi, Quasihyperbolic quasi-isometry and Schwarz lemma of planar flat harmonic mappings, Filomat, 32 (2018), 5371–5383. http://dx.doi.org/10.2298/FIL1815371S doi: 10.2298/FIL1815371S |
[14] | R. Schoen, S. Yau, Lectures on harmonic maps, Cambridge: American Mathematical Society Press, 1997. |
[15] | V. Todorčević, Harmonic quasiconformal mappings and hyperbolic type metrics, Cham: Springer, 2019. http://dx.doi.org/10.1007/978-3-030-22591-9 |