Processing math: 100%
Research article

Post-quantum Simpson's type inequalities for coordinated convex functions

  • Received: 23 September 2021 Accepted: 18 November 2021 Published: 24 November 2021
  • MSC : 26D10, 26A51, 26D15

  • In this paper, we prove some new Simpson's type inequalities for partial (p,q)-differentiable convex functions of two variables in the context of (p,q)-calculus. We also show that the findings in this paper are generalizations of comparable findings in the literature.

    Citation: Xue-Xiao You, Muhammad Aamir Ali, Ghulam Murtaza, Saowaluck Chasreechai, Sotiris K. Ntouyas, Thanin Sitthiwirattham. Post-quantum Simpson's type inequalities for coordinated convex functions[J]. AIMS Mathematics, 2022, 7(2): 3097-3132. doi: 10.3934/math.2022172

    Related Papers:

    [1] Xiaoyong Chen, Yating Li, Liang Liu, Yaqiang Wang . Infinity norm upper bounds for the inverse of SDD1 matrices. AIMS Mathematics, 2022, 7(5): 8847-8860. doi: 10.3934/math.2022493
    [2] Lanlan Liu, Yuxue Zhu, Feng Wang, Yuanjie Geng . Infinity norm bounds for the inverse of SDD+1 matrices with applications. AIMS Mathematics, 2024, 9(8): 21294-21320. doi: 10.3934/math.20241034
    [3] Dizhen Ao, Yan Liu, Feng Wang, Lanlan Liu . Schur complement-based infinity norm bounds for the inverse of S-Sparse Ostrowski Brauer matrices. AIMS Mathematics, 2023, 8(11): 25815-25844. doi: 10.3934/math.20231317
    [4] Yingxia Zhao, Lanlan Liu, Feng Wang . Error bounds for linear complementarity problems of SDD1 matrices and SDD1-B matrices. AIMS Mathematics, 2022, 7(7): 11862-11878. doi: 10.3934/math.2022662
    [5] Xinnian Song, Lei Gao . CKV-type B-matrices and error bounds for linear complementarity problems. AIMS Mathematics, 2021, 6(10): 10846-10860. doi: 10.3934/math.2021630
    [6] Man Chen, Huaifeng Chen . On ideal matrices whose entries are the generalized kHoradam numbers. AIMS Mathematics, 2025, 10(2): 1981-1997. doi: 10.3934/math.2025093
    [7] Yuanjie Geng, Deshu Sun . Error bounds for linear complementarity problems of strong SDD1 matrices and strong SDD1-B matrices. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384
    [8] Baijuan Shi . A particular matrix with exponential form, its inversion and some norms. AIMS Mathematics, 2022, 7(5): 8224-8234. doi: 10.3934/math.2022458
    [9] Lanlan Liu, Pan Han, Feng Wang . New error bound for linear complementarity problem of S-SDDS-B matrices. AIMS Mathematics, 2022, 7(2): 3239-3249. doi: 10.3934/math.2022179
    [10] Yanpeng Zheng, Xiaoyu Jiang . Quasi-cyclic displacement and inversion decomposition of a quasi-Toeplitz matrix. AIMS Mathematics, 2022, 7(7): 11647-11662. doi: 10.3934/math.2022649
  • In this paper, we prove some new Simpson's type inequalities for partial (p,q)-differentiable convex functions of two variables in the context of (p,q)-calculus. We also show that the findings in this paper are generalizations of comparable findings in the literature.



    We denote by (x,y) (resp. [x,y]) the greatest common divisor (resp. least common multiple) of any given integers x and y. Let a,b and n be positive integers and S={x1,...,xn} be a set of n distinct positive integers. Let f be an arithmetic function and we denote by (f(S)) (resp. (f[S])) the n×n matrix having f evaluated at (xi,xj) (resp. [xi,xj]) as its (i,j)-entry. Particularly, the n×n matrix (Sa)=((xi,xj)a), having the ath power (xi,xj)a as its (i,j) -entry, is called the ath power GCD matrix on S. The n×n matrix [Sa]=([xi,xj]a), having the ath power [xi,xj]a as its (i,j)-entry, is called the ath power LCM matrix on S. These are simply called the GCD matrix and LCM matrix respectively if a=1. The set S is said to be factor closed (FC) if it contains every divisor of x for any xS. The set S is said to be gcd closed (resp. lcm closed) if for all i and j, (xi,xj) (resp. [xi,xj]) is in S. Evidently, an FC set is gcd closed but not conversely. In 1875, Smith [33] published his famous theorem stating that the determinant of the GCD matrix (S) defined on the set S={1,...,n} is the product nk=1φ(k), where φ is Euler's totient function. Since then many interesting generalizations of Smith's determinant and related results have been published (see, for example, [1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32] and [34,35,36,37,38,39,40,41,42]).

    Divisibility is an important topic in the field of power GCD matrices and power LCM matrices. Bourque and Ligh [5] showed that if S is an FC set, then the GCD matrix (S) divides the LCM matrix [S] in the ring Mn(Z) of n×n matrices over the set Z of integers. That is, there exists an AMn(Z) such that [S]=(S)A or [S]=A(S). Hong [19] showed that such factorization is no longer true in general if S is gcd closed. Bourque and Ligh [8] extended their own result showing that if S is factor closed, then the power GCD matrix (Sa) divides the power LCM matrix [Sa] in the ring Mn(Z). The set S is called a divisor chain if there exists a permutation σ on {1,...,n} such that xσ(1)|...|xσ(n). Obviously a divisor chain is gcd closed but the converse is not true. For x,yS, and x<y, if x|y and the conditions x|d|y and dS imply that d{x,y}, then we say that x is a greatest-type divisor of y in S. For xS, we denote by GS(x) the set of all greatest-type divisors of x in S. By [19], we know that there is gcd-closed set S with maxxS{|GS(x)|}=2 such that (S)1[S]Mn(Z). In [26], Hong, Zhao and Yin showed that if S is gcd closed and maxxS{|GS(x)|}=1, then the GCD matrix (S) divides the LCM matrix [S] in Mn(Z). In [20], Hong showed that (f(S))|(f[S]) holds in the ring Mn(Z) when S is a divisor chain and f is an integer-valued multiplicative function satisfying that f(min(S))|f(x) for any xS.

    Hong [22] initiated the investigation of divisibility among power GCD matrices and among power LCM matrices. In fact, Hong [22] proved that the power GCD matrix (Sa) divides the power GCD matrix (Sb) if a|b and S is a divisor chain. Hong also showed that the power LCM matrix [Sa] divides the power LCM matrix [Sb] if a|b and S is a divisor chain. But such factorizations are not true if a|b and gcd(S)=1 as well |S|2, where by |S| and gcd(S) we denote the cardinality of the set S and the greatest common divisor of all the elements in S, respectively. We say that the set S consists of two coprime divisor chains if we can partition S as S=S1S2, where S1 and S2 are divisor chains and each element of S1 is coprime to each element of S2. Later on, Hong's results were extended by Tan et al. These results confirm partially Conjectures 4.2-4.4 of [22]. It was proved in [36] that if a|b, then (Sa)|(Sb), [Sa]|[Sb] and (Sa)|[Sb] hold in the ring Mn(Z) if and only if both xayb1xaya1 and xbya1xaya1 are integers, where S=S1S2 with S1 and S2 being divisor chains and x=min(S1) and y=min(S2). From this one can read that even though a|b and S consists of two coprime divisor chains, but if 1S, then the divisibility theorems among power GCD matrices and among power LCM matrices need not always hold. Meanwhile, Tan, Lin and Liu found surprisingly that the divisibility theorems among determinants of power GCD matrices and among determinants of power LCM matrices should always hold. That is, they showed that if a|b and S consists of two coprime divisor chains as well 1S, then det(Sa)|det(Sb), det[Sa]|det[Sb] and det(Sa)|det[Sb].

    The main aim of this paper is to generalize this interesting result to the matrices of the forms det(fa(S)) and det(fa[S]), where the arithmetic function fa is defined for any positive integer x by fa(x)=(f(x))a. We will study the divisibility among det(fa(S)) and det(fb(S)) and among det(fa[S]) and det(fb[S]) when a|b. We also investigate the divisibility among det(f(Sa)) and det(f(Sb)) and among det(f[Sa]) and det(f[Sb]) when a|b, where Sa:={xa|xS} is the ath power set of S. In particular, we show that if S consists of two coprime divisor chains with 1S and f is an integer-valued multiplicative function (see, for instance, [2]), then for any positive integer a, we have det(f(Sa))|det(f[Sa]). But it is unclear whether or not the n×n matrix (f[Sa]) is divisible by the n×n matrix (f(Sa)) in the ring Mn(Z) when S consists of two coprime divisor chains with 1S and f is integer-valued and multiplicative. This problem remains open. We guess that the answer to this question is affirmative.

    This paper is organized as follows. First of all, we recall in Section 2 Hong's formulas for det(f(S)) and det(f[S]) when S is gcd closed, and then use them to give formulae for the determinants of matrices associated with arithmetic functions on divisor chains. Consequently, in Section 3, we use these results to derive the formulae for the determinants of matrices associated with arithmetic functions on two coprime divisor chains. The final section is to present the main results and their proofs. Our results extend Hong's results[20,22] and the Tan-Lin-Liu results [36].

    In the close future, we will explore the divisibility among the power matrices associated with integer-valued arithmetic functions.

    In the present section, we provide formulas for the determinants of matrices associated with arithmetic functions on divisor chains. For this purpose, we need the concept of greatest-type divisor introduced by Hong in 1996 (see, for example, [16] and [17]). Notice that the concept of greatest-type divisor played central roles in Hong's solution [16,17] to the Bourque-Ligh conjecture [5], in Cao's partial answer [9] to Hong's conjecture [18] as well as in Li's partial answer [28] to Hong's conjecture [21]. We begin with the following formulas due to Hong.

    Lemma 2.1. ([21]) Let f be an arithmetic function and S be a gcd-closed set. Then

    det(f(S))=xSJGS(x)(1)|J|f(gcd(J{x})))

    and if f is multiplicative, then

    det(f[S])=xSf(x)2JGS(x)(1)|J|f(gcd(J{x})).

    We can now use Hong's formulae to deduce the formulae for det(Sa) and det[Sa] when S is a divisor chain.

    Theorem 2.2. Let f be an arithmetic function and S={x1,...,xn} be a divisor chain such that x1|...|xn and n2. Then

    det(f(S))=f(x1)ni=2(f(xi)f(xi1))

    and if f is multiplicative, then

    det(f[S])=(1)n1f(xn)ni=2(f(xi)f(xi1)).

    Proof. Since x1|x2|...|xn, we have GS(x1)=ϕ and GS(xi)={xi1} for 2in. Then Theorem 2.2 follows immediately from Lemma 2.1.

    This completes the proof of Theorem 2.2.

    In this section, we give the formulae calculating the determinants of matrices associated with arithmetic functions on two coprime divisor chains.

    Theorem 3.1. Let f be an arithmetic function and S={x1,...,xn,y1,...,ym}, where x1|...|xn, y1|...|ym and gcd(xn,ym)=1. Then

    det(f(S))=(f(x1)f(y1)f(1)2)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj)))

    and if f is multiplicative, then

    det(f[S])=(1)m+n1f(xn)f(ym)(f(x1)f(y1)1)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj))).

    Proof. Write Si:={x1,...,xi} and Tj:={y1,...,yj} for all integers i and j with 1in and 1jm. Then S=SnTm.

    First let n=1. Then

    det(f(S))=det(f(S1Tm))=det(f(x1)f(1)f(1)f(1)f(1)f(y1)f(y1)f(y1)f(1)f(y1)f(y2)f(y2)f(1)f(y1)f(y2)f(ym)).

    Let f(y1)=0. If m=1, then it is clear that

    det(f(S))=f(x1)f(y1)f(1)2

    as expected. If m2, then we can calculate that

    det(f(S))=f(1)2det(f(˜Tm1)),

    where ˜Tm1:=Tm{y1}. If m=2, then det(f(S))=f(1)2f(y2) since det(f(˜T1))=f(y2). If m3, then it follows from Theorem 2.2 that

    det(f(S))=f(1)2f(y2)m1j=2(f(yj+1)f(yj))

    as desired.

    Now let f(y1)0. Then replacing the first row by the sum of itself and f(1)f(y1) multiple of the second row and using Theorem 2.2, one arrives at

    det(f(S))=det(f(x1)f(1)2f(y1)000f(1)f(y1)f(y1)f(y1)f(1)f(y1)f(y2)f(y2)f(1)f(y1)f(y2)f(ym))=(f(x1)f(1)2f(y1))det(f(Tm))=(f(x1)f(1)2f(y1))f(y1)m1j=1(f(yj+1)f(yj))=(f(x1)f(y1)f(1)2)m1j=1(f(yj+1)f(yj))

    as required. Thus the first formula of Theorem 3.1 is true when n=1.

    Consequently, let n>1. Then we deduce that

    det(f(S))=det(f(SnTm))=det(f(x1)f(x1)f(x1)f(x1)f(1)f(1)f(1)f(x1)f(x2)f(x2)f(x2)f(1)f(1)f(1)f(x1)f(x2)f(xn1)f(xn1)f(1)f(1)f(1)f(x1)f(x2)f(xn1)f(xn)f(1)f(1)f(1)f(1)f(1)f(1)f(1)f(y1)f(y1)f(y1)f(1)f(1)f(1)f(1)f(y1)f(y2)f(y2)f(1)f(1)f(1)f(1)f(y1)f(y2)f(ym)).

    Replacing nth row by the sum of itself and (1) multiple of (n1)th row gives us that

    det(f(S))=det(f(x1)f(x1)f(x1)f(x1)f(1)f(1)f(1)f(x1)f(x2)f(x2)f(x2)f(1)f(1)f(1)f(x1)f(x2)f(xn1)f(xn1)f(1)f(1)f(1)000f(xn)f(xn1)000f(1)f(1)f(1)f(1)f(y1)f(y1)f(y1)f(1)f(1)f(1)f(1)f(y1)f(y2)f(y2)f(1)f(1)f(1)f(1)f(y1)f(y2)f(ym))=(f(xn)f(xn1))det(f(Sn1Tm))=(f(xn)f(xn1))(f(xn1)f(xn2))(f(x2)f(x1))det(f(S1Tm))=(f(x1)f(y1)f(1)2)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj)))

    as desired. This concludes the proof of the first part of Theorem 3.1.

    We are now in the position to show the second part of Theorem 3.1. Since f is multiplicative, one has f(1)=1 and

    f(gcd(xi,xj))f(lcm(xi,xj))=f(xi)f(xj).

    It then follows that

    (f[S])=Λ(1f(S))Λ,

    where

    Λ:=diag(f(x1),...,f(xn),f(y1),...,f(ym))

    is the (n+m)×(n+m) diagonal matrix with f(x1),...,f(xn),f(y1),...,f(ym) as its diagonal elements. Therefore

    det(f[S])=(ni=1f2(xi))(mj=1f2(yj))det(1f(S)).

    By the first part of Theorem 3.1, one derives that

    det(1f(S))=(1f(x1)f(y1)1f2(1))n1i=1(1f(xi+1)1f(xi))m1j=1(1f(yj+1)1f(yj))=1f(x1)f(y1)f(x1)f(y1)n1i=1(f(xi)f(xi+1))f(x1)f2(x2)f2(xn1)f(xn)m1j=1(f(yj)f(yj+1))f(y1)f2(y2)f2(ym1)f(ym).

    So we obtain that

    det(f[S])=(ni=1f2(xi))(mj=1f2(yj))×1f(x1)f(y1)f(x1)f(y1)n1i=1(f(xi)f(xi+1))f(x1)f2(x2)f2(xn1)f(xn)m1j=1(f(yj)f(yj+1))f(yj)f2(y2)f2(ym1)f(ym)=(1)m+n1f(xn)f(ym)(f(x1)f(y1)1)(n1i=1(f(xi+1)f(xi)))(m1j=1(f(yj+1)f(yj)))

    as desired.

    This ends the proof of Theorem 3.1.

    In this last section, we first study the divisibility among determinants of power matrices associated with integer-valued arithmetic functions. We begin with the following result that is the first main result of this section.

    Theorem 4.1. Let f be an integer-valued arithmetic function and let a and b be positive integers such that a|b. Let S consist of two coprime divisor chains with 1S. Then det(fa(S))|det(fb(S)). Furthermore, if f is multiplicative, then det(fa[S])|det(fb[S]) and det(fa(S))|det(fb[S]).

    Proof. Since S consists of two coprime divisor chains and 1S, without loss of any generality, we may let S={x1,...,xn,y1,...,ym}, where x1|...|xn, y1|...|ym and gcd(xn,ym)=1. Then with f replaced by fa and fb, Theorem 3.1 tells us that

    det(fa(S))=(fa(x1)fa(y1)f(1)2a)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj))),
    det(fb(S))=(fb(x1)fb(y1)f(1)2b)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj))),
    det(fa[S])=(1)m+n1fa(xn)fa(ym)(fa(x1)fa(y1)1)×(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))

    and

    det(fb[S])=(1)m+n1fb(xn)fb(ym)(fb(x1)fb(y1)1)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj))).

    Now let det(fa(S))=0. Then fa(x1)fa(y1)f(1)2a=0, or fa(xi+1)fa(xi)=0 for some integer i with 1in1, or fa(yj+1)fa(yj))=0 for some integer j with 1jm1. Since a|b, one then deduces that fb(x1)fb(y1)f(1)2b=0, or fb(xi+1)fb(xi)=0 for some integer i with 1in1, or fb(yj+1)fb(yj))=0 for some integer j with 1jm1. Thus det(fb(S))=det(fb[S])=0 which infers that det(fa(S))|det(fb(S)), det(fa[S])|det(fb[S]) and det(fa(S))|det(fb[S]) as desired. Likewise, if det(fa[S])=0, then we can deduce that det(fb[S])=0. Hence det(fa[S])|det(fb[S]) as expected. So Theorem 4.1 holds in this case.

    In what follows, we let det(fa(S))0 and det(fa[S])0. Since a|b, we may let b=ka for some integer k. Therefore

    det(fb(S))det(fa(S))=(fb(x1)fb(y1)f(1)2b)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj)))(fa(x1)fa(y1)f(1)2a)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(fka(x1)fka(y1)f(1)2ka)(n1i=1(fka(xi+1)fka(xi)))(m1j=1(fka(yj+1)fka(yj)))(fa(x1)fa(y1)f(1)2a)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(kt=1(f(x1)f(y1))(kt)af2(t1)a(1))(n1i=1kt=1(f(xi+1))(kt)af(t1)a(xi))×(m1j=1kt=1(f(yj+1))(kt)af(t1)a(yj))Z.

    This implies that det(fa(S))|det(fb(S)).

    Similarly, if f is multiplicative and integer-valued, then one deduces that f(1)=1,

    det(fb[S])det(fa[S])=fb(xn)fb(ym)(fb(x1)fb(y1)1)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj)))fa(xn)fa(ym)(fa(x1)fa(y1)1)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(f(xn)f(ym))(k1)a(kt=1(f(x1)f(y1))(kt)a)(n1i=1kt=1(f(xi+1))(kt)af(t1)a(xi))×(m1j=1kt=1(f(yj+1))(kt)af(t1)a(yj))Z

    and

    det(fb[S])det(fa(S))=(1)m+n1×fb(xn)fb(ym)(fb(x1)fb(y1)1)(n1i=1(fb(xi+1)fb(xi)))(m1j=1(fb(yj+1)fb(yj)))(fa(x1)fa(y1)1)(n1i=1(fa(xi+1)fa(xi)))(m1j=1(fa(yj+1)fa(yj)))=(1)m+n1fb(xn)fb(ym)(kt=1(f(x1)f(y1))(kt)a)×(n1i=1kt=1(f(xi+1))(kt)af(t1)a(xi))(m1j=1kt=1(f(yj+1))(kt)af(t1)a(yj))Z

    as one requires. Thus Theorem 4.1 is true if det(fa(S))0 and det(fa[S])0.

    This finishes the proof of Theorem 4.1.

    We point out that the condition a|b in Theorem 4.1 is not necessary as the following example shows.

    Example 4.1. (ⅰ). Let f(x)=x+1, a=2,b=5 and S={2,4,3}. Then a|b. Clearly, one has

    (f2(S))=(99492544416) and (f5(S))=(2432433224331253232321024).

    So we can compute and get that

    det(f2(S))=2048 and det(f5(S))=714182656.

    Hence

    det(f5(S))det(f2(S))=348722Z.

    That is, one has det(f2(S))|det(f5(S)).

    (ⅱ). Let f(x)=φ(x), a=2,b=3 and S={2,4,7}. Then a|b and

    (φ2(S))=(1111411136),(φ2[S])=(1436441443614436)

    and

    (φ3[S])=(182168817282161728216).

    One can easily calculate and obtain that

    det(φ2(S))=105,det(φ2[S])=15120 and det(φ3[S])=2600640.

    Thus

    det(φ3[S])det(φ2(S))=24768Z and det(φ3[S])det(φ2[S])=172Z.

    In other words, we have det(φ2[S])|det(φ3[S]) and det(φ2(S))|det(φ3[S]).

    It is also remarked that the condition that f is multiplicative in Theorem 4.1 is necessary as the following example shows.

    Example 4.2. Letting f(x):=x+1, a:=1,b:=3 and S:={2,4,3} gives us that

    (f(S))=(332352224),(f[S])=(35755137134)

    and

    (f3(S))=(272782712588864),(f3[S])=(271253431251252197343219764).

    So we obtain that det(f(S))=16,det(f[S])=118,det(f3(S))=163072 and det(f3[S])=42578782. Thus

    det(f3(S))det(f(S))=10192Z,det(f3[S])det(f(S))=212893918Z and det(f3[S])det(f[S])=2128939159Z.

    So det(f(S))|det(f3(S)), det(f(S))|det(f3[S]) and det(f[S])|det(f3[S]).

    Subsequently, we explore the divisibility of determinants of the matrices associated to the integer-valued multiplicative function on the power set Sa. We present the second main result of this section as follows.

    Theorem 4.2. Let f be an integer-valued arithmetic function and let a and b be positive integers such that a|b. Let S consist of two coprime divisor chains with 1S. Then each of the following is true:

    (ⅰ). If f is multiplicative, then det(f(Sa))|det(f[Sa]).

    (ⅱ). If f is completely multiplicative, then we have det(f(Sa))|det(f(Sb)), det(f[Sa])|det(f[Sb]) and det(f(Sa))|det(f[Sb]).

    Moreover, there exist multiplicative functions f, positive integers a and b with a|b and b>a, and a set S consisting of two coprime divisor chains with 1S, such that det(f(Sa))det(f(Sb)), det(f[Sa])det(f[Sb]) and det(f(Sa))det(f[Sb]).

    Proof. We begin with the proof of the first part of Theorem 4.2.

    (ⅰ). Since S consists of two coprime divisor chains with 1S, the power set Sa consists of two coprime divisor chains with gcd(Sa)=1Sa. Furthermore, since f is multiplicative, one has either f(1)=0 or f(1)=1. If f(1)=0, then f is the zero function and so one has det(f(Sa))=det(f[Sa])=0. Thus det(f(Sa))|det(f[Sa]) as desired. Now let f(1)=1. Then by Lemma 3.1, we have

    (1)m+n1f(xan)f(yam)det(f(Sa))=(1)m+n1f(xan)f(yam)(f(xa1)f(ya1)1)(n1i=1(f(xai+1)f(xai)))(m1j=1(f(yaj+1)f(yaj)))=det(f[Sa])

    However, since f is integer valued, one has f(xan)f(yam)Z. Therefore the desired result det(f(Sa))|det(f[Sa]) follows. Part (ⅰ) is proved.

    (ⅱ). If f is complete multiplicative, then it is clear that f(xa)=fa(x) for any positive integers a and x. So one has

    (f(Sa))=(fa(S)),(f(Sb))=(fb(S)),(f[Sa])=(fa[S]) and (f[Sb])=(fb[S]).

    Since a|b and S consists of two coprime divisor chains with 1S, it then follows from Theorem 4.1 that det(fa(S))|det(fb(S)), det(fa[S])|det(fb[S]) and det(fa(S))|det(fb[S]). Thus the desired results det(f(Sa))|det(f(Sb)), det(f[Sa])|det(f[Sb]) and det(f(Sa))|det(f[Sb]) follow immediately. Part (ⅱ) is proved.

    Finally, we turn our attention to the proof of the second part of Theorem 4.2. Letting S:={2,4,3} and a:=2,b:=4 gives us that

    (S)=(221241113),(S2)=(4414161119),(S4)=(161611625611181)

    and

    [S]=(24644126123),[S2]=(416361616144361449),[S4]=(1625612962562562073612962073681).

    Therefore picking f=φ to be the Euler's totient function tells us that

    (f(S2))=(φ(S2))=(221281116),(f(S4))=(φ(S4))=(881812811154)

    and

    (f[S2])=(φ[S2])=(2812884812486),(f[S4])=(φ[S4])=(81284321281286912432691254).

    So one deduces that

    det(f(Sb))det(f(Sa))=det(φ(S4))det(φ(S2))=5172066=862011Z,
    det(f[Sb])det(f[Sa])=det(φ[S4])det(φ[S2])=3574886403168=124128011Z

    and

    det(f[Sb])det(f(Sa))=det(φ[S4])det(φ(S2))=35748864066=5958144011Z.

    So det(f(Sa))det(f(Sb)), det(f[Sa])det(f[Sb]) and det(f(Sa))det(f[Sb]) as desired.

    This concludes the proof of Theorem 4.2.

    Remark 4.3. (ⅰ). If S consists of at least three coprime divisor chains, then the divisibility result in Theorem 4.2 (i) may be false. For instance, letting S:={2,4,3,5} and a:=2 gives us that

    (φ(S2))=(22112811116111120) and (φ[S2])=(2812408848160124861204016012020).

    Hence

    det(φ[S2])det(φ(S2))=148320107Z.

    That is, det(φ(S2))|det(φ[S2]).

    On the other hand, the condition that f is multiplicative in Theorem 4.2 (i) is necessary. For example, let f(x):=x+1 and S:={2,4,3},a:=1. Then f is not multiplicative and

    det(f[S])det(f(S))=598Z.

    Hence det(f(S))|det(f[S]).

    (ⅱ). We remark that the condition a|b is not necessary for the divisibility result in Theorem 4.2 (ii). For example, letting f(x):=x,S:={2,6,5},a:=2 and b:=5 gives us that

    (S2)=(44143611125),(S5)=(323213277761113125)

    and

    [S2]=(436100363690010090025),[S5]=(3277761000007776777624300000100000243000003125).

    Then we compute and get that

    det((S5))det((S2))=244442Z,det([S5])det([S2])=659993400Z and det([S5])det((S2))=5939940600000Z.

    It follows immediately that det((S2))|det((S5)),det([S2])|det([S5]) and det((S2))|det([S5]).

    The authors would like to thank the anonymous referees for careful readings of the manuscript and helpful comments. S.F. Hong was supported partially by National Science Foundation of China Grant # 11771304.

    We declare that we have no conflict of interest.



    [1] S. S. Dragomir, R. P. Agarwal, P. Cerone, On Simpson's inequality and applications, J. Inequal. Appl., 5 (2000), 533–579. doi: 10.1155/S102558340000031X. doi: 10.1155/S102558340000031X
    [2] M. Alomari, M. Darus, S. S. Dragomir, New inequalities of Simpson's type for s-convex functions with applications, RGMIA Res Rep Coll., 2 (2009).
    [3] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for convex functions, RGMIA Res. Rep. Coll., 13 (2010).
    [4] S. Erden, S. Iftikhar, M. R. Delavar, P. Kumam, P. Thounthong, W. Kumam, On generalizations of some inequalities for convex functions via quantum integrals, RACSAM, 114 (2020), 1–15. doi: 10.1007/s13398-020-00841-3. doi: 10.1007/s13398-020-00841-3
    [5] S. Iftikhar, S. Erden, P. Kumam, M. U. Awan, Local fractional Newton's inequalities involving generalized harmonic convex functions, Adv. Differ. Equ., 2020 (2020), 1–14. doi: 10.1186/s13662-020-02637-6. doi: 10.1186/s13662-020-02637-6
    [6] M. E. Özdemir, A. O. Akdemir, H. Kavurmaci, M. Avci, On the Simpson's inequality for co-ordinated convex functions, 2010, arXiv preprint arXiv: 1101.0075.
    [7] T. A. Ernst, Comprehensive Treatment of q -Calculus, Springer, Basel, 2012.
    [8] V. Kac, P. Cheung, Quantum calculus, Springer, New York, 2002.
    [9] F. Benatti, M. Fannes, R. Floreanini, D. Petritis, Quantum information, computation and cryptography: An introductory survey of theory, technology and experiments, Springer Science and Business Media, 2010.
    [10] A. Bokulich, G. Jaeger, Philosophy of quantum information theory and entaglement, Cambridge Uniersity Press, 2010.
    [11] T. A. Ernst, The History of q-Calculus and New Method, Sweden: Department of Mathematics, Uppsala University, 2000.
    [12] F. H. Jackson, On a q-definite integrals, Quart. J. Pure Appl. Math., 41 (1910), 193–203.
    [13] W. Al-Salam, Some fractional q -integrals and q-derivatives, Proc. Edinburgh Math. Soc., 15 (1966), 135–140. doi: 10.1017/S0013091500011469. doi: 10.1017/S0013091500011469
    [14] J. Tariboon, S. K. Ntouyas, Quantum calculus on finite intervals and applications to impulsive difference equations, Adv. Differ. Equ., 2013 (2013), 1–19. doi: 10.1186/1687-1847-2013-282. doi: 10.1186/1687-1847-2013-282
    [15] S. Bermudo, P. Kórus, J. N. Valdés, On q -Hermite-Hadamard inequalities for general convex functions, Acta Math. Hung. 162 (2020), 364–374. doi: 10.1007/s10474-020-01025-6. doi: 10.1007/s10474-020-01025-6
    [16] P. N. Sadjang, On the fundamental theorem of (p,q) -calculus and some (p,q)-Taylor formulas, Results Math., 73 (2018), 1–21.
    [17] J. Soontharanon, T. Sitthiwirattham, On Fractional (p,q)-Calculus, Adv. Differ. Equ., 2020 (2020), 1–18. doi: 10.1186/s13662-020-2512-7. doi: 10.1186/s13662-020-2512-7
    [18] M. Tunç, E. Göv, Some integral inequalities via (p,q)-calculus on finite intervals, RGMIA Res. Rep. Coll., 19 (2016), 1–12.
    [19] Y-M. Chu, M. U. Awan, S. Talib, M. A. Noor, K. I Noor, New post quantum analogues of Ostrowski-type inequalities using new definitions of left–right (p,q)-derivatives and definite integrals, Adv. Differ. Equ., 2020 (2020), 1–15. doi: 10.1186/s13662-020-03094-x. doi: 10.1186/s13662-020-03094-x
    [20] M. A. Ali, H. Budak, M. Abbas, Y.-M. Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qπ2-derivatives, Adv. Differ. Equ., 2021 (2021), 1–12. doi: 10.1186/s13662-020-03163-1. doi: 10.1186/s13662-020-03163-1
    [21] M. A. Ali, N. Alp, H. Budak, Y-M. Chu, Z. Zhang, On some new quantum midpoint type inequalities for twice quantum differentiable convex functions, Open Math., 19 (2021), 427–439. doi: 10.1515/math-2021-0015. doi: 10.1515/math-2021-0015
    [22] N. Alp, M. Z. Sarikaya, M. Kunt, İ. İșcan, q-Hermite Hadamard inequalities and quantum estimates for midpoint type inequalities via convex and quasi-convex functions, J. King Saud University–Science, 30 (2018), 193–203. doi: 10.1016/j.phycom.2018.09.002. doi: 10.1016/j.phycom.2018.09.002
    [23] N. Alp, M. Z. Sarikaya, Hermite Hadamard's type inequalities for co-ordinated convex functions on quantum integral, Appl. Math. E-Notes, 20 (2020), 341–356.
    [24] H. Budak, Some trapezoid and midpoint type inequalities for newly defined quantum integrals, Proyecciones, 40 (2021), 199–215. doi: 10.22199/issn.0717-6279-2021-01-0013. doi: 10.22199/issn.0717-6279-2021-01-0013
    [25] H. Budak, M. A. Ali, M. Tarhanaci, Some new quantum Hermite-Hadamard-like inequalities for coordinated convex functions, J. Optim. Theory Appl., 186 (2020), 899–910. doi: 10.1007/s10957-020-01726-6. doi: 10.1007/s10957-020-01726-6
    [26] S. Jhanthanam, J. Tariboon, S. K. Ntouyas, K. Nonlapon, On q-Hermite-Hadamard inequalities for differentiable convex functions, Mathematics, 7 (2019), 632. doi: 10.3390/math7070632. doi: 10.3390/math7070632
    [27] W. Liu, Z. Hefeng, Some quantum estimates of Hermite-Hadamard inequalities for convex functions, J. Appl. Anal. Comput., 7 (2016), 501–522. doi: 10.11948/2017031. doi: 10.11948/2017031
    [28] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum estimates for Hermite-Hadamard inequalities, Appl. Math. Comput., 251 (2015), 675–679. doi: 10.1016/j.amc.2014.11.090. doi: 10.1016/j.amc.2014.11.090
    [29] M. A. Noor, K. I. Noor, M. U. Awan, Some quantum integral inequalities via preinvex functions, Appl. Math. Comput., 269 (2015), 242–251. doi: 10.1016/j.amc.2015.07.078. doi: 10.1016/j.amc.2015.07.078
    [30] E. R. Nwaeze, A. M. Tameru, New parameterized quantum integral inequalities via η-quasiconvexity, Adv. Differ. Equ., 2019 (2019), 1–12. doi: 10.1186/s13662-019-2358-z. doi: 10.1186/s13662-019-2358-z
    [31] M. A. Khan, M. Noor, E. R. Nwaeze, Y-M. Chu, Quantum Hermite–Hadamard inequality by means of a Green function, Adv. Differ. Equ-NY, 2020 (2020), 1–20. doi: 10.1186/s13662-020-02559-3. doi: 10.1186/s13662-020-02559-3
    [32] H. Budak, S. Erden, M. A. Ali, Simpson and Newton type inequalities for convex functions via newly defined quantum integrals, Math. Meth. Appl. Sci., 44 (2020), 378–390. doi: 10.1002/mma.6742. doi: 10.1002/mma.6742
    [33] M. A. Ali, H. Budak, Z. Zhang, H. Yildrim, Some new Simpson's type inequalities for co-ordinated convex functions in quantum calculus, Math. Meth. Appl. Sci., 44 (2021), 4515–4540. doi: 10.1002/mma.7048. doi: 10.1002/mma.7048
    [34] M. A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza, Y-M. Chu, New quantum boundaries for quantum Simpson's and quantum Newton's type inequalities for preinvex functions, Adv. Differ. Equ., 2021 (2021), 1–21. doi: 10.1186/s13662-021-03226-x. doi: 10.1186/s13662-021-03226-x
    [35] M. Vivas-Cortez, M. A. Ali, A. Kashuri, I. B. Sial, Z. Zhang, Some New Newton's Type Integral Inequalities for Co-Ordinated Convex Functions in Quantum Calculus, Symmetry, 12 (2020), 1476. doi: 10.3390/sym12091476. doi: 10.3390/sym12091476
    [36] M. A. Ali, Y.-M. Chu, H. Budak, A. Akkurt, H.Yildrim, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, Adv. Differ. Equ., 2021 (2021), 1–26. doi: 10.1186/s13662-020-03195-7. doi: 10.1186/s13662-020-03195-7
    [37] M. A. Ali, H. Budak, A. Akkurt, Y-M. Chu, Quantum Ostrowski type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. doi: 10.1515/math-2021-0020. doi: 10.1515/math-2021-0020
    [38] H. Budak, M. A. Ali, T. Tunç, Quantum Ostrowski-type integral inequalities for functions of two variables, Math. Meth. Appl. Sci., 44 (2021), 5857–5872. doi: 10.1002/mma.7153. doi: 10.1002/mma.7153
    [39] H. Budak, M. A. Ali, N. Alp, Y.-M. Chu, Quantum Ostrowski type integral inequalities, J. Math. Inequal., 2021, in press.
    [40] M. Kunt, İ. İșcan, N. Alp, M. Z. Sarikaya, (p,q)Hermite-Hadamard inequalities and (p,q) estimates for midpoint inequalities via convex quasi-convex functions, Rev. R. Acad. Cienc. Exactas F s. Nat. Ser. A Mat. RACSAM, 112 (2018), 969–992.
    [41] M. A. Latif, M. Kunt, S. S. Dragomir, İ. İș can, Post-quantum trapezoid type inequalities, AIMS Mathematics, 5 (2020), 4011–4026. doi: 10.3934/math.2020258. doi: 10.3934/math.2020258
    [42] M. A. Latif, S. S. Dragomir, E. Momoniat, Some q-analogues of Hermite-Hadamard inequality of functions of two variables on finite rectangles in the plane, J. King Saud University–Science, 29 (2017), 263–273.
    [43] M. Vivas-Cortez, M. A. Ali, H. Kalsoom, H. Budak, M. Z. Sarikaya, H. Benish, Trapezoidal type inequalities for co-ordinated convex functions via quantum calculus, Math. Probl. Eng., 2021, in press.
    [44] M. Vivas-Cortez, M. A. Ali, H. Budak, H. Kalsoom, P. Agarwal, Some New Hermite–Hadamard and Related Inequalities for Convex Functions via (p,q)-Integral, Entropy, 23 (2021), 828. doi: 10.3390/e23070828. doi: 10.3390/e23070828
    [45] H. Kalsoom, S. Rashid, M. Idrees, F. Safdar, S. Akram, D. Baleanu, et al., Post quantum inequalities of Hermite-Hadamard type associated with co-ordinated higher-order generalized strongly pre-invex and quasi-pre-invex mappings, Symmetry, 12 (2020), 443. doi: 10.3390/sym12030443. doi: 10.3390/sym12030443
    [46] F. Wannalookkhee, K. Nonlaopon, J. Tariboon, S. K. Ntouyas, On Hermite-Hadamard type inequalities for coordinated convex functions via (p,q)-calculus, Mathematics, 9 (2021), 698. doi: 10.3390/math9070698. doi: 10.3390/math9070698
    [47] M. A. Ali, H. Budak, I. B. Sial, Post-quantum Ostrowski type integral inequalities for functions of two variables, Authorea Preprints, 2021.
  • This article has been cited by:

    1. Fongchan Wannalookkhee, Kamsing Nonlaopon, Mehmet Zeki Sarikaya, Hüseyin Budak, Muhammad Aamir Ali, On some new quantum trapezoid-type inequalities for q-differentiable coordinated convex functions, 2023, 2023, 1029-242X, 10.1186/s13660-023-02917-1
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1920) PDF downloads(74) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog