Research article Special Issues

Supercongruences involving Apéry-like numbers and binomial coefficients

  • Received: 21 July 2021 Accepted: 29 October 2021 Published: 18 November 2021
  • MSC : 05A19, 11A07, 11B65, 11B68, 11E25

  • Let $ \{S_n\} $ be the Apéry-like sequence given by $ S_n = \sum_{k = 0}^n\binom nk\binom{2k}k\binom{2n-2k}{n-k} $. We show that for any odd prime $ p $, $ \sum_{n = 1}^{p-1}\frac {nS_n}{8^n}{\equiv} (1-(-1)^{\frac{p-1}2})p^2\ (\text{ mod}\ {p^3}) $. Let $ \{Q_n\} $ be the Apéry-like sequence given by $ Q_n = \sum_{k = 0}^n\binom nk(-8)^{n-k}\sum_{r = 0}^k\binom kr^3 $. We establish many congruences concerning $ Q_n $. For an odd prime $ p $, we also deduce congruences for $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k}\ (\text{ mod}\ {p^3}) $, $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(k+1)^2}\ (\text{ mod}\ {p^2}) $ and $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(2k-1)}\ (\text{ mod}\ p) $, and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.

    Citation: Zhi-Hong Sun. Supercongruences involving Apéry-like numbers and binomial coefficients[J]. AIMS Mathematics, 2022, 7(2): 2729-2781. doi: 10.3934/math.2022153

    Related Papers:

  • Let $ \{S_n\} $ be the Apéry-like sequence given by $ S_n = \sum_{k = 0}^n\binom nk\binom{2k}k\binom{2n-2k}{n-k} $. We show that for any odd prime $ p $, $ \sum_{n = 1}^{p-1}\frac {nS_n}{8^n}{\equiv} (1-(-1)^{\frac{p-1}2})p^2\ (\text{ mod}\ {p^3}) $. Let $ \{Q_n\} $ be the Apéry-like sequence given by $ Q_n = \sum_{k = 0}^n\binom nk(-8)^{n-k}\sum_{r = 0}^k\binom kr^3 $. We establish many congruences concerning $ Q_n $. For an odd prime $ p $, we also deduce congruences for $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k}\ (\text{ mod}\ {p^3}) $, $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(k+1)^2}\ (\text{ mod}\ {p^2}) $ and $ \sum_{k = 0}^{p-1}\binom{2k}k^3\frac 1{64^k(2k-1)}\ (\text{ mod}\ p) $, and pose lots of conjectures on congruences involving binomial coefficients and Apéry-like numbers.



    加载中


    [1] S. Ahlgren, Gaussian hypergeometric series and combinatorial congruences, In: Symbolic computation, number theory, special functions, physics and combinatorics, Dordrecht: Kluwer, 2001, 1–12. doi: 10.1007/978-1-4613-0257-5_1.
    [2] G. Almkvist, W. Zudilin, Differential equations, mirror maps and zeta values, In: Mirror symmetry, AMS/IP Studies in Advanced Mathematics, Vol. 38, International Press & American Mathematical Society, 2007,481–515.
    [3] B. C. Berndt, R. J. Evans, K. S. Williams, Gauss and Jacobi sums, New York: Wiley, 1998.
    [4] F. Beukers, Another congruence for the Apéry numbers, J. Number Theory, 25 (1987), 201–210. doi: 10.1016/0022-314X(87)90025-4. doi: 10.1016/0022-314X(87)90025-4
    [5] H. W. Gould, Combinatorial identities: A standardized set of tables listing 500 binomial coefficient summations, Morgantown: West Virginia University, 1972.
    [6] V. J. W. Guo, W. Zudilin, A $q$-microscope for supercongruences, Adv. Math., 346 (2019), 329–358. doi: 10.1016/j.aim.2019.02.008. doi: 10.1016/j.aim.2019.02.008
    [7] L. Van Hamme, Proof of a conjecture of Beukers on Apéry numbers, In: Proceedings of the conference on p-adic analysis, Houthalen, 1987,189–195.
    [8] T. Ishikawa, Super congruence for the Apéry numbers, Nagoya Math. J., 118 (1990), 195–202. doi: 10.1017/S002776300000307X. doi: 10.1017/S002776300000307X
    [9] D. H. Lee, S. G. Hahn, Gauss sums and binomial coefficients, J. Number Theory, 92 (2002), 257–271. doi: 10.1006/jnth.2001.2688. doi: 10.1006/jnth.2001.2688
    [10] L. Long, R. Ramakrishna, Some supercongruences occurring in truncated hypergeometric series, Adv. Math., 290 (2016), 773–808. doi: 10.1016/j.aim.2015.11.043. doi: 10.1016/j.aim.2015.11.043
    [11] F. Jarvis, H. A. Verrill, Supercongruences for the Catalan-Larcombe-French numbers, Ramanujan J., 22 (2010), 171–186. doi: 10.1007/s11139-009-9218-5
    [12] S. Mattarei, R. Tauraso, Congruences for central binomial sums and finite polylogarithms, J. Number Theory, 133 (2013), 131–157. doi: 10.1016/j.jnt.2012.05.036. doi: 10.1016/j.jnt.2012.05.036
    [13] E. Mortenson, Supercongruences for truncated $ _{n+1}F_n$ hypergeometric series with applications to certain weight three newforms, Proc. Amer. Math. Soc., 133 (2005), 321–330. doi: 10.1090/S0002-9939-04-07697-X. doi: 10.1090/S0002-9939-04-07697-X
    [14] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, In: Calabi-Yau varieties and mirror symmetry, Providence, RI: American Mathematical Society, 2003,223–231.
    [15] V. Strehl, Binomial identities-combinatorial and algorithmic aspects, Discrete Math., 136 (1994), 309–346. doi: 10.1016/0012-365X(94)00118-3. doi: 10.1016/0012-365X(94)00118-3
    [16] Z. H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc., 139 (2011), 1915–1929. doi: 10.1090/S0002-9939-2010-10566-X. doi: 10.1090/S0002-9939-2010-10566-X
    [17] Z. H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory, 133 (2013), 1950–1976. doi: 10.1016/j.jnt.2012.11.004. doi: 10.1016/j.jnt.2012.11.004
    [18] Z. H. Sun, Congruences involving $ \binom2kk^2 \binom3kk$, J. Number Theory, 133 (2013), 1572–1595. doi: 10.1016/j.jnt.2012.10.001. doi: 10.1016/j.jnt.2012.10.001
    [19] Z. H. Sun, Legendre polynomials and supercongruences, Acta Arith., 159 (2013), 169–200. doi: 10.4064/aa159-2-6
    [20] Z. H. Sun, Generalized Legendre polynomials and related supercongruences, J. Number Theory, 143 (2014), 293–319. doi: 10.1016/j.jnt.2014.04.012. doi: 10.1016/j.jnt.2014.04.012
    [21] Z. H. Sun, Congruences for Domb and Almkvist-Zudilin numbers, Integr. Transf. Spec. F., 26 (2015), 642–659. doi: 10.1080/10652469.2015.1034122. doi: 10.1080/10652469.2015.1034122
    [22] Z. H. Sun, Identities and congruences for Catalan-Larcombe-French numbers, Int. J. Number Theory, 13 (2017), 835–851. doi: 10.1142/S1793042117500440. doi: 10.1142/S1793042117500440
    [23] Z. H. Sun, Congruences for sums involving Franel numbers, Int. J. Number Theory, 14 (2018), 123–142. doi: 10.1142/S1793042118500094. doi: 10.1142/S1793042118500094
    [24] Z. H. Sun, Super congruences for two Apéry-like sequences, J. Difference Equ. Appl., 24 (2018), 1685–1713. doi: 10.1080/10236198.2018.1515930. doi: 10.1080/10236198.2018.1515930
    [25] Z. H. Sun, Congruences involving binomial coefficients and Apéry-like numbers, Publ. Math. Debrecen, 96 (2020), 315–346. doi: 10.5486/PMD.2020.8577
    [26] Z. H. Sun, Supercongruences and binary quadratic forms, Acta Arith., 199 (2021), 1–32. doi: 10.4064/aa200308-27-9. doi: 10.4064/aa200308-27-9
    [27] Z. W. Sun, Super congruences and Euler numbers, Sci. China Math., 54 (2011), 2509–2535. doi: 10.1007/s11425-011-4302-x. doi: 10.1007/s11425-011-4302-x
    [28] Z. W. Sun, On sums involving products of three binomial coefficients, Acta Arith., 156 (2012), 123–141. doi: 10.4064/aa156-2-2
    [29] Z. W. Sun, Conjectures and results on $x^2$ mod $p^2$ with $4p = x^2+dy^2$, In: Number theory and related areas, Beijing-Boston: Higher Education Press $ & $ International Press, 2013,149–197.
    [30] Z. W. Sun, Congruences for Franel numbers, Adv. Appl. Math., 51 (2013), 524–535. doi: 10.1016/j.aam.2013.06.004. doi: 10.1016/j.aam.2013.06.004
    [31] Z. W. Sun, New series for some special values of L-functions, Nanjing Univ. J. Math. Biquarterly, 32 (2015), 189–218.
    [32] Z. W. Sun, Congruences involving $g_n(x) = \sum_{k = 0}^n \binom nk^2 \binom2kkx^k$, Ramanujan J., 40 (2016), 511–533. doi: 10.1007/s11139-015-9727-3. doi: 10.1007/s11139-015-9727-3
    [33] Z. W. Sun, Two new kinds of numbers and related divisibility results, Colloq. Math., 154 (2018), 241–273. doi: 10.4064/cm7405-1-2018
    [34] Z. W. Sun, List of Conjectural series for powers of $\pi$ and other constants, In: Ramanujan's Identities, Harbin Institute of Technology Press, 2021,205–261.
    [35] R. Tauraso, A supercongruence involving cubes of Catalan numbers, Integers, 20 (2020), #A44, 1–6.
    [36] D. Zagier, Integral solutions of Apéry-like recurrence equations, In: Groups and symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes, Vol. 47, Providence, RI: American Mathematical Society, 2009,349–366.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1994) PDF downloads(84) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog