Research article

Some new numerical schemes for finding the solutions to nonlinear equations

  • Received: 22 June 2022 Revised: 31 July 2022 Accepted: 03 August 2022 Published: 19 August 2022
  • MSC : 49J40, 90C33

  • We introduce a sequence of third and fourth-order iterative schemes for finding the roots of nonlinear equations by using the decomposition technique and Simpson's one-third rule. We also discuss the convergence analysis of our suggested iterative schemes. With the help of different numerical examples, we demonstrate the validity, efficiency and implementation of our proposed schemes.

    Citation: Awais Gul Khan, Farah Ameen, Muhammad Uzair Awan, Kamsing Nonlaopon. Some new numerical schemes for finding the solutions to nonlinear equations[J]. AIMS Mathematics, 2022, 7(10): 18616-18631. doi: 10.3934/math.20221024

    Related Papers:

  • We introduce a sequence of third and fourth-order iterative schemes for finding the roots of nonlinear equations by using the decomposition technique and Simpson's one-third rule. We also discuss the convergence analysis of our suggested iterative schemes. With the help of different numerical examples, we demonstrate the validity, efficiency and implementation of our proposed schemes.



    加载中


    [1] F. Ali, W. Aslam, K. Ali, M.A. Anwar, A. Nadeem, New family of iterative methods for solving nonlinear models, Discrete Dyn. Nat. Soc., 2018 (2018), 9619680. https://doi.org/10.1155/2018/9619680 doi: 10.1155/2018/9619680
    [2] F. Ali, W. Aslam, I. Khalid, A. Nadeem, Iteration methods with an auxiliary function for nonlinear equations, J. Math., 2020 (2020), 7356408. https://doi.org/10.1155/2020/7356408 doi: 10.1155/2020/7356408
    [3] G. Adomian, Nonlinear stochastic systems theory and applications to physics, Kluwer Academic Publishers, 1989.
    [4] S. Abbasbandy, Improving Newton-Raphson method for nonlinear equations by modified Adomian decomposition method, Appl. Math. Comput., 145 (2003), 887–893. https://doi.org/10.1016/S0096-3003(03)00282-0 doi: 10.1016/S0096-3003(03)00282-0
    [5] C. Chun, Iterative methods improving Newton's method by the decomposition method, Comput. Math. Appl., 50 (2005), 1559–1568. https://doi.org/10.1016/j.camwa.2005.08.022 doi: 10.1016/j.camwa.2005.08.022
    [6] M. T. Darvishi, A. Barati, A third-order Newton-type method to solve systems of nonlinear equations, Appl. Math. Comput., 187 (2007), 630–635. https://doi.org/10.1016/j.amc.2006.08.080 doi: 10.1016/j.amc.2006.08.080
    [7] V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl., 316 (2006), 753–763. https://doi.org/10.1016/j.jmaa.2005.05.009 doi: 10.1016/j.jmaa.2005.05.009
    [8] J. H. He, A new iteration method for solving algebraic equations, Appl. Math. Comput., 135 (2003), 81–84. https://doi.org/10.1016/S0096-3003(01)00313-7 doi: 10.1016/S0096-3003(01)00313-7
    [9] S. M. Kang, A. Rafiq, Y. C. Kwun, A new second-order iteration method for solving nonlinear equations, Abstr. Appl. Anal., 2013 (2013), 487062. https://doi.org/10.1155/2013/487062 doi: 10.1155/2013/487062
    [10] M. A. Noor, Fifth-order convergent iterative method for solving nonlinear equations using quadrature formula, JMCSA, 4 (2018), 0974–0570.
    [11] A. Y. Ozban, Some new variants of Newton's method, Appl. Math. Lett., 17 (2004), 677–682. https://doi.org/10.1016/S0893-9659(04)90104-8 doi: 10.1016/S0893-9659(04)90104-8
    [12] G. Sana, M. A. Noor, K. I. Noor, Some multistep iterative methods for nonlinear equation using quadrature rule, Int. J. Anal. Appl., 18 (2020), 920–938.
    [13] M. Saqib, M. Iqbal, Some multi-step iterative methods for solving nonlinear equations, Open J. Math. Sci., 1 (2017), 25–33. https://doi.org/10.30538/oms2017.0003 doi: 10.30538/oms2017.0003
    [14] S. Weerakoon, T. Fernando, A variant of Newton's method with accelerated third-order convergence, Appl. Math. Lett., 13 (2000), 87–93. https://doi.org/10.1016/S0893-9659(00)00100-2 doi: 10.1016/S0893-9659(00)00100-2
    [15] M. Heydari, S. M. Hosseini, G. B. Loghmani, Convergence of a family of third-order methods free from second derivatives for finding multiple roots of nonlinear equations, World Appl. Sci. J., 11 (2010), 507–512.
    [16] M. Heydari, S. M. Hosseini, G. B. Loghmani, On two new families of iterative methods for solving nonlinear equations with optimal order, Appl. Anal. Discrete Math., 5 (2011), 93–109. https://doi.org/10.2298/AADM110228012H doi: 10.2298/AADM110228012H
    [17] M. Heydari, G. B. Loghmani, Third-order and fourth-order iterative methods free from second derivative for finding multiple roots of nonlinear equations, CJMS, 3 (2014), 67–85.
    [18] M. M. Sehati, S. M. Karbassi, M. Heydari, G. B. Loghmani, Several new iterative methods for solving nonlinear algebraic equations incorporating homotopy perturbation method (HPM), Int. J. Phys. Sci., 7 (2012), 5017–5025. https://doi.org/10.5897/IJPS12.279 doi: 10.5897/IJPS12.279
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1650) PDF downloads(137) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog