Research article Special Issues

Study of Sturm-Liouville boundary value problems with $ {p} $ -Laplacian by using generalized form of fractional order derivative

  • Received: 07 March 2022 Revised: 25 July 2022 Accepted: 03 August 2022 Published: 16 August 2022
  • MSC : 26A33, 34A08

  • This manuscript is related to deriving some necessary and appropriate conditions for qualitative results about a class of Sturm-Liouville (S-L) boundary value problems (BVPs) with the $ p $ -Laplacian operator under a fractional $ \vartheta $ -Caputo type derivative. For the required results, we use Mönch's fixed point theorem with a measuring of non-compactness. Here, it is important to mention that the aforesaid equations belong to a highly significant class of problems that have many of the same properties and applications to solving various problems of dynamics and wave equations theory. For the demonstration of our theoretical results, we provide an example.

    Citation: Abdelatif Boutiara, Mohammed S. Abdo, Mohammed A. Almalahi, Kamal Shah, Bahaaeldin Abdalla, Thabet Abdeljawad. Study of Sturm-Liouville boundary value problems with $ {p} $ -Laplacian by using generalized form of fractional order derivative[J]. AIMS Mathematics, 2022, 7(10): 18360-18376. doi: 10.3934/math.20221011

    Related Papers:

  • This manuscript is related to deriving some necessary and appropriate conditions for qualitative results about a class of Sturm-Liouville (S-L) boundary value problems (BVPs) with the $ p $ -Laplacian operator under a fractional $ \vartheta $ -Caputo type derivative. For the required results, we use Mönch's fixed point theorem with a measuring of non-compactness. Here, it is important to mention that the aforesaid equations belong to a highly significant class of problems that have many of the same properties and applications to solving various problems of dynamics and wave equations theory. For the demonstration of our theoretical results, we provide an example.



    加载中


    [1] A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [2] V. Lakshmikantham, J. Vasundhara Devi, Theory of fractional differential equations in a Banach space, Eur. J. Pure Appl. Math., 1 (2008), 38–45.
    [3] K. Miller, B. Ross, An introduction to fractional calculus and fractional differential equations, New YorK: Wiley, 1993.
    [4] I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1998.
    [5] V. Tarasov, Fractional dynamics: application of fractional calculus to dynamics of particles, Beijing: Higher Education Press & Heidelberg: Springer, 2010.
    [6] M. Benchohra, S. Hamani, S. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal.-Theor., 71 (2009), 2391–2396. http://dx.doi.org/10.1016/j.na.2009.01.073 doi: 10.1016/j.na.2009.01.073
    [7] A. Boutiara, M. Benbachir, K. Guerbati, Measure of non-compactness for nonlinear Hilfer fractional differential equation in Banach spaces, Ikonion Journal of Mathematics, 1 (2019), 55–67.
    [8] I. Suwan, M. Abdo, T. Abdeljawad, M. Matar, A. Boutiara, M. Almalahi, Existence theorems for $ \psi $ -fractional hybrid systems with periodic boundary conditions, AIMS Mathematics, 7 (2022), 171–186. http://dx.doi.org/10.3934/math.2022010 doi: 10.3934/math.2022010
    [9] M. Almalahi, M. Abdo, S. Panchal, On the theory of fractional terminal value problem with $ \psi $ -Hilfer fractional derivative, AIMS Mathematics, 5 (2020), 4889–4908. http://dx.doi.org/10.3934/math.2020312 doi: 10.3934/math.2020312
    [10] J. Diaz, F. Thelin, On a nonlinear parabolic problem arising in some models related to turbulent flows, SIAM J. Math. Anal., 25 (1994), 1085–1111. http://dx.doi.org/10.1137/S0036141091217731 doi: 10.1137/S0036141091217731
    [11] L. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich mass transfer problem, Mem. Am. Math. Soc., 137 (1999), 653. http://dx.doi.org/10.1090/memo/0653 doi: 10.1090/memo/0653
    [12] S. Oruganti, J. Shi, R. Shivaji, Logistic equation with the p-Laplacian and constant yield harvesting, Abstr. Appl. Anal., 2004 (2004), 359620. http://dx.doi.org/10.1155/S1085337504311097 doi: 10.1155/S1085337504311097
    [13] I. Ly, D. Seck, Isoperimetric inequality for an interior free boundary problem with p-Laplacian operator, Electronic Journal of Differential Equations, 2004 (2004), 1–12.
    [14] F. Fen, I. Karacac, O. Ozenc, Positive solutions of boundary value problems for $ p $ -Laplacian fractional differential equations, Filomat, 31 (2017), 1265–1277. http://dx.doi.org/10.2298/FIL1705265F doi: 10.2298/FIL1705265F
    [15] X. Liu, M. Jia, X. Xiang, On the solvability of a fractional differential equation model involving the $ p $ -Laplacian operator, Comput. Math. Appl., 64 (2012), 3267–3275. http://dx.doi.org/10.1016/j.camwa.2012.03.001 doi: 10.1016/j.camwa.2012.03.001
    [16] H. Lu, Z. Han, S. Sun, Multiplicity of positive solutions for Sturm-Liouville boundary value problems of fractional differential equations with $ p $ -Laplacian, Bound. Value Probl., 2014 (2014), 26. http://dx.doi.org/10.1186/1687-2770-2014-26 doi: 10.1186/1687-2770-2014-26
    [17] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. http://dx.doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [18] R. Almeida, Fractional differential equations with mixed boundary conditions, Bull. Malays. Math. Sci. Soc., 42 (2019), 1687–1697. http://dx.doi.org/10.1007/s40840-017-0569-6 doi: 10.1007/s40840-017-0569-6
    [19] R. Almeida, A. Malinowska, M. Teresa, T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Method. Appl. Sci., 41 (2018), 336–352. http://dx.doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [20] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Cont. Dyn.-S, 13 (2020), 709–722, http://dx.doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [21] M. Abdo, S. Panchal, A. Saeed, Fractional boundary value problem with $ \psi $ -Caputo fractional derivative, Proc. Math. Sci., 129 (2019), 65. http://dx.doi.org/10.1007/s12044-019-0514-8 doi: 10.1007/s12044-019-0514-8
    [22] M. Abdo, A. Ibrahim, S. Panchal, Nonlinear implicit fractional differential equation involving $ \psi $ -Caputo fractional derivative, Proceedings of the Jangjeon Mathematical Society, 22 (2019), 387–400. http://dx.doi.org/10.17777/pjms2019.22.3.387 doi: 10.17777/pjms2019.22.3.387
    [23] I. Suwan, M. Abdo, T. Abdeljawad, M. Matar, A. Boutiara, M. Almalahi, Existence theorems for $ \Psi $ -fractional hybrid systems with periodic boundary conditions, AIMS Mathematics, 7 (2022), 171–186. http://dx.doi.org/10.3934/math.2022010 doi: 10.3934/math.2022010
    [24] M. Almalahi, M. Abdo, S. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $ \psi $ -Hilfer sequential fractional differential equations, Results in Applied Mathematics, 10 (2021), 100142. http://dx.doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142
    [25] A. Boutiara, M. Abdo, M. Benbachir, Existence results for $ \psi $ -Caputo fractional neutral functional integro-differential equations with finite delay, Turk. J. Math., 44 (2020), 29. http://dx.doi.org/10.3906/mat-2010-9 doi: 10.3906/mat-2010-9
    [26] M. Abdo, Further results on the existence of solutions for generalized fractional quadratic functional integral equations, J. Math. Anal. Model., 1 (2020), 33–46. http://dx.doi.org/10.48185/jmam.v1i1.2 doi: 10.48185/jmam.v1i1.2
    [27] H. Wahash, M. Abdo, A. Saeed, S. Panchal, Singular fractional differential equations with $ \psi $ -Caputo operator and modified Picard's iterative method, Appl. Math. E-Notes, 20 (2020), 215–229.
    [28] I. Ahmed, P. Kumam, K. Shah, P. Borisut, K. Sitthithakerngkiet, M. Demba, Stability results for implicit fractional pantograph differential equations via $ \phi $ -Hilfer fractional derivative with a nonlocal Riemann-Liouville fractional integral condition, Mathematics, 8 (2020), 94. http://dx.doi.org/10.3390/math8010094 doi: 10.3390/math8010094
    [29] B. Samet, H. Aydi, Lyapunov-type inequalities for an anti-periodic fractional boundary value problem involving $ \Psi $ -Caputo fractional derivative, J. Inequal. Appl., 2018 (2018), 286. http://dx.doi.org/10.1186/s13660-018-1850-4 doi: 10.1186/s13660-018-1850-4
    [30] C. Yang, J. Yan, Positive solutions for third-order Sturm-Liouville boundary value problems with $ p $ -Laplacian, Comput. Math. Appl., 59 (2010), 2059–2066. http://dx.doi.org/10.1016/j.camwa.2009.12.011 doi: 10.1016/j.camwa.2009.12.011
    [31] C. Zhai, C. Guo, Positive solutions for third-order Sturm-Liouville boundary-value problems with p-Laplacian, Electronic Journal of Differential Equations, 2009 (2009) 1–9.
    [32] S. Abbas, M. Benchohra, J. Henderson, Weak solutions for implicit fractional differential equations of Hadamard type, Advances in Dynamical Systems and Applications, 11 (2016), 1–13.
    [33] R. Agarwal, M. Benchohra, D. Seba, On the application of measure of non-compactness to the existence of solutions for fractional differential equations, Results Math., 55 (2009), 221. http://dx.doi.org/10.1007/s00025-009-0434-5 doi: 10.1007/s00025-009-0434-5
    [34] M. Benchohra, J. Henderson, D. Seba, Measure of non-compactness and fractional differential equations in Banach spaces, Communications in Applied Analysis, 12 (2008), 419–427.
    [35] J. Tan, C. Cheng, Existence of solutions of boundary value problems for fractional differential equations with $ p $ -Laplacian operator in Banach spaces, Numer. Funct. Anal. Opt., 38 (2017), 738–753. http://dx.doi.org/10.1080/01630563.2017.1293091 doi: 10.1080/01630563.2017.1293091
    [36] J. Tan, M. Li, Solutions of fractional differential equations with $ \mathrm{p} $ -Laplacian operator in Banach spaces, Bound. Value Probl., 2018 (2018), 15. http://dx.doi.org/10.1186/s13661-018-0930-1 doi: 10.1186/s13661-018-0930-1
    [37] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Mathematics, 5 (2020), 259–272. http://dx.doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017
    [38] A. Boutiara, M. Benbachir, K. Guerbati, Caputo type fractional differential equation with nonlocal Erdélyi-Kober type integral boundary conditions in Banach spaces, Surveys in Mathematics and its Applications, 15 (2020), 399–418.
    [39] J. Banaś, M. Jleli, M. Mursaleen, B. Samet, C. Vetro, Advances in nonlinear analysis via the concept of measure of non-compactness, Singapore: Springer, 2017. http://dx.doi.org/10.1007/978-981-10-3722-1
    [40] J. Banas, K. Goebel, Measures of non-compactness in Banach spaces, New York: Marcel Dekker Inc., 1980.
    [41] E. Zeidler, Nonlinear functional analysis and its applications, New York: Springer-Verlag, 1990. http://dx.doi.org/10.1007/978-1-4612-0985-0
    [42] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlinear Anal.-Theor., 4 (1980), 985–999. http://dx.doi.org/10.1016/0362-546X(80)90010-3 doi: 10.1016/0362-546X(80)90010-3
    [43] J. Aubin, I. Ekeland, Applied nonlinear analysis, New York: John Wiley & Sons, 1984.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(875) PDF downloads(85) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog