Let $ n\ge 8 $ be an integer and let $ p $ be a prime number satisfying $ \frac{n}{2} < p < n-2 $. In this paper, we prove that the Galois groups of the trinomials
$ T_{n, p, k}(x): = x^n+n^kp^{(n-1-p)k}x^p+n^kp^{nk}, $
$ S_{n, p}(x): = x^n+p^{n(n-1-p)}n^px^p+n^pp^{n^2} $
and
$ E_{n, p}(x): = x^n+pnx^{n-p}+pn^2 $
are the full symmetric group $ S_n $ under several conditions. This extends the Cohen-Movahhedi-Salinier theorem on the irreducible trinomials $ f(x) = x^n+ax^s+b $ with integral coefficients.
Citation: Lingfeng Ao, Shuanglin Fei, Shaofang Hong. On the Galois group of three classes of trinomials[J]. AIMS Mathematics, 2022, 7(1): 212-224. doi: 10.3934/math.2022013
Let $ n\ge 8 $ be an integer and let $ p $ be a prime number satisfying $ \frac{n}{2} < p < n-2 $. In this paper, we prove that the Galois groups of the trinomials
$ T_{n, p, k}(x): = x^n+n^kp^{(n-1-p)k}x^p+n^kp^{nk}, $
$ S_{n, p}(x): = x^n+p^{n(n-1-p)}n^px^p+n^pp^{n^2} $
and
$ E_{n, p}(x): = x^n+pnx^{n-p}+pn^2 $
are the full symmetric group $ S_n $ under several conditions. This extends the Cohen-Movahhedi-Salinier theorem on the irreducible trinomials $ f(x) = x^n+ax^s+b $ with integral coefficients.
[1] | B. Bensebaa, A. Movahhedi, A. Salinier, The Galois group of $X^p+aX^{s}+a = 0$, Acta Arith., 134 (2008), 55–65. doi: 10.4064/aa134-1-4. doi: 10.4064/aa134-1-4 |
[2] | B. Bensebaa, A. Movahhedi, A. Salinier, The Galois group of $X^p+aX^{p-1}+a = 0$, J. Number Theory, 129 (2009), 824–830. doi: 10.1016/j.jnt.2008.09.017. doi: 10.1016/j.jnt.2008.09.017 |
[3] | P. I. Chebyshev, Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée, J. Math. Pures Appl., 17 (1852), 341–365. |
[4] | S. D. Cohen, A. Movahhedi, A. Salinier, Galois group of trinomials, J. Algebra, 222 (1999), 561–573. doi: 10.1006/jabr.1999.8033. |
[5] | P. A. Grillet, Abstract algebra, Vol. 242, New York: Springer, 2007. |
[6] | F. Hajir, Algebraic properties of a family of generalized Laguerre polynomials, Can. J. Math., 61 (2009), 583–603. doi: 10.4153/CJM-2009-031-6. doi: 10.4153/CJM-2009-031-6 |
[7] | F. Hajir, On the Galois group of generalized Laguerre polynomials, J. Théorie Nombres Bordeaux, 17 (2005), 517–525. |
[8] | A. Movahhedi, Galois group of $X^p+aX+a = 0$, J. Algebra, 180 (1996), 966–975. doi: 10.1006/jabr.1996.0104. doi: 10.1006/jabr.1996.0104 |
[9] | K. Komatsu, On the Galois group of $x^p+ax+a = 0$, Tokyo J. Math, 14 (1991), 227–229. doi: 10.3836/tjm/1270130502. doi: 10.3836/tjm/1270130502 |
[10] | K. Komatsu, On the Galois group of $x^p+p^tb(x+1) = 0$, Tokyo J. Math, 15 (1992), 351–356. doi: 10.3836/tjm/1270129460. doi: 10.3836/tjm/1270129460 |
[11] | K. Ohta, On unramified Galois extensions of quadratic number fields (in Japanese), Sügaku, 24 (1972), 119–120. |
[12] | H. Osada, The Galois group of the polynomials $x^n+ax^l+b$, J. Number Theory, 25 (1987), 230–238. doi: 10.1016/0022-314X(87)90029-1. doi: 10.1016/0022-314X(87)90029-1 |
[13] | R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math., 12 (1962), 1099–1106. doi: 10.2140/pjm.1962.12.1099. doi: 10.2140/pjm.1962.12.1099 |
[14] | K. Uchida, Unramified extentions of quadratic number fields II, Tohoku. Math. J., 22 (1970), 220–224. doi: 10.2748/tmj/1178242816. doi: 10.2748/tmj/1178242816 |
[15] | Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math., 7 (1970), 57–76. |