Processing math: 61%
Research article

On the Galois group of three classes of trinomials

  • Received: 05 July 2021 Accepted: 08 October 2021 Published: 11 October 2021
  • MSC : Primary 11R09, 11R32, 11C08

  • Let n8 be an integer and let p be a prime number satisfying n2<p<n2. In this paper, we prove that the Galois groups of the trinomials

    Tn,p,k(x):=xn+nkp(n1p)kxp+nkpnk,

    Sn,p(x):=xn+pn(n1p)npxp+nppn2

    and

    En,p(x):=xn+pnxnp+pn2

    are the full symmetric group Sn under several conditions. This extends the Cohen-Movahhedi-Salinier theorem on the irreducible trinomials f(x)=xn+axs+b with integral coefficients.

    Citation: Lingfeng Ao, Shuanglin Fei, Shaofang Hong. On the Galois group of three classes of trinomials[J]. AIMS Mathematics, 2022, 7(1): 212-224. doi: 10.3934/math.2022013

    Related Papers:

    [1] Yanyan Gao, Yangjiang Wei . Group codes over symmetric groups. AIMS Mathematics, 2023, 8(9): 19842-19856. doi: 10.3934/math.20231011
    [2] Chunqiang Cui, Jin Chen, Shixun Lin . Metric and strong metric dimension in TI-power graphs of finite groups. AIMS Mathematics, 2025, 10(1): 705-720. doi: 10.3934/math.2025032
    [3] Yunpeng Bai, Yuanlin Li, Jiangtao Peng . Unit groups of finite group algebras of Abelian groups of order 17 to 20. AIMS Mathematics, 2021, 6(7): 7305-7317. doi: 10.3934/math.2021428
    [4] Huani Li, Ruiqin Fu, Xuanlong Ma . Forbidden subgraphs in reduced power graphs of finite groups. AIMS Mathematics, 2021, 6(5): 5410-5420. doi: 10.3934/math.2021319
    [5] Yingyu Luo, Yu Wang . Supercommuting maps on unital algebras with idempotents. AIMS Mathematics, 2024, 9(9): 24636-24653. doi: 10.3934/math.20241200
    [6] Guoqing Wang . A generalization of Kruyswijk-Olson theorem on Davenport constant in commutative semigroups. AIMS Mathematics, 2020, 5(4): 2992-3001. doi: 10.3934/math.2020193
    [7] Yongli Zhang, Jiaxin Shen . Flag-transitive non-symmetric 2-designs with λ prime and exceptional groups of Lie type. AIMS Mathematics, 2024, 9(9): 25636-25645. doi: 10.3934/math.20241252
    [8] Hatice Gülsün Akay . (Co-)fibration of generalized crossed modules. AIMS Mathematics, 2024, 9(11): 32782-32796. doi: 10.3934/math.20241568
    [9] Xiaofei Cao, Yuyue Huang, Xue Hua, Tingyu Zhao, Sanzhang Xu . Matrix inverses along the core parts of three matrix decompositions. AIMS Mathematics, 2023, 8(12): 30194-30208. doi: 10.3934/math.20231543
    [10] Hui Yan, Hongxing Wang, Kezheng Zuo, Yang Chen . Further characterizations of the weak group inverse of matrices and the weak group matrix. AIMS Mathematics, 2021, 6(9): 9322-9341. doi: 10.3934/math.2021542
  • Let n8 be an integer and let p be a prime number satisfying n2<p<n2. In this paper, we prove that the Galois groups of the trinomials

    Tn,p,k(x):=xn+nkp(n1p)kxp+nkpnk,

    Sn,p(x):=xn+pn(n1p)npxp+nppn2

    and

    En,p(x):=xn+pnxnp+pn2

    are the full symmetric group Sn under several conditions. This extends the Cohen-Movahhedi-Salinier theorem on the irreducible trinomials f(x)=xn+axs+b with integral coefficients.



    This paper considers the following heteroscedastic model:

    Yi=f(Xi)Ui+g(Xi),i{1,,n}. (1.1)

    In this equation, g(x) is a known mean function, and the variance function r(x)(r(x):=f2(x)) is unknown. Both the mean function g(x) and variance function r(x) are defined on [0,1]. The random variables U1,,Un are independent and identically distributed (i.i.d.) with E[Ui]=0 and V[Ui]=1. Furthermore, the random variable Xi is independent of Ui for any i{1,,n}. The purpose of this paper is to estimate the mth derivative functions r(m)(x)(mN) from the observed data (X1,Y1),,(Xn,Yn) by a wavelet method.

    Heteroscedastic models are widely used in economics, engineering, biology, physical sciences and so on; see Box [1], Carroll and Ruppert [2], Härdle and Tsybakov [3], Fan and Yao [4], Quevedo and Vining [5] and Amerise [6]. For the above estimation model (1.1), the most popular method is the kernel method. Many important and interesting results of kernel estimators have been obtained by Wang et al. [7], Kulik and Wichelhaus [8] and Shen et al. [9]. However, the optimal bandwidth parameter of the kernel estimator is not easily obtained in some cases, especially when the function has some sharp spikes. Because of the good local properties in both time and frequency domains, the wavelet method has been widely used in nonparametric estimation problems; see Donoho and Johnstone [10], Cai [11], Nason et al. [12], Cai and Zhou [13], Abry and Didier [14] and Li and Zhang [15]. For the estimation problem (1.1), Kulik and Raimondo [16] studied the adaptive properties of warped wavelet nonlinear approximations over a wide range of Besov scales. Zhou et al. [17] developed wavelet estimators for detecting and estimating jumps and cusps in the mean function. Palanisamy and Ravichandran [18] proposed a data-driven estimator by applying wavelet thresholding along with the technique of sparse representation. The asymptotic normality for wavelet estimators of variance function under αmixing condition was obtained by Ding and Chen [19].

    In this paper, we focus on nonparametric estimation of the derivative function r(m)(x) of the variance function r(x). It is well known that derivative estimation plays an important and useful role in many practical applications (Woltring [20], Zhou and Wolfe, [21], Chacón and Duong [22], Wei et al.[23]). For the estimation model (1.1), a linear wavelet estimator and an adaptive nonlinear wavelet estimator for the derivative function r(m)(x) are constructed. Moreover, the convergence rates over L˜p(1˜p<) risk of two wavelet estimators are proved in Besov space Bsp,q(R) with some mild conditions. Finally, numerical experiments are carried out, where an automatic selection method is used to obtain the best parameters of two wavelet estimators. According to the simulation study, both wavelet estimators can efficiently estimate the derivative function. Furthermore, the nonlinear wavelet estimator shows better performance than the linear estimator.

    This paper considers wavelet estimations of a derivative function in Besov space. Now, we first introduce some basic concepts of wavelets. Let ϕ be an orthonormal scaling function, and the corresponding wavelet function is denoted by ψ. It is well known that {ϕτ,k:=2τ/2ϕ(2τxk),ψj,k:=2j/2ψ(2jxk),jτ,kZ} forms an orthonormal basis of L2(R). This paper uses the Daubechies wavelet, which has a compactly support. Then, for any integer j, a function h(x)L2([0,1]) can be expanded into a wavelet series as

    h(x)=kΛjαj,kϕj,k(x)+j=jkΛjβj,kψj,k(x),x[0,1]. (1.2)

    In this equation, Λj={0,1,,2j1}, αj,k=h,ϕj,k[0,1] and βj,k=h,ψj,k[0,1].

    Lemma 1.1. Let a scaling function ϕ be t-regular (i.e., ϕCt and |Dαϕ(x)|c(1+|x|2)l for each lZ and α=0,1,,t). If {αk}lp and 1p, there exist c2c1>0 such that

    c12j(121p)(αk)pkΛjαk2j2ϕ(2jxk)pc22j(121p)(αk)p.

    Besov spaces contain many classical function spaces, such as the well known Sobolev and Hölder spaces. The following lemma gives an important equivalent definition of a Besov space. More details about wavelets and Besov spaces can be found in Meyer [24] and Härdle et al. [25].

    Lemma 1.2. Let ϕ be t-regular and hLp([0,1]). Then, for p,q[1,) and 0<s<t, the following assertions are equivalent:

    (i) hBsp,q([0,1]);

    (ii) {2jshPjhp}lq;

    (iii) {2j(s1p+12)βj,kp}lq.

    The Besov norm of h can be defined by

    hBsp,q=(ατ,k)p+(2j(s1p+12)βj,kp)jτq,

    where βj,kpp=kΛj|βj,k|p.

    In this section, we will construct our wavelet estimators, and give the main theorem of this paper. The main theorem shows the convergence rates of wavelet estimators under some mild assumptions. Now, we first give the technical assumptions of the estimation model (1.1) in the following.

    A1: The variance function r:[0,1]R is bounded.

    A2: For any i{0,,m1}, variance function r satisfies r(i)(0)=r(i)(1)=0.

    A3: The mean function g:[0,1]R is bounded and known.

    A4: The random variable X satisfies XU([0,1]).

    A5: The random variable U has a moment of order 2˜p(˜p1).

    In the above assumptions, A1 and A3 are conventional conditions for nonparametric estimations. The condition A2 is used to prove the unbiasedness of the following wavelet estimators. In addition, A4 and A5 are technique assumptions, which will be used in Lemmas 4.3 and 4.5.

    According to the model (1.1), our linear wavelet estimator is constructed by

    ˆrlinn(x):=kΛjˆαj,kϕj,k(x). (2.1)

    In this definition, the scale parameter j will be given in the following main theorem, and

    ˆαj,k:=1nni=1Y2i(1)mϕ(m)j,k(Xi)10g2(x)(1)mϕ(m)j,k(x)dx. (2.2)

    More importantly, it should be pointed out that this linear wavelet estimator is an unbiased estimator of the derivative function r(m)(x) by Lemma 4.1 and the properties of wavelets.

    On the other hand, a nonlinear wavelet estimator is defined by

    ˆrnonn(x):=kΛjˆαj,kϕj,k(x)+j1j=jˆβj,kI{|ˆβj,k|κtn}ψj,k(x). (2.3)

    In this equation, IA denotes the indicator function over an event A, tn=2mjlnn/n,

    ˆβj,k:=1nni=1(Y2i(1)mψ(m)j,k(Xi)wj,k)I{|Y2i(1)mψ(m)j,k(Xi)wj,k|ρn}, (2.4)

    ρn=2mjn/lnn, and wj,k=10g2(x)(1)mψ(m)j,k(x)dx. The positive integer j and j1 will also be given in our main theorem, and the constant κ will be chosen in Lemma 4.5. In addition, we adopt the following symbol: x+:=max{x,0}. AB denotes AcB for some constant c>0; AB means BA; AB stands for both AB and BA.

    In this position, the convergence rates of two wavelet estimators are given in the following main theorem.

    Main theorem For the estimation model (1.1) with the assumptions A1-A5, r(m)(x)Bsp,q([0,1])(p,q[1,), s>0) and 1˜p<, if {p>˜p1,s>0} or {1p˜p,s>1/p}.

    (a) the linear wavelet estimator ˆrlinn(x) with s=s(1p1˜p)+ and 2jn12s+2m+1 satisfies

    E[ˆrlinn(x)r(m)(x)˜p˜p]n˜ps2s+2m+1. (2.5)

    (b) the nonlinear wavelet estimator ˆrnonn(x) with 2jn12t+2m+1 (t>s) and 2j1(nlnn)12m+1 satisfies

    E[ˆrnonn(x)r(m)(x)˜p˜p](lnn)˜p1(lnnn)˜pδ, (2.6)

    where

    δ=min{s2s+2m+1,s1/p+1/˜p2(s1/p)+2m+1}={s2s+2m+1p>˜p(2m+1)2s+2m+1s1/p+1/˜p2(s1/p)+2m+1p˜p(2m+1)2s+2m+1.

    Remark 1. Note that ns˜p2s+1(n(s1/p+1/˜p)˜p2(s1/p)+1) is the optimal convergence rate over L˜p(1˜p<+) risk for nonparametric wavelet estimations (Donoho et al. [26]). The linear wavelet estimator can obtain the optimal convergence rate when p>˜p1 and m=0.

    Remark 2. When m=0, this derivative estimation problem reduces to the classical variance function estimation. Then, the convergence rates of the nonlinear wavelet estimator are same as the optimal convergence rates of nonparametric wavelet estimation up to a lnn factor in all cases.

    Remark 3. According to main theorem (a) and the definition of the linear wavelet estimator, it is easy to see that the construction of the linear wavelet estimator depends on the smooth parameter s of the unknown derivative function r(m)(x), which means that the linear estimator is not adaptive. Compared with the linear estimator, the nonlinear wavelet estimator only depends on the observed data and the sample size. Hence, the nonlinear estimator is adaptive. More importantly, the nonlinear wavelet estimator has a better convergence rate than the linear estimator in the case of p˜p.

    In order to illustrate the empirical performance of the proposed estimators, we produce a numerical illustration using an adaptive selection method, which is used to obtain the best parameters of the wavelet estimators. For the problem (1.1), we choose three common functions, HeaviSine, Corner and Spikes, as the mean function g(x); see Figure 1. Those functions are usually used in wavelet literature. On the other hand, we choose the function f(x) by f1(x)=3(4x2)2e(4x2)2, f2(x)=sin(2πsinπx) and f3(x)=(2x1)2+1, respectively. In addition, we assume that the random variable U satisfies UN[0,1]. The aim of this paper is to estimate the derivative function r(m)(x) of the variance function r(x)(r=f2) by the observed data (X1,Y1),,(Xn,Yn). In this section, we adopt r1(x)=[f1(x)]2, r2(x)=[f2(x)]2 and r3(x)=[f3(x)]2. For the sake of simplicity, our simulation study focuses on the derivative function r(x)(m=1) and r(x)(m=0) by the observed data (X1,Y1),,(Xn,Yn)(n=4096). Furthermore, we use the mean square error (MSE(ˆr(x),r(x))=1nni=1(ˆr(Xi)r(Xi))2) and the average magnitude of error (AME(ˆr(x),r(x))=1nni=1|ˆr(Xi)r(Xi)|) to evaluate the performances of the wavelet estimators separately.

    Figure 1.  Three mean functions. (a) HeaviSine, (b) Corner, (c) Spikes.

    For the linear and nonlinear wavelet estimators, the scale parameter j and threshold value λ(λ=κtn) play important roles in the function estimation problem. In order to obtain the optimal scale parameter and threshold value of wavelet estimators, this section uses the two-fold cross validation (2FCV) approach (Nason [27], Navarro and Saumard [28]). During the first example of simulation study, we choose HeaviSine as the mean function g(x), and f1(x)=3(4x2)2e(4x2)2. The estimation results of two wavelet estimators are presented by Figure 2. For the optimal scale parameter j of the linear wavelet estimator, we built a collection of j and j=1,,log2(n)1. The best parameter j is selected by minimizing a 2FCV criterion denoted by 2FCV(j); see Figure 2(a). According to Figure 2(a), it is easy to see that the 2FCV(j) and MSE both can get the minimum value when j=4. For the nonlinear wavelet estimator, the best threshold value λ is also obtained by the 2FCV(λ) criterion in Figure 2(b). Meanwhile, the parameter j is same as the linear estimator, and the parameter j1 is chosen as the maximum scale parameter log2(n)1. From Figure 2(c) and 2(d), the linear and nonlinear wavelet estimators both can get a good performance with the best scale parameter and threshold value. More importantly, the nonlinear wavelet estimator shows better performance than the linear estimator.

    Figure 2.  The estimation results of wavelet estimators when g(x) is HeaviSine and r(x)=r1(x). (a) Graphs of the MSE (black line) and 2FCV criterion (red line) of the linear estimator. (b) Graphs of the MSE (black line) and 2FCV criterion (blue line) of the nonlinear estimator. (c) Fluctuating data (X,Y) (gray circles), the true variance r(x) (black line), the linear estimator ˆrlin (red line) and the nonlinear estimator ˆrnon (blue line). (d) The estimation results of the linear (red line) and nonlinear (blue line) for derivative function r(x).

    In the following simulation study, more numerical experiments are presented to sufficiently verify the performance of the wavelet method. According to Figures 310, the wavelet estimators both can obtain good performances in different cases. Especially, the nonlinear wavelet estimator gets better estimation results than the linear estimator. Also, the MSE and AME of the wavelet estimators in all examples are provided by Table 1. Meanwhile, it is easy to see from Table 1 that the nonlinear wavelet estimators can have better performance than the linear estimators.

    Figure 3.  The estimation results of wavelet estimators when g(x) is HeaviSine and r(x)=r2(x).
    Figure 4.  The estimation results of wavelet estimators when g(x) is HeaviSine and r(x)=r3(x).
    Figure 5.  The estimation results of wavelet estimators when g(x) is Corner and r(x)=r1(x).
    Figure 6.  The estimation results of wavelet estimators when g(x) is Corner and r(x)=r2(x).
    Figure 7.  The estimation results of wavelet estimators when g(x) is Corner and r(x)=r3(x).
    Figure 8.  The estimation results of wavelet estimators when g(x) is Spikes and r(x)=r1(x).
    Figure 9.  The estimation results of wavelet estimators when g(x) is Spikes and r(x)=r2(x).
    Figure 10.  The estimation results of wavelet estimators when g(x) is Spikes and r(x)=r3(x).
    Table 1.  The MSE and AME of the wavelet estimators.
    HeaviSine Corner Spikes
    r1 r2 r3 r1 r2 r3 r1 r2 r3
    MSE(ˆrlin,r) 0.0184 0.0073 0.0071 0.0189 0.0075 0.0064 0.0189 0.0069 0.0052
    MSE(ˆrnon,r) 0.0048 0.0068 0.0064 0.0044 0.0070 0.0057 0.0042 0.0061 0.0046
    MSE(ˆrlin,r) 0.7755 0.0547 0.0676 0.7767 0.1155 0.0737 0.7360 0.2566 0.0655
    MSE(ˆrnon,r) 0.2319 0.0573 0.0560 0.2204 0.0644 0.0616 0.2406 0.2868 0.0539
    AME(ˆrlin,r) 0.0935 0.0653 0.0652 0.0973 0.0667 0.0615 0.0964 0.0621 0.0550
    AME(ˆrnon,r) 0.0506 0.0641 0.0619 0.0486 0.0649 0.0583 0.0430 0.0595 0.0518
    AME(ˆrlin,r) 0.6911 0.1876 0.2348 0.7021 0.2686 0.2451 0.6605 0.4102 0.2320
    AME(ˆrnon,r) 0.3595 0.1862 0.2125 0.3450 0.2020 0.2229 0.3696 0.4198 0.2095

     | Show Table
    DownLoad: CSV

    Now, we provide some lemmas for the proof of the main Theorem.

    Lemma 4.1. For the model (1.1) with A2 and A4,

    E[ˆαj,k]=αj,k, (4.1)
    E[1nni=1(Y2i(1)mψ(m)j,k(Xi)wj,k)]=βj,k. (4.2)

    Proof. According to the definition of ˆαj,k,

    E[ˆαj,k]=E[1nni=1Y2i(1)mϕ(m)j,k(Xi)10g2(x)(1)mϕ(m)j,k(x)dx]=1nni=1E[Y2i(1)mϕ(m)j,k(Xi)]10g2(x)(1)mϕ(m)j,k(x)dx=E[Y21(1)mϕ(m)j,k(X1)]10g2(x)(1)mϕ(m)j,k(x)dx=E[r(X1)U21(1)mϕ(m)j,k(X1)]+2E[f(X1)U1g(X1)(1)mϕ(m)j,k(X1)]+E[g2(X1)(1)mϕ(m)j,k(X1)]10g2(x)(1)mϕ(m)j,k(x)dx.

    Then, it follows from A4 that

    E[g2(X1)(1)mϕ(m)j,k(X1)]=10g2(x)(1)mϕ(m)j,k(x)dx.

    Using the assumption of independence between Ui and Xi,

    E[r(X1)U21(1)mϕ(m)j,k(X1)]=E[U21]E[r(X1)(1)mϕ(m)j,k(X1)],
    E[f(X1)U1g(X1)(1)mϕ(m)j,k(X1)]=E[U1]E[f(X1)g(X1)(1)mϕ(m)j,k(X1)].

    Meanwhile, the conditions V[U1]=1 and E[U1]=0 imply E[U21]=1. Hence, one gets

    E[ˆαj,k]=E[r(X1)(1)mϕ(m)j,k(X1)]=10r(x)(1)mϕ(m)j,k(x)dx=(1)m10r(x)ϕ(m)j,k(x)dx=10r(m)(x)ϕj,k(x)dx=αj,k

    by the assumption A2.

    On the other hand, one takes ψ instead of ϕ, and wj,k instead of 10g2(x)(1)mϕ(m)j,k(x)dx. The second equation will be proved by the similar mathematical arguments.

    Lemma 4.2. (Rosenthal's inequality) Let X1,,Xn be independent random variables such that E[Xi]=0 and E[|Xi|p]<. Then,

    E[|ni=1Xi|p]{ni=1E[|Xi|p]+(ni=1E[|Xi|2])p2, p > 2 ,(ni=1E[|Xi|2])p2,1p2.

    Lemma 4.3. For the model (1.1) with A1–A5, 2jn and 1˜p<,

    E[|ˆαj,kαj,k|˜p]n˜p22˜pmj, (4.3)
    E[|ˆβj,kβj,k|˜p](lnnn)˜p22˜pmj. (4.4)

    Proof. By (4.1) and the independence of random variables Xi and Ui, one has

    |ˆαj,kαj,k|=|1nni=1Y2i(1)mϕ(m)j,k(Xi)10g2(x)(1)mϕ(m)j,k(x)dxE[ˆαj,k]|=1n|ni=1(Y2i(1)mϕ(m)j,k(Xi)E[Y2i(1)mϕ(m)j,k(Xi)])|=1n|ni=1Ai|.

    In this above equation, Ai:=Y2i(1)mϕ(m)j,k(Xi)E[Y2i(1)mϕ(m)j,k(Xi)].

    According to the definition of Ai, one knows that E[Ai]=0 and

    E[|Ai|˜p]=E[|Y2i(1)mϕ(m)j,k(Xi)E[Y2i(1)mϕ(m)j,k(Xi)]|˜p]E[|Y2i(1)mϕ(m)j,k(Xi)|˜p]E[|(r(X1)U21+g2(X1))(1)mϕ(m)j,k(Xi)|˜p]E[U2˜p1]E[|r(X1)ϕ(m)j,k(Xi)|˜p]+E[|g2(X1)ϕ(m)j,k(Xi)|˜p].

    The assumption A5 shows E[U2˜p1]1. Furthermore, it follows from A1 and A3 that

    E[U2˜p1]E[|r(X1)ϕ(m)j,k(X1)|˜p]E[|ϕ(m)j,k(X1)|˜p],E[g2˜p(X1)|ϕ(m)j,k(X1)|˜p]E[|ϕ(m)j,k(X1)|˜p].

    In addition, and the properties of wavelet functions imply that

    E[|ϕ(m)j,k(Xi)|˜p]=10|ϕ(m)j,k(x)|˜pdx=2j(˜p/2+m˜p1)10|ϕ(m)(2jxk)|˜pd(2jxk)=2j(˜p/2+m˜p1)||ϕ(m)||˜p˜p2j(˜p/2+m˜p1).

    Hence,

    E[|Ai|˜p]2j(˜p/2+m˜p1).

    Especially in ˜p=2, E[|Ai|2]22mj.

    Using Rosenthal's inequality and 2jn,

    E[|ˆαj,kαj,k|˜p]=1n˜pE[|ni=1Ai|˜p]{1n˜p(ni=1E[|Ai|˜p]+(ni=1E[|Ai|2])˜p2),˜p>2,1n˜p(ni=1E[|Ai|2])˜p2,1˜p2,{1n˜p(n2j(˜p2+m˜p1)+(n22mj)˜p2),˜p>2,1n˜p(n22mj)˜p2,1˜p2,n˜p22˜pmj.

    Then, the first inequality is proved.

    For the second inequality, note that

    βj,k=E[1nni=1(Y2i(1)mψ(m)j,k(Xi)wj,k)]=1nni=1E[(Y2i(1)mψ(m)j,k(Xi)10g2(x)(1)mψ(m)j,k(x)dx)]=1nni=1E[Ki]

    with (4.2) and Ki:=Y2i(1)mψ(m)j,k(Xi)10g2(x)(1)mψ(m)j,k(x)dx.

    Let Bi:=KiI{|Ki|ρn}E[KiI{|Ki|ρn}]. Then, by the definition of ˆβj,k in (2.4),

    |ˆβj,kβj,k|=|1nni=1KiI{|Ki|ρn}βj,k|1n|ni=1Bi|+1nni=1E[|Ki|I{|Ki|>ρn}]. (4.5)

    Similar to the arguments of Ai, it is easy to see that E[Bi]=0 and

    E[|Bi|˜p]E[|KiI{|Ki|ρn}|˜p]E[|Ki|˜p]2j(˜p2+m˜p1).

    Especially in the case of ˜p=2, one can obtain E[|Bi|2]22mj. On the other hand,

    E[|Ki|I{|Ki|>ρn}]E[|Ki||Ki|ρn]=E[K21]ρn22mjρn=tn=2mjlnnn. (4.6)

    According to Rosenthal's inequality and 2jn,

    E[|ˆβj,kβj,k|˜p]1n˜pE[|ni=1Bi|˜p]+(tn)˜p{1n˜p(ni=1E[|Bi|˜p]+(ni=1E[|Bi|2])˜p2)+(tn)˜p,˜p>2,1n˜p(ni=1E[|Bi|2])˜p2+(tn)˜p,1˜p2,{1n˜p(n2j(˜p2+m˜p1)+(n22mj)˜p2)+(lnnn)˜p22˜pmj,˜p>2,1n˜p(n22mj)˜p2+(lnnn)˜p22˜pmj,1˜p2,(lnnn)˜p22˜pmj.

    Then, the second inequality is proved.

    Lemma 4.4. (Bernstein's inequality) Let X1,,Xn be independent random variables such that E[Xi]=0, |Xi|<M and E[|Xi|2]:=σ2. Then, for each ν>0

    P(1n|ni=1Xi|ν)2exp{nν22(σ2+νM/3)}.

    Lemma 4.5. For the model (1.1) with A1–A5 and 1˜p<+, there exists a constant κ>1 such that

    P(|ˆβj,kβj,k|κtn)n˜p. (4.7)

    Proof. According to (4.5), one gets Ki=Y2i(1)mψ(m)j,k(Xi)10g2(x)(1)mψ(m)j,k(x)dx, Bi=KiI{|Ki|ρn}E[KiI{|Ki|ρn}] and

    |ˆβj,kβj,k|1n|ni=1Bi|+1nni=1E[|Ki|I{|Ki|>ρn}].

    Meanwhile, (4.6) shows that there exists c>0 such that E[|Ki|I{|Ki|>ρn}]ctn. Furthermore, the following conclusion is true.

    {|ˆβj,kβj,k,u|κtn}{[1n|ni=1Bi|+1nni=1E(|Ki|I{|Ki|>ρn})]κtn}{1n|ni=1Bi|(κc)tn}.

    Note that the definition of B_{i} implies that |{{B_i}}|\lesssim \rho_{n} and {\rm{E}}\left[B_{i} \right] = 0 . Using the arguments of Lemma 4.3, {\rm{E}}[{B_{_i}^2}] : = \sigma^{2} \lesssim 2^{2mj} . Furthermore, by Bernstein's inequality,

    \begin{align*} {\rm{P}}\left({\frac{1}{n}\left|{\sum\limits_{i = 1}^n {{B_i}}}\right| \ge (\kappa-c) {t_n}}\right) &\lesssim \exp\left\{{ - \frac{n (\kappa-c )^{2} {t_n}^2}{{2({\sigma^{2} +{{(\kappa-c ){t_n} \rho_{n}}}/{3}})}}}\right\}\\ &\lesssim \exp\left\{{ - \frac{n (\kappa-c )^{2} 2^{2mj}\cdot\frac{\ln n}{n}}{{2({2^{2mj} +{{(\kappa-c )\cdot 2^{2mj}}}/{3}})}}}\right\}\\ & = \exp\left\{ { -(\ln n) \frac{{{(\kappa-c ) ^2}}}{{2({1 + {(\kappa-c )}/{3}})}}}\right\} \\ & = {n^{ - \frac{{{(\kappa-c ) ^2}}}{2({1 +(\kappa-c)/{3}})}}}. \end{align*}

    Then, one can choose large enough \kappa such that

    \begin{eqnarray*} {\rm{P}}\left({{\left|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}\right|}}\ge\kappa{t_n}\right) \lesssim {n^{ - \frac{{{(\kappa-c ) ^2}}}{2({1 +{(\kappa-c)}/{3}})}}}\lesssim n^{-\tilde{p}}. \end{eqnarray*}

    Proof of (a): Note that

    \begin{align*} \left \| \hat r_n^{lin}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \lesssim \left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}+\left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \end{align*}

    Hence,

    \begin{align} {\rm{E}}\left[ \left \| \hat r_n^{lin}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] &\lesssim {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] +\left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}. \end{align} (4.8)

    \blacksquare The stochastic term {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] .

    It follows from Lemma 1.1 that

    \begin{align*} {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] & = {\rm{E}}\left[\left\| \sum\limits_{k \in {\mit\Lambda _{{j_*}}}} \left( {\hat \alpha}_{{j_*}, k}-{\alpha}_{{j_*}, k}\right)\phi_{j_*, k}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\right] \\ &\sim 2^{j_*(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{{j_*}}}} {\rm{E}}\left[\left| {\hat \alpha}_{{j_*}, k}-{\alpha}_{{j_*}, k} \right| ^{\tilde{p}}\right]. \end{align*}

    Then, according to (4.3), |{{\mit\Lambda _{{j_*}}}}|\sim{2^{j_*}} and {2^{{j_*}}} \sim{n^{\frac{1}{{2s' + 2m+1}}}} , one gets

    \begin{align} {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-{P_{j_{*}}}r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] \sim 2^{j_* \frac{\tilde{p}}{2}(2m+1)} \cdot n^{-\frac{\tilde{p}}{2}} \sim {n^{-\frac{{\tilde{p}s'}}{{2s' + 2m+1}}}}. \end{align} (4.9)

    \blacksquare The bias term \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} .

    When p > \tilde{p} \ge 1 , s' = s-({\frac{1}{p}-\frac{1}{\tilde{p}}})_+ = s . Using Hölder inequality, Lemma 1.2 and r^{(m)} \in B_{p, q}^s({{[0, 1]}}) ,

    \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\lesssim \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{p} \lesssim 2^{-j_{*} \tilde{p} s} = 2^{-j_{*} \tilde{p} s'}\sim {n^{-\frac{\tilde{p}s'}{{2s' + 2m+1}}}}.

    When 1 \leq p\leq\tilde{p} and s > \dfrac{1}{p} , one knows that B_{p, q}^s({{[0, 1]}}) \subseteq B_{\tilde{p}, \infty}^{s'} ({{[0, 1]}}) and

    \begin{align*} \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \lesssim 2^{-j_{*} \tilde{p} s'}\sim {n^{-\frac{\tilde{p} s'}{{2s' + 2m+1}}}}. \end{align*}

    Hence, the following inequality holds in both cases.

    \begin{align} \left \| {P_{j_{*}}}r^{(m)}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}} \lesssim {n^{-\frac{\tilde{p} s'}{{2s' + 2m+1}}}}. \end{align} (4.10)

    Finally, the results (4.8)–(4.10) show

    \begin{eqnarray*} {\rm{E}}\left[\left \| \hat r_n^{lin}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right]\lesssim {n^{-\frac{\tilde{p} s'}{{2s' + 2m+1}}}}. \end{eqnarray*}

    Proof of (b): By the definitions of \hat r_n^{lin}(x) and \hat r_n^{non}(x) , one has

    \begin{align*} \left\| {\hat r_n^{non}(x) - r^{(m)}(x)}\right\| ^{\tilde{p}}_{\tilde{p}}&\lesssim \left\| \hat r_n^{lin}(x) - {P_{{j_*}}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}} + \left\| r^{(m)}(x)-{P_{{j_1} + 1}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\\ &+\left\| \sum\limits_{j = {j_*}}^{{j_1}} \sum\limits_{k \in {\mit\Lambda _j}} {\left({{{\hat\beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}}\}}} - {\beta _{j, k}}}\right)}{\psi _{j, k}}(x)\right\| ^{\tilde{p}}_{\tilde{p}}. \end{align*}

    Furthermore,

    \begin{align} {\rm{E}}\left[\left \| \hat r_n^{non}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right] \lesssim T_{1}+T_{2}+Q. \end{align} (4.11)

    In this above inequality,

    \begin{gather*} T_{1}: = {\rm{E}}\left[\left\| \hat r_n^{lin}(x) - {P_{{j_*}}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}} \right], \\ T_{2}: = \left\| r^{(m)}(x)-{P_{{j_1} + 1}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}}, \\ Q: = {\rm{E}}\left[ \left\| \sum\limits_{j = {j_*}}^{{j_1}} \sum\limits_{k \in {\mit\Lambda _j}} {\left({{{\hat\beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}}\}}} - {\beta _{j, k}}}\right)}{\psi _{j, k}}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\right]. \end{gather*}

    \blacksquare For T_{1} . According to (4.9) and {2^{{j_*}}}\sim{n^{\frac{1}{{2t + 2m+1}}}} \left(t > s\right) ,

    \begin{align} T_{1} \sim 2^{j_* \frac{\tilde{p}}{2}(2m+1)} \cdot n^{-\frac{\tilde{p}}{2}} \sim n^{-\frac{\tilde{p} t}{2t+2m+1}} < n^{-\frac{\tilde{p} s}{2s+2m+1}} \leq n^{-\tilde{p} \delta}. \end{align} (4.12)

    \blacksquare For T_{2} . Using similar mathematical arguments as (4.10), when p > \tilde{p} \ge 1 , one can obtain T_{2}: = \left\| r^{(m)}(x)-{P_{{j_1} + 1}}r^{(m)}(x)\right\| ^{\tilde{p}}_{\tilde{p}} \lesssim 2^{-j_{1}\tilde{p}s} . This with {2^{{j_1}}}\sim \left(\frac{n}{{\ln n}}\right)^{\frac{1}{2m+1}} leads to

    T_{2}\lesssim 2^{-j_{1} \tilde{p}s} < \left( \frac{\ln n}{{n}}\right)^{\frac{\tilde{p}s}{2m+1}} \le \left( \frac{\ln n}{{ n}}\right)^{\frac{\tilde{p}s}{2s+2m+1}} \le \left( \frac{\ln n}{{ n}}\right)^{\tilde{p} \delta}.

    On the other hand, when 1 \leq p\leq\tilde{p} and s > \dfrac{1}{p} , one has B_{p, q}^s({{[0, 1]}}) \subseteq B_{\tilde{p}, \infty}^{s-{\frac{1}{p}+\frac{1}{\tilde{p}}}} ({{[0, 1]}}) and

    \begin{align*} T_{2} \lesssim 2^{-j_1 \tilde{p} (s-1/p+1/\tilde{p})}\sim \left( \dfrac{\ln n}{n}\right) ^{\frac{\tilde{p}(s-1/p+1/\tilde{p})}{2m+1}} < \left( \dfrac{\ln n}{n}\right) ^{\frac{\tilde{p}(s-1/p+1/\tilde{p})}{2(s-1/p)+2m+1}} \le \left( \frac{\ln n}{{ n}}\right)^{\tilde{p} \delta}. \end{align*}

    Therefore, for each 1 \le \tilde{p} < \infty ,

    \begin{align} T_{2}\lesssim \left( \frac{\ln n}{{ n}}\right)^{\tilde{p} \delta}. \end{align} (4.13)

    \blacksquare For Q . According to Hölder inequality and Lemma 1.1,

    \begin{align*} Q&\lesssim (j_1-j_*+1)^{\tilde{p}-1} \sum\limits_{j = {j_*}}^{{j_1}} {\rm{E}}\left[ \left\| \sum\limits_{k \in {\mit\Lambda _j}} {\left({{{\hat\beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}}\}}} - {\beta _{j, k}}}\right)}{\psi _{j, k}}(x)\right\| ^{\tilde{p}}_{\tilde{p}}\right] \\ &\lesssim (j_1-j_*+1)^{\tilde{p}-1} \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}|\ge \kappa{t_n}}\}}} - {\beta _{j, k}}}|^{\tilde{p}}\right]. \end{align*}

    Note that

    \begin{align*} |{{{\hat \beta }_{j, k}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}|\ge \kappa{t_n}}\}}} - {\beta _{j, k}}}|^{\tilde{p}} & = |{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}}{{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}, | {{\beta _{j, k}}}| < \frac{{\kappa {t_n}}}{2}}\}}} + |{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| \ge \kappa {t_n}, |{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}}\}}}}\\ &+ |{{\beta _{j, k}}}|^{\tilde{p}}{{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| < \kappa {t_n}, | {{\beta _{j, k}}}| > 2\kappa {t_n}}\}}} + |{{\beta _{j, k}}}|^{\tilde{p}}{\mathbb{I}_{\{{|{{{\hat \beta }_{j, k}}}| < \kappa {t_n}, | {{\beta _{j, k}}}| \le 2\kappa {t_n}}\}}}}. \end{align*}

    Meanwhile,

    \begin{gather*} {{\{{|{{{\hat \beta }_{j, k}}}|\ge \kappa{t_n}}, |{{\beta _{j, k}}}| < \frac{{\kappa {t_n}}}{2}\}}} \subseteq{{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}, \\ {{\{{|{{{\hat \beta }_{j, k}}}| < \kappa{t_n}}, |{{\beta _{j, k}}}| > 2\kappa {t_n}\}}}\subseteq {{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \kappa{t_n}\}}}\subseteq {{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}. \end{gather*}

    Then, Q can be decomposed as

    \begin{align} Q\lesssim (j_1-j_*+1)^{\tilde{p}-1}\left( Q_{1}+Q_{2}+Q_{3}\right), \end{align} (4.14)

    where

    \begin{gather*} Q_{1}: = \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}\right], \\ Q_{2}: = \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right], \\ Q_{3}: = \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _{j}}} | {\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}}. \end{gather*}

    \blacksquare For {Q_1} . It follows from the Hölder inequality that

    {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa{t_n}}}{2}\}}}\right] \le {\left( {{\rm{E}}\left[{{{|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|}^{2\tilde{p}}}}\right]}\right)^{\frac{1}{2}}}{\left[{{\rm{P}}\left({|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}| > \frac{{\kappa {t_n}}}{2}}\right)}\right]^{\frac{1}{2}}}.

    By Lemma 4.3, one gets

    {\rm{E}}\left[{{{\left|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}\right|}^{2\tilde{p}}}}\right] \lesssim \left( \dfrac{\ln n}{n}\right) ^{-\tilde{p}} \cdot 2^{2\tilde{p} mj} .

    This with Lemma 4.5, |{{\mit\Lambda _{j}}}|\sim{2^{j}} and {2^{{j_1}}}\sim \left(\frac{n}{{\ln n}}\right)^{\frac{1}{2m+1}} shows that

    \begin{align} Q_{1} \lesssim \sum\limits_{j = {j_*}}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}}2^{j} \cdot \left( \frac{\ln n}{n}\right) ^{\frac{\tilde{p}}{2}} 2^{\tilde{p} mj} \cdot n^{-\frac{\tilde{p}}{2}} \lesssim n^{-\frac{\tilde{p}}{2}} < n^{-\tilde{p} \delta}. \end{align} (4.15)

    \blacksquare For {Q_2} . One defines

    {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}}.

    Clearly, {2^{{j_*}}}\sim{n^{\frac{1}{{2t+2m + 1}}}} \left(t > s\right) \le {2^{j'}}\sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} < {2^{{j_1}}}\sim \left(\frac{n}{\ln n} \right) ^{\frac{1}{2m+1}} . Furthermore, one rewrites

    \begin{align} {Q_2} = \left({\sum\limits_{j = {j_*}}^{j'} { + \sum\limits_{j = j' + 1}^{{j_1}}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}}{\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right] : = {Q_{21}} + {Q_{22}}. \end{align} (4.16)

    \blacksquare For {Q_{21}} . By Lemma 4.3 and {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}},

    \begin{align} {Q_{21}}&: = \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ &\le \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} \right] \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = {j_*}}^{j'} 2^{j(2m+1) \frac{\tilde{p}}{2}}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} 2^{j'(2m+1) \frac{\tilde{p}}{2}} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.17)

    \blacksquare For {Q_{22}} . Using Lemma 4.3, one has

    \begin{align*} {Q_{22}}&: = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}. \end{align*}

    When p > \tilde{p} \ge 1 , by the Hölder inequality, {t_n} = 2^{mj}\sqrt{{\ln n}/n} , {2^{j'}}\sim\left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} and Lemma 1.2, one can obtain that

    \begin{align} {Q_{22}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{\tilde{p}}\\ &\lesssim \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {|\beta _{j, k}|^{\tilde{p}}} = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\| \beta _{j, k} \right\| ^{\tilde{p}}_{\tilde{p}}\\ &\le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \cdot 2^{j(1-\frac{\tilde{p}}{p})}\left\| \beta _{j, k} \right\| ^{\tilde{p}}_{p}\\ & \lesssim \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j\tilde{p}s} \lesssim 2^{-j'\tilde{p}s} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.18)

    When 1\leq p\leq\tilde{p} , it follows from Lemma 1.2 that

    \begin{align} {Q_{22}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{p}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+j(\tilde{p}-p)m} \left\| \beta _{j, k} \right\|^{p}_{p}\\ &\le \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j(sp+\frac{p}{2}-\frac{\tilde{p}}{2}-(\tilde{p}-p)m)}. \end{align} (4.19)

    Take

    \epsilon : = sp-\dfrac{\tilde{p}-p}{2} (2m+1).

    Then, (4.19) can be rewritten as

    \begin{align} {Q_{22}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j \epsilon}. \end{align} (4.20)

    When \epsilon > 0 holds if and only if p > \frac{\tilde{p}(2m+1)}{2s+2m+1} , \delta = \frac{s}{2s+2m+1} and

    \begin{align} {Q_{22}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-j' \epsilon} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} = \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.21)

    When \epsilon\le0 holds if and only if p \leq \frac{\tilde{p}(2m+1)}{2s+2m+1} , \delta = \frac{s-1/p+1 / \tilde{p}}{2(s-1 /p)+2m+1} . Define

    2^{j''} \sim \left( \frac{n}{\ln n}\right) ^{\frac{\delta}{s-1/p+1/\tilde{p}}} = \left( \frac{n}{\ln n}\right) ^{\frac{1}{2(s-1/p)+2m+1}} ,

    and obviously, {2^{j'}} \sim \left(\frac{n}{\ln n} \right)^{\frac{1}{{2s + 2m+1}}} < 2^{j''} \sim \left(\frac{n}{\ln n}\right) ^{\frac{\delta}{s-1/p+1/\tilde{p}}} < {2^{{j_1}}}\sim \left(\frac{n}{\ln n} \right) ^{\frac{1}{2m+1}} . Furthermore, one rewrites

    \begin{align} \begin{split} {Q_{22}} & = \left({\sum\limits_{j = {j' + 1}}^{j''} + \sum\limits_{j = j'' + 1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} {\rm{E}}\left[|{{{\hat \beta }_{j, k}} - {\beta _{j, k}}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\ge \frac{{\kappa {t_n}}}{2}\}}}\right]\\ & : = {Q_{221}} + {Q_{222}}. \end{split} \end{align} (4.22)

    For {Q_{221}} . Note that \frac{\tilde{p}-p}{2}+\frac{\delta \epsilon }{s-1/p+1 /\tilde{p}} = \tilde{p} \delta in the case of \epsilon\le0 . Then, by the same arguments of (4.20), one gets

    \begin{align} {Q_{221}} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = {j' + 1}}^{j''} 2^{-j\epsilon} \lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-{j''}\epsilon} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.23)

    For {Q_{222}} . The conditions 1\leq p\leq\tilde{p} and s > 1/p imply B_{p, q}^s({{[0, 1]}}) \subset B_{\tilde{p}, q}^{s-\frac{1}{p}+\frac{1}{\tilde{p}}}({{[0, 1]}}) . Similar to (4.18), one obtains

    \begin{align} {Q_{222}} &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \sum\limits_{j = j'' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+\tilde{p}mj} \sum\limits_{k \in {\mit\Lambda _j}} \left( \dfrac{|{{\beta _{j, k}}}|}{\frac{{\kappa {t_n}}}{2}}\right) ^{\tilde{p}}\\ &\lesssim \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\|{\beta _{j, k}} \right\| ^{\tilde{p}}_{\tilde{p}} \lesssim \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \cdot 2^{-j(s-\frac{1}{\tilde{p}}+\frac{1}{2}){\tilde{p}}}\\ &\lesssim 2^{-j'' (s-{\frac{1}{p}+\frac{1}{\tilde{p}}})\tilde{p}} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. \end{align} (4.24)

    Combining (4.18), (4.21), (4.23) and (4.24),

    {Q_{22}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}.

    This with (4.16) and (4.17) shows that

    \begin{align} {Q_{2}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.25)

    \blacksquare For {Q_3} . According to the definition of {2^{j'}} , one can write

    \begin{align*} {Q_3} = \left({\sum\limits_{j = {j_*}}^{j'} + \sum\limits_{j = j'+1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}}: = {Q_{31}} + {Q_{32}}. \end{align*}

    \blacksquare For {Q_{31}} . It is easy to see that

    \begin{align*} \begin{split} {Q_{31}}&: = \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} \le \sum\limits_{j = {j_*}}^{j'} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} \left( 2\kappa {t_n}\right) ^{\tilde{p}} \\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}}{2}} \cdot 2^{(2m+1)j'\frac{\tilde{p}}{2}} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{split} \end{align*}

    \blacksquare For {Q_{32}} . One rewrites {Q_{32}} = \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} . When p > \tilde{p}\ge1 , using the Hölder inequality and Lemma 1.2,

    \begin{align*} {Q_{32}} \le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} \lesssim 2^{-j'\tilde{p}s} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} \le \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*}

    When 1\leq p\leq\tilde{p} , one has

    \begin{align*} \begin{split} {Q_{32}} & \le \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} \left( \frac{2 \kappa{t_n}}{|\beta _{j, k}|}\right) ^{\tilde{p}-p}\\ &\lesssim \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}+j(\tilde{p}-p)m} \left\| \beta _{j, k} \right\|^{p}_{p}\\ &\le \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j(sp+\frac{p}{2}-\frac{\tilde{p}}{2}-(\tilde{p}-p)m)}\\ & = \left( \frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = j' + 1}^{{j_1}} 2^{-j\epsilon}. \end{split} \end{align*}

    For the case of \epsilon > 0 , one can easily obtain that \delta = \frac{s}{2s+2m+1} and

    \begin{align*} {Q_{32}} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-j' \epsilon} \sim \left( \frac{\ln n}{n}\right)^{\frac{{\tilde{p}}s}{{2s + 2m+1}}} = \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*}

    When \epsilon \le 0 , \delta = \frac{s-1/p+1 /\tilde{p}}{2(s-1 /p)+2m+1} . Moreover, by the definition of 2^{j''} , one rewrites

    \begin{align*} {Q_{32}} = \left({\sum\limits_{j = {j' + 1}}^{j''} + \sum\limits_{j = j'' + 1}^{{j_1}}}\right) 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} {\mathbb{I}_{\{|{{\beta _{j, k}}}|\le 2\kappa {t_n}\}}} : = {Q_{321}} + {Q_{322}}. \end{align*}

    Note that

    \begin{align*} {Q_{321}} &\lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} \sum\limits_{j = {j' + 1}}^{j''} 2^{-j\epsilon} \lesssim \left(\frac{\ln n}{n}\right)^{\frac{\tilde{p}-p}{2}} 2^{-{j''}\epsilon} \sim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align*}

    On the other hand, similar to the arguments of (4.24), one has

    \begin{align*} \begin{split} {Q_{322}} &\le \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \sum\limits_{k \in {\mit\Lambda _j}} |{\beta _{j, k}}|^{\tilde{p}} = \sum\limits_{j = j'' + 1}^{j_1} 2^{j(\frac{1}{2}-\frac{1}{\tilde{p}}){\tilde{p}}} \left\|{\beta _{j, k}} \right\| ^{\tilde{p}}_{\tilde{p}} \lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{split} \end{align*}

    Therefore, in all of the above cases,

    \begin{align} {Q_{3}}\lesssim \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta}. \end{align} (4.26)

    Finally, combining the above results (4.14), (4.15), (4.25) and (4.26), one gets

    \begin{eqnarray*} Q \lesssim (j_1-j_*+1)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p} \delta} \lesssim (\ln n)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}. \end{eqnarray*}

    This with (4.11)–(4.13) shows

    {\rm{E}}\left[\left \| \hat r_n^{non}(x)-r^{(m)}(x) \right \|^{\tilde{p}}_{\tilde{p}}\right]\lesssim (\ln n)^{\tilde{p}-1} \left( \frac{\ln n}{n}\right)^{\tilde{p}\delta}.

    This paper considers wavelet estimations of the derivatives r^{(m)}(x) of the variance function r(x) in a heteroscedastic model. The upper bounds over L^{\tilde{p}} (1\leq \tilde{p} < \infty) risk of the wavelet estimators are discussed under some mild assumptions. The results show that the linear wavelet estimator can obtain the optimal convergence rate in the case of p > \tilde{p}\ge1 . When p\leq\tilde{p} , the nonlinear wavelet estimator has a better convergence rate than the linear estimator. Moreover, the nonlinear wavelet estimator is adaptive. Finally, some numerical experiments are presented to verify the good performances of the wavelet estimators.

    We would like to thank the reviewers for their valuable comments and suggestions, which helped us to improve the quality of the manuscript. This paper is supported by the Guangxi Natural Science Foundation (No. 2022JJA110008), National Natural Science Foundation of China (No. 12001133), Center for Applied Mathematics of Guangxi (GUET), and Guangxi Colleges and Universities Key Laboratory of Data Analysis and Computation.

    All authors declare that they have no conflicts of interest.



    [1] B. Bensebaa, A. Movahhedi, A. Salinier, The Galois group of X^p+aX^{s}+a = 0, Acta Arith., 134 (2008), 55–65. doi: 10.4064/aa134-1-4. doi: 10.4064/aa134-1-4
    [2] B. Bensebaa, A. Movahhedi, A. Salinier, The Galois group of X^p+aX^{p-1}+a = 0, J. Number Theory, 129 (2009), 824–830. doi: 10.1016/j.jnt.2008.09.017. doi: 10.1016/j.jnt.2008.09.017
    [3] P. I. Chebyshev, Sur la fonction qui détermine la totalité des nombres premiers inférieurs à une limite donnée, J. Math. Pures Appl., 17 (1852), 341–365.
    [4] S. D. Cohen, A. Movahhedi, A. Salinier, Galois group of trinomials, J. Algebra, 222 (1999), 561–573. doi: 10.1006/jabr.1999.8033.
    [5] P. A. Grillet, Abstract algebra, Vol. 242, New York: Springer, 2007.
    [6] F. Hajir, Algebraic properties of a family of generalized Laguerre polynomials, Can. J. Math., 61 (2009), 583–603. doi: 10.4153/CJM-2009-031-6. doi: 10.4153/CJM-2009-031-6
    [7] F. Hajir, On the Galois group of generalized Laguerre polynomials, J. Théorie Nombres Bordeaux, 17 (2005), 517–525.
    [8] A. Movahhedi, Galois group of X^p+aX+a = 0, J. Algebra, 180 (1996), 966–975. doi: 10.1006/jabr.1996.0104. doi: 10.1006/jabr.1996.0104
    [9] K. Komatsu, On the Galois group of x^p+ax+a = 0, Tokyo J. Math, 14 (1991), 227–229. doi: 10.3836/tjm/1270130502. doi: 10.3836/tjm/1270130502
    [10] K. Komatsu, On the Galois group of x^p+p^tb(x+1) = 0, Tokyo J. Math, 15 (1992), 351–356. doi: 10.3836/tjm/1270129460. doi: 10.3836/tjm/1270129460
    [11] K. Ohta, On unramified Galois extensions of quadratic number fields (in Japanese), Sügaku, 24 (1972), 119–120.
    [12] H. Osada, The Galois group of the polynomials x^n+ax^l+b, J. Number Theory, 25 (1987), 230–238. doi: 10.1016/0022-314X(87)90029-1. doi: 10.1016/0022-314X(87)90029-1
    [13] R. G. Swan, Factorization of polynomials over finite fields, Pacific J. Math., 12 (1962), 1099–1106. doi: 10.2140/pjm.1962.12.1099. doi: 10.2140/pjm.1962.12.1099
    [14] K. Uchida, Unramified extentions of quadratic number fields II, Tohoku. Math. J., 22 (1970), 220–224. doi: 10.2748/tmj/1178242816. doi: 10.2748/tmj/1178242816
    [15] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math., 7 (1970), 57–76.
  • This article has been cited by:

    1. Junke Kou, Hao Zhang, Partial Derivatives Estimation of Multivariate Variance Function in Heteroscedastic Model via Wavelet Method, 2024, 13, 2075-1680, 69, 10.3390/axioms13010069
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3037) PDF downloads(104) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog