In this paper, we discuss the uniqueness and existence of local solutions for the perturbed static, spherically symmetric Einstein-Yang-Mills (EYM) equations with gauge group $ SU(2) $. Moreover, we show that the rational expression solutions to the equations only happened in traditional Schwarzschild solutions and Reissner-Nordstrom solutions. From these results, we can infer that there is no rational ghost soliton solution for the EYM equations.
Citation: Wenjing Song, Haiyun Deng, Ganshan Yang. Two-uniqueness of rational ghost soliton solution and well-posedness of perturbed Einstein-Yang-Mills equations[J]. AIMS Mathematics, 2021, 6(11): 12065-12076. doi: 10.3934/math.2021699
In this paper, we discuss the uniqueness and existence of local solutions for the perturbed static, spherically symmetric Einstein-Yang-Mills (EYM) equations with gauge group $ SU(2) $. Moreover, we show that the rational expression solutions to the equations only happened in traditional Schwarzschild solutions and Reissner-Nordstrom solutions. From these results, we can infer that there is no rational ghost soliton solution for the EYM equations.
[1] | R. Bartnik, M. John, Particlelike solutions of the Einstein-Yang-Mills equations, Phys. Rev. Lett., 61 (1988), 141–144. doi: 10.1103/PhysRevLett.61.141 |
[2] | J. E. Baxter, On the existence of topological dyons and dyonic black holes in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups, J. Math. Phys., 59 (2018), 052502. doi: 10.1063/1.5000349 |
[3] | F. Bethuel, P. Gravejat, J. C. Saut, D. Smets, Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana U. Math. J., 57 (2008), 2611–2642. doi: 10.1512/iumj.2008.57.3632 |
[4] | A. M. Kamchatnov, A. Gammal, F. K. Abdullaev, R. A. Kraenkel, Formation of soliton trains in Bose-Einstein condensates as a nonlinear Fresnel diffraction of matter waves, Phys. Lett. A, 319 (2003), 406–412. doi: 10.1016/j.physleta.2003.10.050 |
[5] | R. Radha, V. R. Kumar, M. Wadati, Line-soliton dynamics and stability of Bose-Einstein condensates in (2+1) Gross-Pitaevskii equation, J. Math. Phys., 51 (2010), 043507. doi: 10.1063/1.3372625 |
[6] | J. A. Smoller, A. G. Wasserman, Regular solutions of the Einstein-Yang-Mills equations, J. Math. Phys., 36 (1995), 4301–4323. doi: 10.1063/1.530963 |
[7] | J. Smoller, A. Wasserman, Reissner-Nordstrom-like solutions of the $SU(2)$ Einstein-Yang-Mills equations, J. Math. Phys., 38 (1997), 6522–6559. doi: 10.1063/1.532224 |
[8] | J. A. Smoller, A. G. Wasserman, Extendability of solutions of the Einstein-Yang-Mills equations, Commun. Math. Phys., 194 (1998), 707–732. doi: 10.1007/s002200050375 |
[9] | J. A. Smoller, A. G. Wasserman, S. T. Yau, Existence of black hole solutions for the Einstein-Yang-Mills equations, Commun. Math. Phys., 154 (1993), 377–401. doi: 10.1007/BF02097002 |