By making use of the Nevanlinna theory and difference Nevanlinna theory of several complex variables, we investigate some properties of the transcendental entire solutions for several systems of partial differential difference equations of Fermat type, and obtain some results about the existence and the forms of transcendental entire solutions of the above systems, which improve and generalize the previous results given by Cao, Gao, Liu [
Citation: Hong Li, Keyu Zhang, Hongyan Xu. Solutions for systems of complex Fermat type partial differential-difference equations with two complex variables[J]. AIMS Mathematics, 2021, 6(11): 11796-11814. doi: 10.3934/math.2021685
By making use of the Nevanlinna theory and difference Nevanlinna theory of several complex variables, we investigate some properties of the transcendental entire solutions for several systems of partial differential difference equations of Fermat type, and obtain some results about the existence and the forms of transcendental entire solutions of the above systems, which improve and generalize the previous results given by Cao, Gao, Liu [
[1] | A. Biancofiore, W. Stoll, Another proof of the lemma of the logarithmic derivative in several complex variables, In: J. Fornaess (ed.), Recent developments in several complex variables, Princeton University Press, Princeton, 1981, 29–45. |
[2] | T. B. Cao, R. J. Korhonen, A new version of the second main theorem for meromorphic mappings intersecting hyperplanes in several complex variables, J. Math. Anal. Appl., 444 (2016), 1114–1132. doi: 10.1016/j.jmaa.2016.06.050 |
[3] | Y. M. Chiang, S. J. Feng, On the Nevanlinna characteristic of $f(z+\eta)$ and difference equations in the complex plane, Ramanujan J., 16 (2008), 105–129. doi: 10.1007/s11139-007-9101-1 |
[4] | R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol II, partial differential equations, Interscience, New York, 1962. |
[5] | L. Y. Gao, Entire solutions of two types of systems of complex differential-difference equations, Acta Math. Sinica, Chin. Ser., 59 (2016), 677–685. |
[6] | P. R. Garabedian, Partial Differential Equations, Wiley, New York, 1964. |
[7] | F. Gross, On the equation $f^n+g^n = 1$, Bull. Am. Math. Soc., 72 (1966), 86–88. doi: 10.1090/S0002-9904-1966-11429-5 |
[8] | R. G. Halburd, R. J. Korhonen, Difference analogue of the lemma on the logarithmic derivative with applications to difference equations, J. Math. Anal. Appl., 314 (2006), 477–487. doi: 10.1016/j.jmaa.2005.04.010 |
[9] | R. G. Halburd, R. J. Korhonen, Finite-order meromorphic solutions and the discrete Painlevé equations, Proc. London Math. Soc., 94 (2007), 443–474. doi: 10.1112/plms/pdl012 |
[10] | R. G. Halburd, R. J. Korhonen, Nevanlinna theory for the difference operator, Ann. Acad. Sci. Fenn. Math., 31 (2006), 463–478. |
[11] | J. Heittokangas, R. Korhonen, I. Laine, J. Rieppo, K. Tohge, Complex difference equations of Malmquist type, Comput. Methods Funct. Theory, 1 (2001), 27–39. doi: 10.1007/BF03320974 |
[12] | P. C. Hu, Malmquist type theorem and factorization of meromorphic solutions of partial differential equations, Complex Var., 27 (1995), 269–285. |
[13] | P. C. Hu, B. Q. Li, On meromorphic solutions of nonlinear partial differential equations of first order, J. Math. Anal. Appl., 377 (2011), 881–888. doi: 10.1016/j.jmaa.2010.12.004 |
[14] | P. C. Hu, P. Li, C. C. Yang, Unicity of Meromorphic Mappings, Advances in Complex Analysis and its Applications, Vol. 1, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003. |
[15] | P. C. Hu, C. C. Yang, Uniqueness of meromorphic functions on $\mathbb{C}^m$, Complex Var., 30 (1996), 235–270. |
[16] | D. Khavinson, A note on entire solutions of the eiconal equation, Am. Math. Mon., 102 (1995), 159–161. doi: 10.1080/00029890.1995.11990551 |
[17] | R. J. Korhonen, A difference Picard theorem for meromorphic functions of several variables, Comput. Methods Funct. Theory, 12 (2012), 343–361. doi: 10.1007/BF03321831 |
[18] | I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin, 1993. |
[19] | B. Q. Li, On entire solutions of Fermat type partial differential equations, Int. J. Math., 15 (2004), 473–485. doi: 10.1142/S0129167X04002399 |
[20] | B. Q. Li, Entire solutions of ${({u_z}_1)^m} + {({u_z}_2)^n} = {e^g}$, Nagoya Math. J., 178 (2005), 151–162. doi: 10.1017/S0027763000009156 |
[21] | B. Q. Li, Entire solutions of eiconal type equations, Arch. Math., 89 (2007), 350–357. doi: 10.1007/s00013-007-2118-2 |
[22] | K. Liu, Meromorphic functions sharing a set with applications to difference equations, J. Math. Anal. Appl., 359 (2009), 384–393. doi: 10.1016/j.jmaa.2009.05.061 |
[23] | K. Liu, T. B. Cao, H. Z. Cao, Entire solutions of Fermat type differential-difference equations, Arch. Math., 99 (2012), 147–155. doi: 10.1007/s00013-012-0408-9 |
[24] | K. Liu, T. B. Cao, Entire solutions of Fermat type difference differential equations, Electron. J. Differ. Equ., 2013 (2013), 1–10. doi: 10.1186/1687-1847-2013-1 |
[25] | F. Lü, W. R. Lü, C. P. Li, J. F. Xu, Growth and uniqueness related to complex differential and difference equations, Results Math., 74 (2019), 30. doi: 10.1007/s00025-018-0945-z |
[26] | F. Lü, Z. Li, Meromorphic solutions of Fermat type partial differential equations, J. Math. Anal. Appl., 478 (2019), 864–873. doi: 10.1016/j.jmaa.2019.05.058 |
[27] | P. Montel, Lecons sur les familles normales de fonctions analytiques et leurs applications, Gauthier-Villars, Paris, 1927,135–136. |
[28] | A. Naftalevich, On a differential-difference equation, Mich. Math. J., 2 (1976), 205–223. |
[29] | A. Naftalevich, On meromorphic solutions of a linear differential-difference equation with constant coefficients, Mich. Math. J., 22 (1990), 205–223. |
[30] | G. Pólya, On an integral function of an integral function, J. Lond. Math. Soc., 1 (1926), 12–15. |
[31] | X. G. Qi, Y. Liu, L. Z. Yang, A note on solutions of some differential-difference equations, J. Contemp. Math. Anal. (Arm. Acad. Sci.), 52 (2017), 128–133. doi: 10.3103/S1068362317030037 |
[32] | X. G. Qi, L. Z. Yang, Entire solutions of some differential-difference equations, Bull. Iran. Math. Soc., 46 (2020), 579–591. doi: 10.1007/s41980-019-00277-5 |
[33] | J. Rieppo, On a class of complex functional equations, Ann. Acad. Sci. Fenn. Math., 32 (2007), 151–170. |
[34] | L. I. Ronkin, Introduction to the Theory of Entire Functions of Several Variables, Moscow: Nauka, 1971 (Russian), American Mathematical Society, Providence, 1974. |
[35] | E. G. Saleeby, Entire and meromorphic solutions of Fermat type partial differential equations, Analysis, 19 (1999), 69–376. doi: 10.1524/anly.1999.19.1.69 |
[36] | W. Stoll, Holomorphic Functions of Finite Order in Several Complex Variables, American Mathematical Society, Providence, 1974. |
[37] | H. Y. Xu, S. Y. Liu, Q. P. Li, Entire solutions for several systems of nonlinear difference and partial differential-difference equations of Fermat-type, J. Math. Anal. Appl., 483 (2020), 123641. doi: 10.1016/j.jmaa.2019.123641 |
[38] | H. Y. Xu, H. Wang, Notes on the existence of entire solutions for several partial differential-difference equations, Bull. Iran. Math. Soc., 46 (2020), 1–13. doi: 10.1007/s41980-019-00237-z |
[39] | L. Xu, T. B. Cao, Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 15 (2018), 1–14. doi: 10.1007/s00009-017-1047-y |
[40] | L. Xu, T. B. Cao, Correction to: Solutions of complex Fermat-type partial difference and differential-difference equations, Mediterr. J. Math., 17 (2020), 1–4. doi: 10.1007/s00009-019-1430-y |
[41] | Z. Ye, On Nevanlinnaś second main theorem in projective space, Invent. Math., 122 (1995), 475–507. doi: 10.1007/BF01231453 |