Research article Special Issues

Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets

  • Received: 11 June 2021 Accepted: 13 July 2021 Published: 30 July 2021
  • MSC : 06F35, 03G25, 03E72

  • The MBJ-neutrosophic set is applied to the implicative ideal of BCK-algebra to introduce the concept of implicative MBJ-neutrosophic ideal. Several properties are investigated. The relationship between implicative MBJ-neutrosophic ideal and each MBJ-neutrosophic subalgebra, (positive implicative, commutative) MBJ-neutrosophic ideal is established. Conditions for MBJ-neutrosophic subalgebra (resp., MBJ-neutrosophic ideal, positive implicative MBJ-neutrosophic ideal and commutative MBJ-neutrosophic ideal) to be implicative MBJ-neutrosophic ideal are provided. Characterizations of implicative MBJ-neutrosophic ideal are discussed.

    Citation: M. Mohseni Takallo, Rajab Ali Borzooei, Seok-Zun Song, Young Bae Jun. Implicative ideals of BCK-algebras based on MBJ-neutrosophic sets[J]. AIMS Mathematics, 2021, 6(10): 11029-11045. doi: 10.3934/math.2021640

    Related Papers:

  • The MBJ-neutrosophic set is applied to the implicative ideal of BCK-algebra to introduce the concept of implicative MBJ-neutrosophic ideal. Several properties are investigated. The relationship between implicative MBJ-neutrosophic ideal and each MBJ-neutrosophic subalgebra, (positive implicative, commutative) MBJ-neutrosophic ideal is established. Conditions for MBJ-neutrosophic subalgebra (resp., MBJ-neutrosophic ideal, positive implicative MBJ-neutrosophic ideal and commutative MBJ-neutrosophic ideal) to be implicative MBJ-neutrosophic ideal are provided. Characterizations of implicative MBJ-neutrosophic ideal are discussed.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
    [2] F. Smarandache, Neutrosophic probability, set, and logic, Bull. Transilv. Univ. Braşov Ser. B (N.S.), 6 (1999), 41–48.
    [3] F. Smarandache, A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic, Rehoboth: American Research Press, 1999.
    [4] F. Smarandache, Neutrosophic set-a generalization of the intuionistic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297.
    [5] G. Muhiuddin, $p$-ideals of BCI-algebras based on neutrosophic ${\mathcal N}$-structures, J. Intell. Fuzzy Syst., 40 (2021), 1097–1105. doi: 10.3233/JIFS-201309
    [6] G. Muhiuddin, Y. B. Jun, Further results of neutrosophic subalgebras in BCK/BCI-algebras based on neutrosophic point, TWMS J. Appl. Eng. Math., 10 (2020), 232–240.
    [7] G. Muhiuddin, F. Smarandache, Y. B. Jun, Neutrosophic quadruple ideals in neutrosophic quadruple BCI-algebras, Neutrosophic Sets Syst., 25 (2019), 161–173.
    [8] M. M. Takallo, R. A. Borzooei, Y. B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets Syst., 23 (2018), 72–84.
    [9] A. Alsubie, A. Al-Masarwah, MBJ-neutrosophic hyper BCK-ideals in hyper BCK-algebras, AIMS Math., 6 (2021), 6107–6121. doi: 10.3934/math.2021358
    [10] K. Hur, J. G. Lee, Y. B. Jun, Positive implicative MBJ-neutrosophic ideals of BCK/BCI-algebras, Ann. Fuzzy Math. Inf., 17 (2019), 65–78. Available from: https://doi.org/10.30948/afmi.2019.17.1.65.
    [11] Y. B. Jun, M. M. Takallo, Commutative MBJ-neutrosophic ideals of BCK-algebras, J. Algebraic Hyperstructures Logical Algebras, 2 (2021), 69–81. doi: 10.52547/HATEF.JAHLA.2.1.5
    [12] Y. B. Jun, E. H. Roh, MBJ-neutrosophic ideals of BCK/BCI-algebras, Open Math., 17 (2019), 588–601. Available from: http://dx.doi.org/10.1515/math-2019-0106.
    [13] J. Meng, Y. B. Jun, BCK-algebras, Seoul: Kyung Moon Sa Co., 1994.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2418) PDF downloads(148) Cited by(3)

Article outline

Figures and Tables

Tables(12)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog