Loading [MathJax]/jax/output/SVG/jax.js
Research article

Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation

  • Received: 20 October 2020 Accepted: 07 January 2021 Published: 07 February 2021
  • MSC : 35Axx, 33Dxx

  • In this paper, complex and combined dark-bright characteristic properties of nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable are extracted by using two powerful analytical approaches. Many graphical representations such as 2D, 3D and contour are also reported. Finally, general conclusions of about the novel findings are introduced at the end of this manuscript.

    Citation: Ajay Kumar, Esin Ilhan, Armando Ciancio, Gulnur Yel, Haci Mehmet Baskonus. Extractions of some new travelling wave solutions to the conformable Date-Jimbo-Kashiwara-Miwa equation[J]. AIMS Mathematics, 2021, 6(5): 4238-4264. doi: 10.3934/math.2021251

    Related Papers:

    [1] Ahmed A. Gaber, Abdul-Majid Wazwaz . Dynamic wave solutions for (2+1)-dimensional DJKM equation in plasma physics. AIMS Mathematics, 2024, 9(3): 6060-6072. doi: 10.3934/math.2024296
    [2] Yuanqing Xu, Xiaoxiao Zheng, Jie Xin . New non-traveling wave solutions for (3+1)-dimensional variable coefficients Date-Jimbo-Kashiwara-Miwa equation. AIMS Mathematics, 2021, 6(3): 2996-3008. doi: 10.3934/math.2021182
    [3] Noor Alam, Mohammad Safi Ullah, Jalil Manafian, Khaled H. Mahmoud, A. SA. Alsubaie, Hamdy M. Ahmed, Karim K. Ahmed, Soliman Al Khatib . Bifurcation analysis, chaotic behaviors, and explicit solutions for a fractional two-mode Nizhnik-Novikov-Veselov equation in mathematical physics. AIMS Mathematics, 2025, 10(3): 4558-4578. doi: 10.3934/math.2025211
    [4] Wei Gao, Gulnur Yel, Haci Mehmet Baskonus, Carlo Cattani . Complex solitons in the conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur equation. AIMS Mathematics, 2020, 5(1): 507-521. doi: 10.3934/math.2020034
    [5] Naher Mohammed A. Alsafri . Solitonic behaviors in the coupled Drinfeld-Sokolov-Wilson system with fractional dynamics. AIMS Mathematics, 2025, 10(3): 4747-4774. doi: 10.3934/math.2025218
    [6] Hamood-Ur-Rahman, Muhammad Imran Asjad, Nayab Munawar, Foroud parvaneh, Taseer Muhammad, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Hooshmand Azizi, Masoumeh Khademi . Traveling wave solutions to the Boussinesq equation via Sardar sub-equation technique. AIMS Mathematics, 2022, 7(6): 11134-11149. doi: 10.3934/math.2022623
    [7] Abdullahi Yusuf, Tukur A. Sulaiman, Mustafa Inc, Sayed Abdel-Khalek, K. H. Mahmoud . Mtruncated optical soliton and their characteristics to a nonlinear equation governing the certain instabilities of modulated wave trains. AIMS Mathematics, 2021, 6(9): 9207-9221. doi: 10.3934/math.2021535
    [8] Ghazala Akram, Maasoomah Sadaf, Mirfa Dawood, Muhammad Abbas, Dumitru Baleanu . Solitary wave solutions to Gardner equation using improved tan(Ω(Υ)2)-expansion method. AIMS Mathematics, 2023, 8(2): 4390-4406. doi: 10.3934/math.2023219
    [9] Wedad Albalawi, Nauman Raza, Saima Arshed, Muhammad Farman, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty . Chaotic behavior and construction of a variety of wave structures related to a new form of generalized q-Deformed sinh-Gordon model using couple of integration norms. AIMS Mathematics, 2024, 9(4): 9536-9555. doi: 10.3934/math.2024466
    [10] Abeer S. Khalifa, Hamdy M. Ahmed, Niveen M. Badra, Wafaa B. Rabie, Farah M. Al-Askar, Wael W. Mohammed . New soliton wave structure and modulation instability analysis for nonlinear Schrödinger equation with cubic, quintic, septic, and nonic nonlinearities. AIMS Mathematics, 2024, 9(9): 26166-26181. doi: 10.3934/math.20241278
  • In this paper, complex and combined dark-bright characteristic properties of nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable are extracted by using two powerful analytical approaches. Many graphical representations such as 2D, 3D and contour are also reported. Finally, general conclusions of about the novel findings are introduced at the end of this manuscript.



    In the last two decades years, applied mathematics and physics nonlinear phenomena play an important role in soliton theory, the calculation of analytical and numerical solutions, especially the travelling wave solutions of nonlinear equations in mathematical physics [1]. Thus, deeper investigation of the analytical solutions to the nonlinear evolution equations with the help of newly developed and improved approaches have been considered as one of the important study area in nonlinear sciences such as engineering, chemistry, biology, dynamics, plasma physics, electrodynamics, applied physics and others. In this regard, many powerful models with high nonlinearity such as the nonlinear (3+1)-dimensional B-type Kadomtsev-Petviashvili-Boussinesq equation [2], modified α and modified Vakhnenko-Parkes equations [3], the perturbed nonlinear Schrödinger equation [4], Davey-Stewartson equation [5], KDV equation [6], the Calogero-Bogoyavlenskii-Schiff and KPH equations [7] some conformable nonlinear model [8], the Hirota Maccari system [9], Bogoyavlenskii equation [10], conformable space-time fractional Fokas-Lenells equation [11], the (2+1)-dimensional Boussinesq equation with fourth order [12], the (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity [13], the conformable Ablowitz-Kaup-Newell-Segur equation [14], nonlinear Phi-4 equation [15] and many others [16,17,18,19,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75] have been suggested to investigate deeper physical properties such as complex, dark, bright and soliton solutions.

    In the organization of this paper, in section 2, the brief description of considered methods such as sine-Gordon Expansion method (SGEM) and improved Bernoulli sub-equation method (IBSEFM) are given. In section 3, these projected methods are successfully applied to the nonlinear conformable Date-Jimbo-Kashiwara-Miwa equation (CDJKM) defined as [20]

    uxxxxy+4uxxyux+2uxxxuy+6uxyuxxαuyyy2βx(x(θutθ))=0, (1)

    where α and β are non-zero and u=u(x,y,t) is the wave-amplitude function, which describes long water waves. In case of θ=1, Eq (1) turns DJKM equation. DJKM equation was firstly presented by Kadomtsev and Petviashvili so as to study the stability of the KdV soliton [21]. Later, some important properties of DJKM have been investigated in [22,23,24,25]. In 2020, Wazwaz have observed the Painlevé integrability and multiple soliton solutions by getting variable coefficient in [26].

    Some important discussions and physical meanings of figures are also presented in section 4. After the graphical simulations, a conclusion completes the paper in section 5.

    We will give general structure of the SGEM in this section. Let's consider the sine-Gordon equation given by [28];

    uxxutt=η2sin(u), (2)

    where u=u(x,t), η is a real constant. Using the wave transform

    u=u(x,t)=U(ξ),ξ=xct

    into Eq (2), we find the corresponding ordinary differential equation (ODE) as following,

    U=η2(1c2)sin(U), (3)

    where U=U(ξ). If we integrate Eq (3), we obtain

    [(U2)]2=η21c2sin2(U2)+κ, (4)

    where κ is the integration constant. Substituting κ=0,w(ξ)=U2 and b2=η21c2 in Eq (4), gives

    w=bsin(w), (5)

    Setting b=1 in Eq (5), gives

    w=sin(w). (6)

    Solving Eq (6) via separation of variables, we obtain

    sin(w(ξ))=sech(ξ), (7)
    cos(w(ξ))=tanh(ξ). (8)

    Suppose that the nonlinear fractional differential equations given in the more general form;

    P(u,ux,uθt,u2,)=0, (9)

    where and θ(0,1] is the order of the conformable derivative. By using wave transformation given as

    u=u(x,t)=U(ξ),ξ=kxcθtθ,

    we find the following nonlinear ordinary differential equation (NODE)

    N(U,U,U,U2,)=0,

    where U=U(ξ),U=dUdξ,. To obtain the solutions of this equation, we suppose the following equation as trial solution

    U(ξ)=ni=1tanhi1(ξ)[Bisech(ξ)+Aitanh(ξ)]+A0. (10)
    U(w)=ni=1cosi1(w)[Bisin(w)+Aicos(w)]+A0. (11)

    Applying the homogeneous balance principle between the highest power nonlinear term and highest derivative in the nonlinear ordinary differential equation (NODE), we determine the value of n. Putting Eq (11) and its consecutive derivatives into the NODE, we obtain a polynomial equation with sini(w)cosj(w). Using some trigonometric properties to the polynomial equation, it is obtained an algebraic equation system by equating to zero the same power summation of coefficients. With aid of the computation programme, we solve the equation system to obtain the Ai,Bi,c,k values. Substituting the Ai,Bi,c,k values into Eq (10), we get the new travelling wave solutions to the Eq (9).

    In this subsection of the paper, we will mention about general structures of the IBSEFM [29,30].

    Step 1: Suppose that the following fractional differential equation,

    P(u,Dαtu,ux,ut,uxt,)=0, (12)

    where u=u(x,t) and α(0,1] is the order of the conformable. The wave transformation is

    u=u(x,t)=U(ζ),ζ=σxμtαα, (13)

    where σ,μ are real constants and can be determined later. This transformation reduces Eq (12) into NODE as following;

    N(U,U,U,U,)=0. (14)

    Step 2: Let consider the trial solution form of Eq (14) as following

    U(ζ)=ni=0aiFi(ζ)mj=0biFj(ζ)=a0+a1F(ζ)+a2F2(ζ)++anFn(ζ)b0+b1F(ζ)+b2F2(ζ)++bmFm(ζ). (15)

    We can determine the general form of Bernoulli differential equation for F according to Bernoulli theory as

    F=bF+dFM,b0,d0, MR{0,1,2}, (16)

    where F=F(ζ) is Bernoulli differential polynomial function. Eq (16) put into Eq (14), it gives polynomial equation Ω(F) which depends on F as the following equality.

    Ω(F)=ρsFs++ρ1F+ρ0=0. (17)

    We put account the homogeneous balance principle to determine the relation between n,m and M constants.

    Step 3: Equating all the coefficients of Ω(F) yields an algebraic equation system;

    ρi=0,i=0,,s.

    Once we have solved this system, we can determine the values of a0,a1,...,an and b0,b1,...,bm.

    Step 4: We have two situations depend on b and d according to solution of Eq (16).

    F(ζ)=[db+εeb(M1)ζ]11M,bd, (18)
    F(ζ)=[(ε1)+(ε+1)tanh(b(1M)ζ/b(1M)ζ22)1tanh(b(1M)ζ/b(1M)ζ22)]11M,b=d,ϵR (19)

    We get the analytical solutions to Eq (14) via software program by using complete discrimination system for polynomial of F(ζ).

    In this section of the paper, we apply SGEM to the Eq (1) to investigate some analytical solutions such as exponential and complex.

    First of all, we transform Eq (1) into a NODE by the following wave transformation

    u=u(x,y,t)=U(ξ),ξ=kx+myλtθθ, (20)

    where k,m,c are non-zero, θ is conformable derivative order. Putting Eq (20) into Eq (1) and after some simple calculating, we reach the following NODE

    k4mV+3k3mV2(αm32k2λβ)V=0, (21)

    where V=U, and also both integral constants are zero.

    With the help of balance principle for Eq (10), we find n=2. For this value, Eq (10) can be written as

    V(w)=B1sin(w)+A1cos(w)+B2cos(w)sin(w)+A2cos2(w)+A0 (22)

    and its second derivation

    V(w)=2A1cos(w)sin2(w)4A2cos2(w)sin2(w)+2A2sin4(w)+B1cos2(w)sin(w)B1sin3(w)+B2cos3(w)sin(w)5B2cos(w)sin3(w). (23)

    Putting Eq (22) and its second derivation into Eq (21), we find a trigonometric algebraic equation. When we take all coefficients of trigonometric functions as zero, we obtain a system of coefficients. Via some computational programs, we reach the some of coefficients as follows:

    Case 1: (Figures 1 and 2) When A0=A2,A1=B1=B2=0,k=A22,λ=m(4m2α+A42)2βA22, gives the solution in the form,

    F(ζ)=[(ε1)+(ε+1)tanh(b(1M)ζ/b(1M)ζ22)1tanh(b(1M)ζ/b(1M)ζ22)]11M,b=d, (24)
    Figure 1.  The 3D and contour surfaces of Eq (24) for m=1,α=0.2,β=2,θ=0.9,y=0.2,A2=1,25<x<25,0<t<1.
    Figure 2.  The 2D graph of Eq (24) for m=1,α=0.2,β=2,θ=0.9,y=0.2,A2=1,t=10,25<x<25.

    where A2,m,α,β are real constants with non zero.

    Case 2. (Figures 3-5) If A1=0,A2=3A02,B1=0,B2=3iA02,k=3A02,β=16m3α+81mA4072λA20, produces

    u2=32iA0sech(myλθtθ+3A02x)12A0(myλθtθ+3A02x)+32A0tanh(myλθtθ+3A02x), (25)
    Figure 3.  The 3D surfaces of Eq (25) for m=1,θ=0.9,A0=1,y=0.2,λ=1.3.
    Figure 4.  The Contour graph of Eq (25) for m=1,θ=0.9,y=0.2,A0=1,λ=1.3,125<x<125.
    Figure 5.  The 2D surfaces of Eq (25) for m=1,θ=0.9,y=0.2,A2=1,λ=1.3,t=0.1125<x<125.

    where A0,m,λ are real constants with non zero.

    Case 3. (Figures 6-8) Selecting as A0=iB2,A1=B1=0,A2=iB2,β=m(m2α+B42)2λB22,k=iB2, gives

    u3(x,y,t)=B2sech(myλθtθ+iB2x)+iB2tanh(myλθtθ+iB2x), (26)
    Figure 6.  The 3D surfaces of Eq (26) for m=1,θ=0.9,y=0.2,B2=5,λ=5,25<x<25,1<t<1.
    Figure 7.  The contour surfaces of Eq (26) for m=1,θ=0.9,y=0.2,B2=5,λ=5,25<x<25,1<t<1.
    Figure 8.  The 2D surfaces of Eq (26) for m=1,θ=0.9,y=0.2,B2=5,λ=5,t=0.1,25<x<25.

    where B2,m,λ are real constants and non zero.

    Case 4. (Figures 9-11) Choosing A0=iB22,A1=B1=0,A2=iB2,k=iB2,α=2βB22+mB42m3, gives

    u4(x,y,t)=B2sech(myλθtθ+iB2x)13iB2(myλθtθ+iB2x)+iB2tanh(myλθtθ+iB2x), (27)
    Figure 9.  The 3D surfaces of Eq (27) for m=1,λ=5,θ=0.9,y=0.2,B2=1,25<x<25,1<t<1.
    Figure 10.  The contour surfaces of Eq (27) for m=1,λ=5,θ=0.9,y=0.2,B2=1,25<x<25,1<t<1.
    Figure 11.  The 2D surfaces of Eq (27) for m=1,λ=5,θ=0.9,y=0.2,B2=1,t=0.1,25<x<25.

    where B2,m,λ are real constants and non zero.

    Case 5. (Figures 12-14) When we select another coefficients for obtaining analytical solution as following, A0=k,A1=B1=0,A2=k,B2=ik,β=k4m+αm32k2λ, gives

    u5(x,y,t)=iksech(kx+myλθtθ)+ktanh(kx+myλθtθ), (28)
    Figure 12.  The 3D surfaces of Eq (28) for m=λ=1,θ=0.9,y=0.2,k=1,25<x<25,1<t<1.
    Figure 13.  The contour surfaces of Eq (28) for m=λ=1,θ=0.9,y=0.2,k=1,25<x<25,1<t<1.
    Figure 14.  The 2D surfaces of Eq (28) for m=λ=1,θ=0.9,y=0.2,k=1,25<x<25,1<t<1.

    in which k,m,λ, are real constants and non zero.

    Case 6. (Figures 15-17) Once A0=A2,A1=B1=0,B2=iA2,k=A2,λ=αm3mA422βA22, it is formed as

    u6=iA2sech(myxA2(m3αmA42)2βθA22tθ)A2tanh(myxA2(m3αmA42)2βθA22tθ), (29)
    Figure 15.  The 3D surfaces of Eq (29) for m=1,λ=θ=0.9,y=0.2,α=1,A2=0.1,β=5,95<x<15,1<t<1.
    Figure 16.  The contour graphs of Eq (29) for m=1,λ=θ=0.9,y=0.2,α=1,A2=0.1,β=5,95<x<15,1<t<1.
    Figure 17.  The 2D surfaces of Eq (29) for m=1,λ=θ=0.9,y=0.2,α=1,A2=0.1,β=5,t=0.2,95<x<15.

    in which k,m,λ, are real constants and non zero.

    This section applies IBSEFM to the governing model Eq (1) for obtaining some new complex analytical solutions. Let's consider the following wave transformation into Eq (1)

    u=u(x,y,t)=U(ξ),ξ=kx+myλtθθ, (30)

    being k,m,c are non-zero, θ is conformable derivative. Putting Eq (30) into Eq (1) and after some simple calculations, we find

    k4mV+3k3mV2(αm32k2λβ)V=0, (31)

    where V=U, and also both integral constants are zero. With the aid of homogeneous balance principle between V and V2, we get relationship for n,m and M according to IBSEFM properties

    2M+m=n+2. (32)

    Using this relationship, we can find many new complex solutions for governing model as following cases.

    Case 1: When we take M=3,m=1 and n=5, then we can obtain follows,

    V=a0+a1F+a2F2+a3F3+a4F4+a5F5b0+b1F=ΥΨ, (33)
    V=ΥΨΥΨΨ2, (34)
    V=ΥΨΥΨΨ2(ΥΨ)Ψ22Υ(Ψ)2ΨΨ4, (35)

    where F=wF+dF3,a50,b10. If we put Eqs (33, 35) into Eq (31), we get a system of algebraic equations of F. Solving these models yields different coefficients as follows

    Case 1.1. (Figures 18-20) For bd, we select follows

    a1=2,m=i,b0=i,k=1,a0=16id2a5,b1=a58d2,a3=23a5,a4=8id2,w=23da5,a2=16i3d2a5,λ=i(48d2αa5)2βa5.
    Figure 18.  The 3D surfaces of Eq (36) for d=3,a5=20,y=0.1,β=2,α=θ=0.9,ε=1,1<x<1,0<t<1.
    Figure 19.  The contour graphs of Eq (36) for d=3,a5=20,y=0.1,β=2,α=θ=0.9,ε=1,1<x<1,0<t<1.
    Figure 20.  The 2D surfaces of Eq (36) for d=3,a5=20,y=0.1,β=2,α=θ=0.9,ε=1,1<x<1,0<t<1.

    These coefficients presents following solution for governing model

    u7(x,y,t)=16d2a5(x+iyi(48d2αa5)2θβa5tθ+63a5ε2+3εa5ef(x,y,t)12dε2da5e2f(x,y,t)), (36)

    where f(x,y,t)=4d3a5(x+iyi(48d2αa5)2βθa5tθ).

    Case 1.2. (Figures 21-23) Taking as bd, and selecting follows

    a1=2,m=i,b0=i,k=1,a0=13(iα+2βλ),a2=13a5(iα2βλ),a3=23a5,a4=16(iα+2βλ)a5,b1=6α2iβλ,w=12α2iβλ,d=α2iβλ43a5,
    Figure 21.  The 3D surfaces of Eq (37) for β=2,α=θ=0.9,λ=3,a5=42,y=0.1,ε=1,3<x<3,0<t<0.3.
    Figure 22.  The contour graphs of Eq (37) for β=2,α=θ=0.9,λ=3,a5=42,y=0.1,ε=1,3<x<3,0<t<0.3.
    Figure 23.  The 2D surfaces of Eq (37) for β=2,α=θ=0.9,λ=3,a5=42,y=0.1,ε=1,3<x<3,0<t<0.3.

    finds

    u8(x,y,t)=(α+2iβλ)(13(x+iyλθtθ)+4ε(6ε+3a5eα2iβλ(x+iyλθtθ).)α2iβλ(12ε2+a5e2α2iβλ(x+iyλθtθ))), (37)

    where α,β,λ,ε are real constants and non-zero.

    Case 1.3. (Figures 24-26) Gaining as bd, and selecting follows

    a1=2,m=i,b0=i,k=1,a0=2ib1,a2=1b16a4(1i),a3=(1i)6a4b1,a5=ia4b1,d=(14i4)a4,λ=i(6+αb1)2βb1,w=i2b13,
    Figure 24.  The 3D surfaces of Eq (38) for b1=2,α=θ=0.9,β=3,a4=42,y=0.1,ε=1,13<x<13,0<t<0.3.
    Figure 25.  The contour graphs of Eq (38) for b1=2,α=θ=0.9,β=3,a4=42,y=0.1,ε=1,13<x<13,0<t<0.3.
    Figure 26.  The 2D surfaces of Eq (38) for b1=2,α=θ=0.9,β=3,a4=42,y=0.1,ε=1,13<x<13,0<t<03.

    gives the following complex solution to the governing model

    u9(x,y,t)=(α+2iβλ)(13(x+iyλθtθ)+4ε(6ε+3a5eα2iβλ(x+iyλθtθ))α2iβλ(12ε2+a5e2α2iβλ(x+iyλθtθ))), (38)

    where α,β,λ,ε are real constants and non-zero.

    Case 1.4. (Figures 27-29) With bd, considering into account as

    a1=2,m=i,b0=i,k=1,a0=2ib1,a2=1ib16a4,a3=(1+i)6a4b1,a5=ia4b1,d=(14i4)a4,λ=i(6+αb1)2βb1,w=i2b13,
    Figure 27.  The 3D surfaces of Eq (39) for b1=2,α=θ=0.9,β=3,a4=42,y=0.1,ε=1,13<x<13,0<t<0.3.
    Figure 28.  The contour graphs of Eq (39) for b1=2,α=θ=0.9,β=3,a4=42,y=0.1,ε=1,13<x<13,0<t<0.3.
    Figure 29.  The 2D surfaces of Eq (39) for b1=2,α=θ=0.9,β=3,a4=42,y=0.1,ε=1,13<x<13,0<t<0.3.

    gives the following complex solution to the governing model

    u10(x,y,t)=12b1(16(x+iy+i(6+αb1)2βθb1tθ)+(1+i)ε((66i)εb1+6a4b1ef(x,y,t))6(12iε2+a4b1e2f(x,y,t))), (39)

    where f(x,y,t)=i6b1(x+iy+i(6+αb1)2βθb1tθ) and b1,α,β,θ,ε,a4 are real constants and non-zero.

    Case 1.5. (Figures 30-32) When we consider as

    a0=i,m=2,b0=2,k=i,a1=ib12,a2=4id6,a3=2idb16,a4=16id2,a5=8id2b1,w=322,λ=3+8α2β,
    Figure 30.  The 3D surfaces of Eq (40) for y=0.1,α=θ=0.9,β=2,ε=1,d=0.5,13<x<13,1<t<1.
    Figure 31.  The contour graphs of Eq (40) for y=0.1,α=θ=0.9,β=2,ε=1,d=0.5,13<x<13,1<t<1.
    Figure 32.  The 2D surfaces of Eq (40) for y=0.1,α=θ=0.9,β=2,ε=1,d=0.5,13<x<13,1<t<1.

    we gain

    u11(x,y,t)=3i2(13(ix+2y+(3+8α)2βθtθ)8d2d6+3εe32(ix2y(3+8α)2βθtθ)), (40)

    where α,β,d,ε are real constants and non-zero.

    Case 1.6. (Figures 33-35) When we consider as

    a0=i,m=2,b0=2,k=i,a1=ib12,a2=4id6,a3=2idb16,a4=16id2,a5=8id2b1,w=322,λ=3+8α2β,
    Figure 33.  The 3D surfaces of Eq (41) for y=0.1,α=θ=0.9,β=2,ε=1,d=0.5,13<x<13,1<t<1.
    Figure 34.  The contour graphs of Eq (41) for y=0.1,α=θ=0.9,β=2,ε=1,d=0.5,13<x<13,1<t<1.
    Figure 35.  The 2D surfaces of Eq (41) for y=0.1,α=θ=0.9,β=2,ε=1,d=0.5,13<x<13,1<t<1.

    we gain

    u12(x,y,t)=3i2(13(ix2y(3+8α)2βθtθ)26ε3ε+2d6e32(ix2y(3+8α)2βθtθ)), (41)

    where α,β,d,ε are real constants and non-zero.

    This paper finds entirely new complex analytical solutions for governing model with the help of two powerful approaches such as SGEM and IBSEFM. These solutions have some more important physical features. The hyperbolic secant (bright soliton) arises in the profile of a laminar jet, the hyperbolic tangent (dark soliton) arises in the calculation of magnetic moment, the hyperbolic sine (periodic wave solution) arises in the gravitational potential, and the hyperbolic cotangent (singular soliton) arises in the Langevin function for magnetic polarization [76]. In this sense, Eq (24) is a dark soliton solution. Eqs (25-29) are used to explain the combined dark-bright soliton solutions. It is estimated that these solutions may be related to such physical meanings. When we compare these solutions in [21], one can see that these solutions entirely new complex dark, mixed dark-bright and dark soliton solutions to the governing model.

    In IBSEFM, if we consider more values of M=3,m=2 as n=6, we obtain another new solution for the governing model as

    V=a0+a1F+a2F2+a3F3+a4F4+a5F5+a6F6b0+b1F+b2F2=ΥΨ,
    V=ΥΨΥΨΨ2,
    V=ΥΨΥΨΨ2(ΥΨ)Ψ22Υ(Ψ)2ΨΨ4,

    where F=wF+dF3,a60,b20. In this regards, this projected technique is a powerful tool for obtaining new analytical solutions for the nonlinear models.

    This paper studies on the nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable which defines to explain wave propagation. By using SGEM and IBSEFM, we reach the some new dark, bright, singular solitons and complex wave solutions. All the found wave solutions in this study are entirely new and they have satisfied the nonlinear Date-Jimbo-Kashiwara-Miwa equation with conformable. Under the suitable chosen of the values of parameters, we plotted 2D, 3D and contour simulations of the wave solutions. From these Figures (1-35), it may be observed that wave solutions to the studied nonlinear model show the estimated wave propagations.

    We would like to thank you for reviewers for their valuable comments on developing this paper.

    This paper was supported by University of Messina (Italy) and National Groups of Mathematical Physic GNFN-INdAM (Italy). Moreover, This projected work was partially (not financial) supported by Harran University with the project HUBAP ID:20124.

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



    [1] H. Rezazadeh, A. Korkmaz, M. Eslami, J. Vahidi, R. Asghari, Traveling wave solution of conformable fractional generalized reaction Duffing model by generalized projective Riccati equation method, Opt. Quant. Electron, 50 (2018), 1-13. doi: 10.1007/s11082-017-1266-2
    [2] J. L. G.Guirao, H. M. Baskonus, A. Kumar, M. S. Rawat, G. Yel, Complex Patterns to the (3+1)-Dimensional B-type Kadomtsev-Petviashvili-Boussinesq Equation, Symmetry, 12 (2020), 17.
    [3] J. L. G. Guirao, H. M. Baskonus, A. Kumar, F. S. V. Causanilles, G. R. Bermudez, Complex mixed dark-bright wave patterns to the modified alpha and modified Vakhnenko-Parkes equations, Alexandria Eng. J., 59 (2020), 2149-2160. doi: 10.1016/j.aej.2020.01.032
    [4] W. Gao, B. Ghanbari, H. Günerhan, H. M. Baskonus, Some mixed trigonometric complex soliton solutions to the perturbed nonlinear Schrödinger equation, Modern Physics Letters B, 34 (2020), 2050034.
    [5] H. M. Baskonus, New acoustic wave behaviors to the Davey-Stewartson equation with power-law nonlinearity arising in fluid dynamics, Nonlinear Dyn., 86 (2016), 177-183. doi: 10.1007/s11071-016-2880-4
    [6] H. Bulut, T. A. Sulaiman, H. M. Baskonus, New solitary and optical wave structures to the Korteweg-de Vries equation with dual-power law nonlinearity, Opt Quant Electron, 48 (2016) 1-14.
    [7] H. M. Baskonus, T. A. Sulaiman, H. Bulut, New Solitary Wave Solutions to the (2+1)-Dimensional Calogero-Bogoyavlenskii-Schi and the Kadomtsev-Petviashvili Hierarchy Equations, Indian J. Phys., 91 (2017), 1237-1243. doi: 10.1007/s12648-017-1033-z
    [8] R. Khalil, M. A. Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 6570.
    [9] T. A. Sulaiman, G. Yel, H. Bulut, M-fractional solitons and periodic wave solutions to the Hirota Maccari system, Mod. Phys. Lett. B, 33 (2019), 1950052.
    [10] M. Eslami, F. S. Khodadad, F. Nazari, H. Rezazadeh, The first integral method applied to the Bogoyavlenskii equations by means of conformable fractional derivative, Opt. Quant. Electron., 49 (2017), 1-18. doi: 10.1007/s11082-016-0848-8
    [11] H. Bulut, T. A. Sulaiman, H. M. Baskonus, H. Rezazadeh, M. Eslami, M. Mirzazadeh, Optical solitons and other solutions to the conformable space-time fractional Fokas-Lenells equation, Optik, 172 (2018), 20-27. doi: 10.1016/j.ijleo.2018.06.108
    [12] J. L. G. Guirao, H. M. Baskonus, A. Kumar, Regarding new wave patterns of the Newly Extended Nonlinear (2+1)-Dimensional Boussinesq Equation with Fourth Order, Mathematics, 8 (2020), 1-9.
    [13] M. S. Osman, H. Rezazadeh, M. Eslami, Traveling wave solutions for (3+1) dimensional conformable fractional Zakharov-Kuznetsov equation with power law nonlinearity, Nonlinear Engineering, 8 (2019), 559-567. doi: 10.1515/nleng-2018-0163
    [14] W. Gao, G. Yel, H. M. Baskonus, C. Cattani, Complex Solitons in the Conformable (2+1)-dimensional Ablowitz-Kaup-Newell-Segur Equation, Aims Math., 5 (2020), 507-521. doi: 10.3934/math.2020034
    [15] W. Gao, P. Veeresha, D. G. Prakasha, H. M. Baskonus, G. Yel, New Numerical Results for the Time-Fractional Phi-Four Equation Using a Novel Analytical Approach, Symmetry, 12 (2020), 1-16.
    [16] E. I. Eskitascioglu, M. B. Aktas, H. M. Baskonus, New Complex and Hyperbolic Forms for Ablowitz-Kaup-Newell-Segur Wave Equation with Fourth Order, Applied Mathematics and Nonlinear Sciences, 4 (2019), 105-112.
    [17] D. Kumar, J. Singh, S. D. Purohit, R. Swroop, A hybrid analytical algorithm for nonlinear fractional wave-like equations, Mathematical Modelling of Natural Phenomena, 14 (2019), 304. doi: 10.1051/mmnp/2018063
    [18] T. A. Sulaiman, H. Bulut, Optical solitons and modulation instability analysis of the (2+1)-dimensional coupled nonlinear Schrödinger equation, Commun. Theor. Phys., 72 (2020), 1-6.
    [19] H. M. Baskonus, A. Kumar, A. Kumar, W. Gao, Deeper investigations of the (4 + 1)-dimensional Fokas and (2 + 1)-dimensional Breaking soliton equations, Int. J. Modern Physics B, 34 (2020), 2050152. doi: 10.1142/S0217979220501520
    [20] F. Guo, J. Lin, Interaction solutions between lump and stripe soliton to the (2+ 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Nonlinear Dyn., 96 (2019), 1233-1274. doi: 10.1007/s11071-019-04850-9
    [21] B. B. Kadomtsev, V. I. Petviashvili, On the stability of solitary waves in weakly dispersive media, Sov. Phys. Dokl., 15 (1970), 539–541.
    [22] E. Date, M. Jimbo, M. Kashiwara, T. Miwa, A new hierarchy of soliton equations of KP-type, Physica D, 4 (1981), 343–365.
    [23] M. Singh, R. K. Gupta, On Painleve analysis, symmetry group and conservation laws of Date-Jimbo-Kashiwara-Miwa equation, Int. J. Appl. Comput. Math., 4 (2018), 88.
    [24] H. F. Ismael, H. Bulut, C. Park, M. S. Osman, M-lump, N-soliton solutions, and the collision phenomena for the (2 + 1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Results Phys., 19 (2020), 103329.
    [25] J. G. Liu, W. H. Zhu, M. S. Osman, W. X. Ma, An explicit plethora of different classes of interactive lump solutions for an extension form of 3D-Jimbo-Miwa model, Eur. Phys. J. Plus, 135 (2020), 412. doi: 10.1140/epjp/s13360-020-00405-9
    [26] A. M. Wazwaz, A (2+1)-dimensional time-dependent Date–Jimbo–Kashiwara–Miwa equation: Painlevé integrability and multiple soliton solutions, Comput. Math. Appl., 79 (2020), 1145-1149. doi: 10.1016/j.camwa.2019.08.025
    [27] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65-70. doi: 10.1016/j.cam.2014.01.002
    [28] G. Yel, H. M. Baskonus, W. Gao, New Dark-Bright Soliton in the Shallow Water wave Model, AIMS Math., 5 (2020), 4027–4044. doi: 10.3934/math.2020318
    [29] S. Guo, L. Mei, Y. Li, Y. Sun, The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics, Phys. Lett. A, 376 (2012), 407-411. doi: 10.1016/j.physleta.2011.10.056
    [30] H. Bulut, G. Yel, H. M. Baskonus, An Application of Improved Bernoulli Sub-Equation Function Method to The Nonlinear Time-Fractional Burgers Equation, Turk. J. Math. Comput. Sci., 5 (2016), 1-7.
    [31] E. Ihan, I. O. Kiymaz, A generalization of truncated M-fractional derivative and applications to fractional differential equations, Appl. Math. Nonlin. Sciences, 5 (2020), 171–188. doi: 10.2478/amns.2020.1.00016
    [32] H. Durur, E. Ilhan, H. Bulut, Novel Complex Wave Solutions of the (2+1)-Dimensional Hyperbolic Nonlinear Schrödinger Equation, Fractal and Fractional, 4 (2020), 41. doi: 10.3390/fractalfract4030041
    [33] A. R. Seadawy, Stability analysis solutions for nonlinear three-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a magnetized electron-positron plasma, Physica A, 455 (2016), 44–51. doi: 10.1016/j.physa.2016.02.061
    [34] C. Cattani, A review on Harmonic Wavelets and their fractional extension, J. Advanced Engineering and Computation, 2 (2018), 224-238.
    [35] A. R. Seadawy, Ion acoustic solitary wave solutions of two-dimensional nonlinear adomtsev–Petviashvili–Burgers equation in quantum plasma, Mathematical methods and applied Sciences, 40 (2017), 1598–1607.
    [36] X. J. Yang, M. A. Aty, C. Cattani, A new general fractional order derivative with Rabotnov fractional -exponential kernel applied to model the anomalous heat, Therm. Sci., 23 (2019), 1677-1681. doi: 10.2298/TSCI180320239Y
    [37] A. R. Seadawy, Stability analysis of traveling wave solutions for generalized coupled nonlinear KdV equations, Appl. Math. Inf. Sci., 10 (2016), 209-214. doi: 10.18576/amis/100120
    [38] A. R. Seadawy, Three-dimensional nonlinear modified Zakharov-Kuznetsov equation of ion-acoustic waves in a magnetized plasma, Comput. Math. Appl., 71 (2016), 201–212. doi: 10.1016/j.camwa.2015.11.006
    [39] A. Ciancio, A. Quartarone, A hybrid model for tumor-immune competition, U.P.B. Sci. Bull., series A, 75 (2013), 125-136.
    [40] A. R. Seadawy, Nonlinear wave solutions of the three-dimensional Zakharov–Kuznetsov–Burgers equation in dusty plasma, Physica A, 439 (2015), 124–131. doi: 10.1016/j.physa.2015.07.025
    [41] R. M. Jena, S. Chakraverty, D. Baleanu, A novel analytical technique for the solution of time-fractional Ivancevic option pricing model, Physica A, 550 (2020), 15.
    [42] M. Z. Sarikaya, C. C. Bilisik, Some generalizations of Opial type inequalities for conformable fractional integrals, Progress in Fractional Differentiation and Applications, 6 (2020), 137-142. doi: 10.18576/pfda/060206
    [43] A. R. Seadawy, Stability analysis for two-dimensional ion-acoustic waves in quantum plasmas, Physics of Plasmas, 21 (2014), 052107. doi: 10.1063/1.4875987
    [44] R. Agarwal, M. P. Yadav, R. P. Agarwal, D. Baleanu, Analytic solution of space time fractional advection dispersion equation with retardation for contaminant transport in porous media, Progress in Fractional Differentiation and Applications, 5 (2019), 283-295.
    [45] K. Hosseini, M. Samavat, M. Mirzazadeh, W. X. Ma, Z. Hammouch, A New (3+1)-dimensional Hirota Bilinear Equation: Its Bäcklund Transformation and Rational-type Solutions. Regular and Chaotic Dynamics, 25 (2020), 383-391.
    [46] A. Houwe, J. Sabi'u, Z. Hammouch, S. Y. Doka, Solitary pulses of a conformable nonlinear differential equation governing wave propagation in low-pass electrical transmission line. Physica Scripta, 95 (2020), 045203.
    [47] M. F. Uddin, M. G. Hafez, Z. Hammouch, D. Baleanu, Periodic and rogue waves for Heisenberg models of ferromagnetic spin chains with fractional beta derivative evolution and obliqueness, Waves in Random and Complex Media, (2020), 1-15
    [48] K. S. Al-Ghafri, H. Rezazadeh, Solitons and other solutions of (3 + 1)-dimensional space–time fractional modified KdV–Zakharov–Kuznetsov equation, Appl. Math. Nonlin. Sciences, 4 (2019), 289–304. doi: 10.2478/AMNS.2019.2.00026
    [49] M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and KdV-Burger's equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137-146. doi: 10.1016/j.apnum.2020.10.024
    [50] A. R. Seadawy, Modulation instability analysis for the generalized derivative higher order nonlinear Schrödinger equation and its the bright and dark soliton solutions, J. Electromagnetic Waves and Applications, 31 (2017), 1353-1362. doi: 10.1080/09205071.2017.1348262
    [51] A. Yokus, S. Gulbahar, Numerical Solutions with Linearization Techniques of the Fractional Harry Dym Equation, Appl. Math. Nonlin. Sciences, 4 (2019), 35–42. doi: 10.2478/AMNS.2019.1.00004
    [52] A. R. Seadawy, The generalized nonlinear higher order of KdV equations fromthe higher order nonlinear Schrodinger equation and its solutions, Optik, 139 (2017), 31-43. doi: 10.1016/j.ijleo.2017.03.086
    [53] B. Ghanbari, J. F. Gómez-Aguilar, New exact optical soliton solutions for nonlinear Schrödinger equation with second-order spatio-Temporal dispersion involving M-derivative, Modern Physics Letters B, 33 (2019), 1950235.
    [54] B. Ghanbari, D. Baleanu, New Solutions of Gardner's Equation Using Two Analytical Methods, Frontiers in Physics, 2019.
    [55] A. R. Seadawy, Travelling wave solutions of a weakly nonlinear two-dimensional higher order Kadomtsev-Petviashvili dynamical equation for dispersive shallow water waves, European Physical J. Plus, 132 (2017), 1-13. doi: 10.1140/epjp/i2017-11280-8
    [56] J. P. Yu, Y. L. Sun, Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations, Nonlinear Dyn., 87 (2017), 1405-1412. doi: 10.1007/s11071-016-3122-5
    [57] N. N. Kadkhoda, H. Jafari, An analytical approach to obtain exact solutions of some space-time conformable fractional differential equations, Adv. Differ. Equ., 2019 (2019), 428. doi: 10.1186/s13662-019-2349-0
    [58] R. Jiwari, V. Kumar, S. Singh, Lie group analysis, exact solutions and conservation laws to compressible isentropic Navier–Stokes equation, Engineering with Computers, 2020.
    [59] J. P. Yu, Y. L. Sun, A note on the Gaussons of some new logarithmic evolution equations, Comput. Math. Appl., 74 (2017), 258-265. doi: 10.1016/j.camwa.2017.04.014
    [60] A. R. Seadawy, K. El-Rashidy, Traveling wave solutions for some coupled nonlinear evolution equations by using the direct algebraic method, Math. Comput. Model., 57 (2013), 1371–1379.
    [61] A. Yokus, T. A. Sulaiman, H. M. Baskonus, S. P. Atmaca, On the exact and numerical solutions to a nonlinear model arising in mathematical biology, ITM Web of Conferences, 22 (2018), 1-10, .
    [62] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504-515.
    [63] A. R. Seadawy, Stability analysis for Zakharov-Kuznetsov equation of weakly nonlinear ion-acoustic waves in a plasma, Comp. Math. Appl., 67 (2014), 172-180. doi: 10.1016/j.camwa.2013.11.001
    [64] V. Kumar, A. M. Wazwaz, Lie symmetry analysis and soliton solutions for complex short pulse equation, Waves in Random and Complex Media, 2020.
    [65] X. J. Yang, D. Baleanu, F. Gao, New analytical solutions for Klein-Gordon and Helmholtz equations in fractal dimensional space, Proc. Rom. Acad., Ser. A: Math. Phys. Tech. Sci. Inf. Sci 18 (2017), 231-238.
    [66] M. Yavuz, N. Sene, Approximate solutions of the model describing fluid flow using generalized ρ-laplace transform method and heat balance integral method, Axioms, 9 (2020), 123. doi: 10.3390/axioms9040123
    [67] V. Kumar, R. K. Gupta, R. Jiwari, Comparative study of travelling-wave and numerical solutions for the coupled short pulse (CSP) equation, Chinese Phys. B, 22 (2013), 050201. doi: 10.1088/1674-1056/22/5/050201
    [68] J. P. Yu, Y. L.Sun, Study of lump solutions to dimensionally reduced generalized KP equations, Nonlinear Dyn., 87 (2017), 2755-2763. doi: 10.1007/s11071-016-3225-z
    [69] Y. L. Sun, W. X. Ma, J. P. Yu, C. M. Khalique, Dynamics of lump solitary wave of Kadomtsev– Petviashvili–Boussinesq-like equation, Comput. Math. Appl., 78 (2019), 840-847. doi: 10.1016/j.camwa.2019.03.001
    [70] J. P. Yu, Y. L. Sun, A direct Bäcklund transformation for a (3+1)-dimensional Kadomtsev– Petviashvili–Boussinesq-like equation, Nonlinear Dyn., 90 (2017), 2263-2268. doi: 10.1007/s11071-017-3799-0
    [71] J. P. Yu, Y. L. Sun, F. D. Wang, N-soliton solutions and long-time asymptotic analysis for a generalized complex Hirota–Satsuma coupled KdV equation, Appl. Math. Lett., 106 (2020), 106370. doi: 10.1016/j.aml.2020.106370
    [72] R. Hirota, Direct Methods in Soliton Theory, Solitons, 1980.
    [73] J. P. Yu, F. Wang, W. X. Ma, Y. L. Sun, Chaudry Masood Khalique, Multiple-soliton solutions and lumps of a (3+1)-dimensional generalized KP equation, Nonlinear Dyn., 25 (2019), 1687-1692.
    [74] G. Yel, New wave patterns to the doubly dispersive equation in nonlinear dynamic elasticity, Pramana J. Phys., 94 (2020), 79. doi: 10.1007/s12043-020-1941-x
    [75] H. M. Baskonus, C. Cattani, A. Ciancio, Periodic, Complex and Kink-type Solitons for the Nonlinear Model in Microtubules, Appl. Sci., 21 (2019), 34-45.
    [76] E. W. Weisstein, Concise Encyclopedia of Mathematics, CRC Press, New York, 2002.
  • This article has been cited by:

    1. Ji-Huan He, Na Qie, Chun-Hui He, Solitary waves travelling along an unsmooth boundary, 2021, 22113797, 104104, 10.1016/j.rinp.2021.104104
    2. Mohammad Safi Ullah, M. Zulfikar Ali, Harun-Or Roshid, A.R. Seadawy, Dumitru Baleanu, Collision phenomena among lump, periodic and soliton solutions to a (2+1)-dimensional Bogoyavlenskii's breaking soliton model, 2021, 397, 03759601, 127263, 10.1016/j.physleta.2021.127263
    3. Muhammad Umar, Zulqurnain Sabir, Muhammad Asif Zahoor Raja, Haci Mehmet Baskonus, Shao-Wen Yao, Esin Ilhan, A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells, 2021, 25, 22113797, 104235, 10.1016/j.rinp.2021.104235
    4. SAIMA RASHID, ELBAZ I. ABOUELMAGD, AASMA KHALID, FOZIA BASHIR FAROOQ, YU-MING CHU, SOME RECENT DEVELOPMENTS ON DYNAMICAL ℏ-DISCRETE FRACTIONAL TYPE INEQUALITIES IN THE FRAME OF NONSINGULAR AND NONLOCAL KERNELS, 2022, 30, 0218-348X, 10.1142/S0218348X22401107
    5. S. M. Yiasir Arafat, Kamruzzaman Khan, S. M. Rayhanul Islam, M.M. Rahman, Parametric effects on paraxial nonlinear Schrödinger equation in Kerr media, 2022, 05779073, 10.1016/j.cjph.2022.08.026
    6. K. Hosseini, M. Mirzazadeh, D. Baleanu, N. Raza, C. Park, A. Ahmadian, S. Salahshour, The generalized complex Ginzburg–Landau model and its dark and bright soliton solutions, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01637-z
    7. Shailesh A. Bhanotar, Mohammed K. A. Kaabar, Mostafa Eslami, Analytical Solutions for the Nonlinear Partial Differential Equations Using the Conformable Triple Laplace Transform Decomposition Method, 2021, 2021, 1687-9651, 1, 10.1155/2021/9988160
    8. Md Ashik Iqbal, Ye Wang, Md Mamun Miah, Mohamed S. Osman, Study on Date–Jimbo–Kashiwara–Miwa Equation with Conformable Derivative Dependent on Time Parameter to Find the Exact Dynamic Wave Solutions, 2021, 6, 2504-3110, 4, 10.3390/fractalfract6010004
    9. S M Rayhanul Islam, Hanfeng Wang, Some analytical soliton solutions of the nonlinear evolution equations, 2022, 24680133, 10.1016/j.joes.2022.05.013
    10. Ying-Qing Song, Saad Ihsan Butt, Artion Kashuri, Jamshed Nasir, Muhammad Nadeem, New fractional integral inequalities pertaining 2D–approximately coordinate (r1,ℏ1)-(r2,ℏ2)–convex functions, 2022, 61, 11100168, 563, 10.1016/j.aej.2021.06.044
    11. İbrahim Yalçınkaya, Hijaz Ahmad, Orkun Tasbozan, Ali Kurt, Soliton solutions for time fractional ocean engineering models with Beta derivative, 2022, 7, 24680133, 444, 10.1016/j.joes.2021.09.015
    12. Neslihan Ozdemir, Aydin Secer, Muslum Ozisik, Mustafa Bayram, Soliton and other solutions of the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation with conformable derivative, 2023, 98, 0031-8949, 015023, 10.1088/1402-4896/acaa73
    13. Na Zhao, Jalil Manafian, Onur Alp Ilhan, Gurpreet Singh, Rana Zulfugarova, Abundant interaction between lump and k-kink, periodic and other analytical solutions for the (3+1)-D Burger system by bilinear analysis, 2021, 35, 0217-9792, 2150173, 10.1142/S0217979221501733
    14. Sachin Kumar, Ihsanullah Hamid, M.A. Abdou, Specific wave profiles and closed-form soliton solutions for generalized nonlinear wave equation in (3+1)-dimensions with gas bubbles in hydrodynamics and fluids, 2023, 8, 24680133, 91, 10.1016/j.joes.2021.12.003
    15. Muhammad Bilal, Jamshad Ahmad, Dynamics of Nonlinear Wave Propagation to Coupled Nonlinear Schrödinger-Type Equations, 2021, 7, 2349-5103, 10.1007/s40819-021-01074-7
    16. Muhammad Bilal, Jingli Ren, Usman Younas, Stability analysis and optical soliton solutions to the nonlinear Schrödinger model with efficient computational techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03040-5
    17. K Hosseini, A Akbulut, D Baleanu, S Salahshour, The Sharma–Tasso–Olver–Burgers equation: its conservation laws and kink solitons, 2022, 74, 0253-6102, 025001, 10.1088/1572-9494/ac4411
    18. Qiliang Chen, Haci Mehmet Baskonus, Wei Gao, Esin Ilhan, Soliton theory and modulation instability analysis: The Ivancevic option pricing model in economy, 2022, 61, 11100168, 7843, 10.1016/j.aej.2022.01.029
    19. ARMANDO CIANCIO, GULNUR YEL, AJAY KUMAR, HACI MEHMET BASKONUS, ESIN ILHAN, ON THE COMPLEX MIXED DARK-BRIGHT WAVE DISTRIBUTIONS TO SOME CONFORMABLE NONLINEAR INTEGRABLE MODELS, 2022, 30, 0218-348X, 10.1142/S0218348X22400187
    20. Fidel Meléndez-Vázquez, Guillermo Fernández-Anaya, Aldo Jonathan Muñóz-Vázquez, Eduardo Gamaliel Hernández-Martínez, Generalized conformable operators: Application to the design of nonlinear observers, 2021, 6, 2473-6988, 12952, 10.3934/math.2021749
    21. Serbay Duran, Extractions of travelling wave solutions of (2 + 1)-dimensional Boiti–Leon–Pempinelli system via (Gʹ/G, 1/G)-expansion method, 2021, 53, 0306-8919, 10.1007/s11082-021-02940-w
    22. S. M. Yiasir Arafat, S. M. Rayhanul Islam, Md Habibul Bashar, Influence of the Free Parameters and Obtained Wave Solutions from CBS Equation, 2022, 8, 2349-5103, 10.1007/s40819-022-01295-4
    23. Haci Mehmet Baskonus, Juan Luis García Guirao, Ajay Kumar, Fernando S. Vidal Causanilles, German Rodriguez Bermudez, Nikos E. Mastorakis, Regarding New Traveling Wave Solutions for the Mathematical Model Arising in Telecommunications, 2021, 2021, 1687-9139, 1, 10.1155/2021/5554280
    24. M.S. Osman, Hassan Almusawa, Kalim U. Tariq, Sadia Anwar, Sachin Kumar, Muhammad Younis, Wen-Xiu Ma, On global behavior for complex soliton solutions of the perturbed nonlinear Schrödinger equation in nonlinear optical fibers, 2022, 7, 24680133, 431, 10.1016/j.joes.2021.09.018
    25. A. Coronel-Escamilla, J. E. Solís-Pérez, J. F. Gómez-Aguilar, José R. Razo-Hernández, A. A. Alderremy, Shaban Aly, Dynamics and synchronization of a fractional conformable neural network with power-law, 2022, 231, 1951-6355, 1771, 10.1140/epjs/s11734-022-00465-1
    26. B. B. Jaimini, Manju Sharma, D. L. Suthar, S. D. Purohit, Zakia Hammouch, On Multi-Index Mittag–Leffler Function of Several Variables and Fractional Differential Equations, 2021, 2021, 2314-4785, 1, 10.1155/2021/5458037
    27. Tuğba TAZGAN, Ercan CELIK, Gülnur YEL, Hasan BULUT, On Survey of the Some Wave Solutions of the Non-Linear Schrödinger Equation (NLSE) in Infinite Water Depth, 2022, 2147-1762, 10.35378/gujs.1016160
    28. S M Rayhanul Islam, S M Yiasir Arafat, Hanfeng Wang, Abundant closed-form wave solutions to the simplified modified Camassa-Holm equation, 2022, 24680133, 10.1016/j.joes.2022.01.012
    29. Serbay Duran, Bayhan Karabulut, Nematicons in liquid crystals with Kerr Law by sub-equation method, 2022, 61, 11100168, 1695, 10.1016/j.aej.2021.06.077
    30. Mohamed Al-Masaeed, Eqab. M. Rabei, Ahmed Al-Jamel, Dumitru Baleanu, Quantization of fractional harmonic oscillator using creation and annihilation operators, 2021, 19, 2391-5471, 395, 10.1515/phys-2021-0035
    31. Riaz Ur Rahman, Nauman Raza, Adil Jhangeer, Mustafa Inc, Analysis of analytical solutions of fractional Date-Jimbo-Kashiwara-Miwa equation, 2023, 470, 03759601, 128773, 10.1016/j.physleta.2023.128773
    32. Ajay Kumar, Haci Mehmet Baskonus, Amit Prakash, 2023, Chapter 14, 978-3-031-29958-2, 232, 10.1007/978-3-031-29959-9_14
    33. Wei Gao, Haci Mehmet Baskonus, Ghulam Rasool, The Modulation Instability Analysis and Analytical Solutions of the Nonlinear Gross−Pitaevskii Model with Conformable Operator and Riemann Wave Equations via Recently Developed Scheme, 2023, 2023, 1687-9139, 1, 10.1155/2023/4132763
    34. Fahad Sameer Alshammari, Harun-Or Roshid, Abdulaziz Saad Alkhorayef, A.A. Elsadany, A. Aldurayhim, Dynamics of solitary waves, chaotic behaviors, and Jacobi elliptic wave solutions in telecommunication systems, 2024, 60, 22113797, 107629, 10.1016/j.rinp.2024.107629
    35. Tayyiaba Rasool, Rashida Hussain, Hadi Rezazadeh, Asghar Ali, Ulviye Demirbilek, Novel soliton structures of truncated M-fractional (4+1)-dim Fokas wave model, 2023, 12, 2192-8029, 10.1515/nleng-2022-0292
    36. Md. Ekramul Islam, Md. Motaleb Hossain, Khalifa Mohammad Helal, Udoy S. Basak, Rajandra Chadra Bhowmik, M. A. Akbar, Solitary wave analysis of the Kadomtsev–Petviashvili model in mathematical physics, 2023, 30, 2576-5299, 329, 10.1080/25765299.2023.2216536
    37. Arzu Akbulut, Rubayyi T. Alqahtani, Nadiyah Hussain Alharthi, Some Latest Families of Exact Solutions to Date–Jimbo–Kashiwara–Miwa Equation and Its Stability Analysis, 2023, 11, 2227-7390, 4176, 10.3390/math11194176
    38. Ahmed Refaie Ali, Harun Or Roshid, Shariful Islam, Asma Khatun, Analyzing bifurcation, stability, and wave solutions in nonlinear telecommunications models using transmission lines, Hamiltonian and Jacobian techniques, 2024, 14, 2045-2322, 10.1038/s41598-024-64788-w
    39. HZ Mawa, S. M. Rayhanul Islam, Md. Habibul Bashar, Md. Mamunur Roshid, Jahedul Islam, Sadia Akhter, Zhao Li, Soliton Solutions to the BA Model and (3 + 1)‐Dimensional KP Equation Using Advanced exp(−ϕ(ξ))‐Expansion Scheme in Mathematical Physics, 2023, 2023, 1024-123X, 10.1155/2023/5564509
    40. HUI XU, MINYUAN LIU, ZENGGUI WANG, BIFURCATION AND EXACT TRAVELING WAVE SOLUTIONS OF FRACTIONAL DATE–JIMBO–KASHIWARA–MIWA EQUATION, 2024, 32, 0218-348X, 10.1142/S0218348X24501160
    41. Abdulla - Al - Mamun, Samsun Nahar Ananna, Partha Protim Gharami, Tianqing An, Wei Liu, Md. Asaduzzaman, An innovative approach for developing the precise traveling wave solutions to a family of 3D fractional WBBM equations, 2023, 7, 26668181, 100522, 10.1016/j.padiff.2023.100522
    42. Ajay Kumar, Raj Shekhar Prasad, On dynamical behavior for approximate solutions sustained by nonlinear fractional damped Burger and Sharma–Tasso–Olver equation, 2023, 37, 0217-9792, 10.1142/S0217979223502284
    43. Ajay Kumar, Dynamic behaviour and semi-analytical solution of nonlinear fractional-order Kuramoto–Sivashinsky equation, 2024, 98, 0973-7111, 10.1007/s12043-024-02728-z
    44. Azad Piro Shakir, Hajar F. Ismael, Haci Mehmet Baskonus, Novel optical solutions to the dispersive extended Schrödinger equation arise in nonlinear optics via two analytical methods, 2024, 56, 1572-817X, 10.1007/s11082-024-06675-2
    45. Ajay Kumar, Raj Shekhar Prasad, Haci Mehmet Baskonus, Juan Luis Garcia Guirao, On the implementation of fractional homotopy perturbation transform method to the Emden–Fowler equations, 2023, 97, 0973-7111, 10.1007/s12043-023-02589-y
    46. Zahra Eidinejad, Reza Saadati, Chenkuan Li, Mustafa Inc, Javad Vahidi, The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations, 2024, 38, 0217-9792, 10.1142/S0217979224500437
    47. Özlem Kırcı, Dilara Altan Koç, Hasan Bulut, Dynamics of the traveling wave solutions of conformable time-fractional ISLW and DJKM equations via a new expansion method, 2024, 56, 1572-817X, 10.1007/s11082-024-06806-9
    48. Ajay Kumar, Rahul Shukla, Dynamics behavior of solitons based on exact solutions for the mathematical model arising in telecommunications, 2025, 13, 26668181, 101125, 10.1016/j.padiff.2025.101125
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3984) PDF downloads(374) Cited by(48)

Figures and Tables

Figures(35)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog