Research article Special Issues

Chaotic behavior and construction of a variety of wave structures related to a new form of generalized q-Deformed sinh-Gordon model using couple of integration norms

  • Received: 16 January 2024 Revised: 19 February 2024 Accepted: 29 February 2024 Published: 07 March 2024
  • MSC : 35B32, 35C08

  • The generalized q-deformed sinh Gordon equation (GDSGE) serves as a significant nonlinear partial differential equation with profound applications in physics. This study investigates the GDSGE's mathematical and physical properties, examining its solutions and clarifying the essence of the q-deformation parameter. The Sardar sub-equation method (SSEM) and sine-Gordon expansion method (SGEM) are employed to solve this GDSGE. The synergistic application of these techniques improves our knowledge of the GDSGE and provides a thorough foundation for investigating different evolution models arising in various branches of mathematics and physics. A positive aspect of the proposed methods is that they offer a wide variety of solitons, including bright, singular, dark, combination dark-singular, combined dark-bright, and periodic singular solitons. Obtained solutions demonstrate the method's high degree of reliability, simplicity, and functionalization for various nonlinear equations. To better describe the physical characterization of solutions, a few 2D and 3D visualizations are generated by taking precise values for parameters using mathematical software, Mathematica.

    Citation: Wedad Albalawi, Nauman Raza, Saima Arshed, Muhammad Farman, Kottakkaran Sooppy Nisar, Abdel-Haleem Abdel-Aty. Chaotic behavior and construction of a variety of wave structures related to a new form of generalized q-Deformed sinh-Gordon model using couple of integration norms[J]. AIMS Mathematics, 2024, 9(4): 9536-9555. doi: 10.3934/math.2024466

    Related Papers:

  • The generalized q-deformed sinh Gordon equation (GDSGE) serves as a significant nonlinear partial differential equation with profound applications in physics. This study investigates the GDSGE's mathematical and physical properties, examining its solutions and clarifying the essence of the q-deformation parameter. The Sardar sub-equation method (SSEM) and sine-Gordon expansion method (SGEM) are employed to solve this GDSGE. The synergistic application of these techniques improves our knowledge of the GDSGE and provides a thorough foundation for investigating different evolution models arising in various branches of mathematics and physics. A positive aspect of the proposed methods is that they offer a wide variety of solitons, including bright, singular, dark, combination dark-singular, combined dark-bright, and periodic singular solitons. Obtained solutions demonstrate the method's high degree of reliability, simplicity, and functionalization for various nonlinear equations. To better describe the physical characterization of solutions, a few 2D and 3D visualizations are generated by taking precise values for parameters using mathematical software, Mathematica.



    加载中


    [1] N. Raza, A. R. Seadawy, M. Kaplan, A. R. Butt, Symbolic computation and sensitivity analysis of nonlinear Kudryashov's dynamical equation with applications, Phys. Scr., 96 (2021), 105216. https://doi.org/10.1088/1402-4896/ac0f93 doi: 10.1088/1402-4896/ac0f93
    [2] J. H. He, A new approach to nonlinear partial differential equations, Commun. Nonlinear Sci. Numer. Simul., 2 (1997), 230–235. https://doi.org/10.1016/S1007-5704(97)90007-1 doi: 10.1016/S1007-5704(97)90007-1
    [3] M. M. Khater, S. Muhammad, A. Al-Ghamdi, M. Higazy, Novel soliton wave solutions of the Vakhnenko-Parkes equation arising in the relaxation medium, J. Ocean Eng. Sci., 2022, In Press. https://doi.org/10.1016/j.joes.2022.02.015
    [4] A. V. Buryak, P. Di Trapani, D. V. Skryabin, S. Trillo, Optical solitons due to quadratic nonlinearities: from basic physics to futuristic applications, Phys. Rep., 370 (2002), 63–235. https://doi.org/10.1016/S0370-1573(02)00196-5 doi: 10.1016/S0370-1573(02)00196-5
    [5] S. Singla, N. S. Saini, Higher-order dust kinetic Alfvén wave solitons and quasi-periodic waves in a polarized dusty plasma, Waves Random Complex Media, 2023. https://doi.org/10.1080/17455030.2023.2238067
    [6] N. Raza, F. Salman, A. R. Butt, M. L. Gandarias, Lie symmetry analysis, soliton solutions and qualitative analysis concerning to the generalized q-deformed sinh-Gordon equation, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106824. https://doi.org/10.1016/j.cnsns.2022.106824 doi: 10.1016/j.cnsns.2022.106824
    [7] B. Silindir, Soliton solutions of q-Toda lattice by Hirota direct method, Adv. Differ. Equ., 2012 (2012), 1–22. https://doi.org/10.1186/1687-1847-2012-121 doi: 10.1186/1687-1847-2012-121
    [8] O. Billet, M. Joye, The Jacobi model of an elliptic curve and side-channel analysis, In: Applied algebra, algebraic algorithms, and error-correcting codes, 2003, 34–42. https://doi.org/10.1007/3-540-44828-4_5
    [9] Y. Fang, G. Z. Wu, Y. Y. Wang, C. Q. Dai, Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN, Nonlinear Dyn., 105 (2021), 603–616. https://doi.org/10.1007/s11071-021-06550-9 doi: 10.1007/s11071-021-06550-9
    [10] R. J. Kuo, M. R. Setiawan, T. P. Q. Nguyen, Sequential clustering and classification using deep learning technique and multi-objective sine-cosine algorithm, Comput. Ind. Eng., 173 (2022), 108695. https://doi.org/10.1016/j.cie.2022.108695 doi: 10.1016/j.cie.2022.108695
    [11] A. Mahmood, H. M. Srivastava, M. Abbas, F. A. Abdullah, P. O. Mohammed, D. Baleanu, et al., Optical soliton solutions of the coupled Radhakrishnan-Kundu-Lakshmanan equation by using the extended direct algebraic approach, Heliyon, 9 (2023), e20852. https://doi.org/10.1016/j.heliyon.2023.e20852 doi: 10.1016/j.heliyon.2023.e20852
    [12] N. Raza, M. Abdullah, A. R. Butt, Analytical soliton solutions of Biswas-Milovic equation in Kerr and non-Kerr law media, Optik, 157 (2018), 993–1002. https://doi.org/10.1016/j.ijleo.2017.11.043 doi: 10.1016/j.ijleo.2017.11.043
    [13] N. Raza, S. Arshed, A. Javid, Optical solitons and stability analysis for the generalized second-order nonlinear Schrödinger equation in an optical fiber, Int. J. Nonlinear Sci. Numer. Simul., 21 (2020), 855–863. https://doi.org/10.1515/ijnsns-2019-0287 doi: 10.1515/ijnsns-2019-0287
    [14] N. Raza, A. Batool, M. Inc, New hyperbolic and rational form solutions of (2+1)-dimensional generalized Korteweg-de Vries model, J. Ocean Eng. Sci., 2022, In Press. https://doi.org/10.1016/j.joes.2022.04.021
    [15] K. K. Ali, M. F. Alotaibi, M. Omri, M. S. Mehanna, A. H. Abdel-Aty, Some traveling wave solutions to the fifth-order nonlinear wave equation using three techniques: Bernoulli sub-ODE, modified auxiliary equation, and ($G^{'}/G$)-expansion methods, J. Math., 2023 (2023), 1–22. https://doi.org/10.1155/2023/7063620 doi: 10.1155/2023/7063620
    [16] J. Pan, M. U. Rahman, Rafiullah, Breather-like, singular, periodic, interaction of singular and periodic solitons, and a-periodic solitons of third-order nonlinear Schrödinger equation with an efficient algorithm, Eur. Phys. J. Plus, 138 (2023), 912. https://doi.org/10.1140/epjp/s13360-023-04530-z doi: 10.1140/epjp/s13360-023-04530-z
    [17] H. Rezazadeh, A. Zabihi, A. G. Davodi, R. Ansari, H. Ahmad, S. W. Yao, New optical solitons of double sine-Gordon equation using exact solutions methods, Results Phys., 49 (2023), 106452. https://doi.org/10.1016/j.rinp.2023.106452 doi: 10.1016/j.rinp.2023.106452
    [18] B. Kemaloalu, G. Yel, H. Bulut, An application of the rational sine-Gordon method to the Hirota equation, Opt. Quant. Electron., 55 (2023), 658. https://doi.org/10.1007/s11082-023-04930-6
    [19] D. Bahns, N. Pinamonti, K. Rejzner, Equilibrium states for the massive sine-Gordon theory in the Lorentzian signature, J. Math. Anal. Appl., 526 (2023), 127249. https://doi.org/10.1016/j.jmaa.2023.127249
    [20] H. U. Rehman, R. Akber, A. M. Wazwaz, H. M. Alshehri, M. S. Osman, Analysis of Brownian motion in stochastic Schrödinger wave equation using Sardar sub-equation method, Optik, 289 (2023), 171305. https://doi.org/10.1016/j.ijleo.2023.171305
    [21] T. Rasool, R. Hussain, M. A. Al Sharif, W. Mahmoud, M. S. Osman, A variety of optical soliton solutions for the M-truncated paraxial wave equation using Sardar-subequation technique, Opt. Quant. Electron., 55 (2023), 396. https://doi.org/10.1007/s11082-023-04655-6
    [22] N. Ullah, M. I. Asjad, A. Hussanan, A. Akgül, W. R. Alharbi, H. Algarni, et al., Novel wave structures for two nonlinear partial differential equations arising in the nonlinear optics via Sardar-subequation method, Alex. Eng. J., 71 (2023), 105–113. https://doi.org/10.1016/j.aej.2023.03.023
    [23] Z. Li, C. Y. Liu, Chaotic pattern and traveling wave solution of the perturbed stochastic nonlinear Schrödinger equation with generalized anti-cubic law nonlinearity and spatio-temporal dispersion, Results Phys., 56 (2024), 107305. https://doi.org/10.1016/j.rinp.2023.107305
    [24] R. F. Luo, Rafiullah, H. Emadifar, M. U. Rahman, Bifurcations, chaotic dynamics, sensitivity analysis and some novel optical solitons of the perturbed non-linear Schrödinger equation with Kerr law non-linearity, Results Phys., 54 (2023), 107133. https://doi.org/10.1016/j.rinp.2023.107133
    [25] M. Vivas-Cortez, N. Raza, S. S. Kazmi, Y. Chahlaoui, G. A. Basendwah, A novel investigation of dynamical behavior to describe nonlinear wave motion in (3+1)-dimensions, Results Phys., 55 (2023), 107131. https://doi.org/10.1016/j.rinp.2023.107131
    [26] M. H. Rafiq, N. Raza, A. Jhangeer, Dynamic study of bifurcation, chaotic behavior and multi-soliton profiles for the system of shallow water wave equations with their stability, Chaos Solitons Fract., 171 (2023), 113436. https://doi.org/10.1016/j.chaos.2023.113436
    [27] N. Raza, A. Jaradat, G. A. Basendwah, A. Batool, M. M. M. Jaradat, Dynamic analysis and derivation of new optical soliton solutions for the modified complex Ginzburg-Landau model in communication, Alex. Eng. J., 90 (2024), 197–207. https://doi.org/10.1016/j.aej.2024.01.059
    [28] Y. S. Özkan, A study on the solutions of (3+1) conformal time derivative generalized q-deformed sinh-Gordon equation, Celal Bayar Univ. J. Sci., 19 (2023), 219–229. https://doi.org/10.18466/cbayarfbe.1264314
    [29] L. D. Faddeev, Modular double of a quantum group, Math. Phys. Stud., 21 (2000), 149–156. https://doi.org/10.48550/arXiv.math/9912078
    [30] H. M. Srivastava, Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0
    [31] M. A. Ali, H. Budak, A. Akkurt, Y. M. Chu, Quantum Ostrowski-type inequalities for twice quantum differentiable functions in quantum calculus, Open Math., 19 (2021), 440–449. https://doi.org/10.1515/math-2021-0020
    [32] H. M. Srivastava, M. K. Aouf, A. O. Mostafa, Some properties of analytic functions associated with fractional q-calculus operators, Miskolc Math. Notes, 20 (2019), 1245–1260. https://doi.org/10.18514/MMN.2019.3046
    [33] H. Eleuch, Some analytical solitary wave solutions for the generalized q-deformed sinh-Gordon equation: $\frac{\partial^{2}\theta}{\partial z \partial \xi} = \alpha\left[\sinh_q(\beta \theta^{\gamma})\right]^p-\delta$, Adv. Math. Phys., 2018 (2018), 1–7. https://doi.org/10.1155/2018/5242757 doi: 10.1155/2018/5242757
    [34] K. K. Ali, N. Al-Harbi, A. H. Abdel-Aty, Traveling wave solutions to (3+1) conformal time derivative generalized q-deformed sinh-Gordon equation, Alex. Eng. J., 65 (2023), 233–243. https://doi.org/10.1016/j.aej.2022.10.020 doi: 10.1016/j.aej.2022.10.020
    [35] K. K. Ali, Analytical and numerical study for the generalized q-deformed sinh-Gordon equation, Nonlinear Eng., 12 (2023), 20220255. https://doi.org/10.1515/nleng-2022-0255 doi: 10.1515/nleng-2022-0255
    [36] S. S. Kazmi, A. Jhangeer, N. Raza, H. I. Alrebdi, A. H. Abdel-Aty, H. Eleuch, The analysis of bifurcation, quasi-periodic and solitons patterns to the new form of the generalized q-deformed sinh-Gordon equation, Symmetry, 15 (2023), 1–19. https://doi.org/10.3390/sym15071324 doi: 10.3390/sym15071324
    [37] L. Q. Bai, J. M. Qi, Y. Q. Sun, Further physical study about solution structures for nonlinear q-deformed sinh-Gordon equation along with bifurcation and chaotic behaviors, Nonlinear Dyn., 111 (2023), 20165–20199. https://doi.org/10.1007/s11071-023-08882-0 doi: 10.1007/s11071-023-08882-0
    [38] K. K. Ali, A. H. Abdel-Aty, H. Eleuch, New soliton solutions for the conformal time derivative q-deformed physical model, Results Phys., 42 (2022), 105993. https://doi.org/10.1016/j.rinp.2022.105993 doi: 10.1016/j.rinp.2022.105993
    [39] N. Raza, S. Arshed, H. I. Alrebdi, A. H. Abdel-Aty, H. Eleuch, Abundant new optical soliton solutions related to q-deformed sinh-Gordon model using two innovative integration architectures, Results Phys., 35 (2022), 105358. https://doi.org/10.1016/j.rinp.2022.105358 doi: 10.1016/j.rinp.2022.105358
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(660) PDF downloads(43) Cited by(2)

Article outline

Figures and Tables

Figures(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog