Citation: Li Liu, Long Zhang, Huaxiang Zhang, Shuang Gao, Dongmei Liu, Tianshi Wang. A data partition strategy for dimension reduction[J]. AIMS Mathematics, 2020, 5(5): 4702-4721. doi: 10.3934/math.2020301
[1] | F. Shang, H. Zhang, J. Sun, et al. Semantic Consistency Cross-Modal Dictionary Learning with Rank Constraint, J. Vis. Commun. Image R., 62 (2019), 259-266. doi: 10.1016/j.jvcir.2019.05.017 |
[2] | F. Shang, H. Zhang, L. Zhu, et al. Adversarial Cross-Modal Retrieval Based on Dictionary Learning, Neurocomputing, 355 (2019), 93-104. doi: 10.1016/j.neucom.2019.04.041 |
[3] | D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal-Hybri., 32 (2019), 294-305. doi: 10.1016/j.nahs.2019.01.006 |
[4] | X. Yang, X. Li, Q. Xi, et al. Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495-1515. doi: 10.3934/mbe.2018069 |
[5] | X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22. |
[6] | D. Yang, X. Li, J. Shen, et al. State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Method. Appl. Sci., 41 (2018), 6968-6983. doi: 10.1002/mma.5209 |
[7] | R. Agarwal, M. P. Yadav, D. Baleanu, et al.Existence and uniqueness of miscible flow equation through porous media with a non-singular fractional derivative, AIMS Mathematics, 5 (2020), 1062-1073. doi: 10.3934/math.2020074 |
[8] | J. Jonnalagadda, B. Debananda, Lyapunov-type inequalities for Hadamard type fractional boundary value problems, AIMS Mathematics, 5 (2020), 1127-1146. doi: 10.3934/math.2020078 |
[9] | S. Wold, Principal component analysis, Chemometr. Intell. Lab., 2 (1987), 37-52. doi: 10.1016/0169-7439(87)80084-9 |
[10] | M. Li, B. Yuan, 2D-LDA: A statistical linear discriminant analysis for image matrix, Pattern Recogn. Lett., 26 (2005), 527-532. doi: 10.1016/j.patrec.2004.09.007 |
[11] | G. Shao, N. Sang, Regularized max-min linear discriminant analysis, Pattern Recogn., 66 (2017), 353-363. doi: 10.1016/j.patcog.2016.12.030 |
[12] | S. Wang, J. Lu, X. Gu, et al. Semi-supervised linear discriminant analysis for dimension reduction and classification, Pattern Recogn., 57 (2016), 179-189. doi: 10.1016/j.patcog.2016.02.019 |
[13] | T. M. Rassias, Properties of Isometric Mappings, J. Math. Anal. Appl., 235 (1999), 108-121. doi: 10.1006/jmaa.1999.6363 |
[14] | F. Kuang, W. Xu, S. Zhang, A novel hybrid KPCA and SVM with GA model for intrusion detection, Appl. Soft Comput., 18 (2014), 178-184. doi: 10.1016/j.asoc.2014.01.028 |
[15] | Y. Liu, T. Chen, Y. Yao, Nonlinear process monitoring and fault isolation using extended maximum variance unfolding, J. Process Contr., 24 (2014), 880-891. doi: 10.1016/j.jprocont.2014.04.004 |
[16] | X. He, P. Niyogi, Locality preserving projections, In: Advances in neural information processing systems, 2004, 153-160. |
[17] | L. Zhang, L. Qiao, S. Chen, Graph-optimized locality preserving projections, Pattern Recogn., 43 (2010), 1993-2002. doi: 10.1016/j.patcog.2009.12.022 |
[18] | W. Xu, C. Luo, A. Ji, et al. Coupled locality preserving projections for cross-view gait recognition, Neurocomputing, 224 (2017), 37-44. doi: 10.1016/j.neucom.2016.10.054 |
[19] | S. Huang, L. Zhuang, Exponential discriminant locality preserving projection for face recognition, Neurocomputing, 208 (2016), 373-377. doi: 10.1016/j.neucom.2016.02.063 |
[20] | S. B. Chen, J. Wang, C. Y. Liu, et al. Two-dimensional discriminant locality preserving projection based on l1-norm Maximization, Pattern Recogn. Lett., 87 (2017), 147-154. doi: 10.1016/j.patrec.2016.04.007 |
[21] | X. He, D. Cai, S. Yan, et al. Neighborhood preserving embedding, Tenth IEEE International Conference on Computer Vision, 2005, 1208-1213. |
[22] | D. Cai, X. He, K. Zhou, et al. Locality sensitive discriminant analysis, In: IJCAI International Joint Conference on Artificial Intelligence, 2007, 708-713. |
[23] | D. Xu, S. Yan, D. Tao, et al. Marginal Fisher analysis and its variants for human gait recognition and content-based image retrieval, IEEE T. Image Process., 16 (2007), 2811-2821. doi: 10.1109/TIP.2007.906769 |
[24] | H. Wang, L. Feng, L. Yu, et al. Multi-view sparsity preserving projection for dimension reduction, Neurocomputing, 216 (2016), 286-295. doi: 10.1016/j.neucom.2016.07.044 |
[25] | L. Qiao, S. Chen, X. Tan, Sparsity preserving projections with applications to face recognition, Pattern Recogn., 43 (2010), 331-341. doi: 10.1016/j.patcog.2009.05.005 |
[26] | L. Weng, F. Dornaika, Z. Jin, Flexible constrained sparsity preserving embedding, Pattern Recogn., 60 (2016), 813-823. doi: 10.1016/j.patcog.2016.06.027 |
[27] | Q. Gao, Y. Huang, H. Zhang, et al. Discriminative sparsity preserving projections for image recognition, Pattern Recogn., 48 (2015), 2543-2553. doi: 10.1016/j.patcog.2015.02.015 |
[28] | W. Cai, A dimension reduction algorithm preserving both global and local clustering structure, Knowl-Based. Syst., 118 (2017), 191-203. doi: 10.1016/j.knosys.2016.11.020 |
[29] | S. Bao, L. Luo, J. Mao, et al. Improved fault detection and diagnosis using sparse global-local preserving projection, J. Process Contr., 47 (2016), 121-135. doi: 10.1016/j.jprocont.2016.09.007 |
[30] | L. Liu, B. Zhang, H. Zhang, et al. Graph steered discriminative projections based on collaborative representation for Image recognition, Multimed. Tools Appl., 78 (2019), 24501-24518. doi: 10.1007/s11042-018-7117-8 |
[31] | G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313 (2006), 504-507. doi: 10.1126/science.1127647 |
[32] | D. Wang, J. Gu, VASC: Dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder, Genom. Proteom. Bioinf., 16 (2018), 320-331. doi: 10.1016/j.gpb.2018.08.003 |
[33] | B. J. Frey, D. Dueck, Clustering by passing messages between data points, Science, 315 (2007), 972-976. doi: 10.1126/science.1136800 |
[34] | G. Wen, L. Jiang, J. Wen, Using locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding, Pattern Recogn., 41 (2008), 2226-2236. doi: 10.1016/j.patcog.2007.12.015 |
[35] | G. Shamai, R. Kimmel, Geodesic distance descriptors, In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017, 6410-6418. |
[36] | Y. Fan, L. Hou, K. X. Yan, On the density estimation of air pollution in Beijing, Econ. lett., 163 (2018), 110-113. doi: 10.1016/j.econlet.2017.12.020 |
[37] | B. He, Z. Lin, Y. F. Li, An automatic registration algorithm for the scattered point clouds based on the curvature feature, Opt. Laser Technol., 46 (2013), 53-60. doi: 10.1016/j.optlastec.2012.04.027 |
[38] | M. U. Ali, S. Ahmed, J. Ferzund, et al. Using PCA and Factor Analysis for dimensionality reduction of Bio-informatics Data, IJACSA., 8 (2017), 415-426. |
[39] | G. Nyamundanda, L. Brennan, I. C. Gormley, Probabilistic principal component analysis for metabolomic data, BMC Bioinformatics, 11 (2010), 571. |
[40] | R. Sharifi, R. Langari, Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models, Mech. Syst. Signal Pr., 85 (2017), 638-650. doi: 10.1016/j.ymssp.2016.08.028 |
[41] | K. Bunte, S. Haase, M. Biehl, et al. Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences, Neurocomputing, 90 (2012), 23-45. doi: 10.1016/j.neucom.2012.02.034 |
[42] | A. Gisbrecht, A. Schulz, B. Hammer, Parametric nonlinear dimensionality reduction using kernel t-SNE, Neurocomputing, 147 (2015), 71-82. doi: 10.1016/j.neucom.2013.11.045 |
[43] | J. A. Cook, I. Sutskever, A. Mnih, et al. Visualizing similarity data with a mixture of maps, PMLR., 2 (2007), 67-74. |