Research article

A data partition strategy for dimension reduction

  • Received: 14 January 2020 Accepted: 17 May 2020 Published: 28 May 2020
  • MSC : 68TXX, 68U35

  • Based on the idea that different data contributes differently to dimension reduction, we propose a weighted affinity propagation strategy to partition the data into representative data and common data. The representative data have dominant features while the common data have less importance. In the dimension reduction, the sparse relationship and geodesic distances between pairs of representative data are preserved, and the common data are recovered through a linear combination of the adjacent representative data in the projection space. Experiments on benchmark datasets demonstrate the competitive performance of the proposed method with other methods.

    Citation: Li Liu, Long Zhang, Huaxiang Zhang, Shuang Gao, Dongmei Liu, Tianshi Wang. A data partition strategy for dimension reduction[J]. AIMS Mathematics, 2020, 5(5): 4702-4721. doi: 10.3934/math.2020301

    Related Papers:

  • Based on the idea that different data contributes differently to dimension reduction, we propose a weighted affinity propagation strategy to partition the data into representative data and common data. The representative data have dominant features while the common data have less importance. In the dimension reduction, the sparse relationship and geodesic distances between pairs of representative data are preserved, and the common data are recovered through a linear combination of the adjacent representative data in the projection space. Experiments on benchmark datasets demonstrate the competitive performance of the proposed method with other methods.


    加载中


    [1] F. Shang, H. Zhang, J. Sun, et al. Semantic Consistency Cross-Modal Dictionary Learning with Rank Constraint, J. Vis. Commun. Image R., 62 (2019), 259-266. doi: 10.1016/j.jvcir.2019.05.017
    [2] F. Shang, H. Zhang, L. Zhu, et al. Adversarial Cross-Modal Retrieval Based on Dictionary Learning, Neurocomputing, 355 (2019), 93-104. doi: 10.1016/j.neucom.2019.04.041
    [3] D. Yang, X. Li, J. Qiu, Output tracking control of delayed switched systems via state-dependent switching and dynamic output feedback, Nonlinear Anal-Hybri., 32 (2019), 294-305. doi: 10.1016/j.nahs.2019.01.006
    [4] X. Yang, X. Li, Q. Xi, et al. Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495-1515. doi: 10.3934/mbe.2018069
    [5] X. Li, J. Shen, R. Rakkiyappan, Persistent impulsive effects on stability of functional differential equations with finite or infinite delay, Appl. Math. Comput., 329 (2018), 14-22.
    [6] D. Yang, X. Li, J. Shen, et al. State-dependent switching control of delayed switched systems with stable and unstable modes, Math. Method. Appl. Sci., 41 (2018), 6968-6983. doi: 10.1002/mma.5209
    [7] R. Agarwal, M. P. Yadav, D. Baleanu, et al.Existence and uniqueness of miscible flow equation through porous media with a non-singular fractional derivative, AIMS Mathematics, 5 (2020), 1062-1073. doi: 10.3934/math.2020074
    [8] J. Jonnalagadda, B. Debananda, Lyapunov-type inequalities for Hadamard type fractional boundary value problems, AIMS Mathematics, 5 (2020), 1127-1146. doi: 10.3934/math.2020078
    [9] S. Wold, Principal component analysis, Chemometr. Intell. Lab., 2 (1987), 37-52. doi: 10.1016/0169-7439(87)80084-9
    [10] M. Li, B. Yuan, 2D-LDA: A statistical linear discriminant analysis for image matrix, Pattern Recogn. Lett., 26 (2005), 527-532. doi: 10.1016/j.patrec.2004.09.007
    [11] G. Shao, N. Sang, Regularized max-min linear discriminant analysis, Pattern Recogn., 66 (2017), 353-363. doi: 10.1016/j.patcog.2016.12.030
    [12] S. Wang, J. Lu, X. Gu, et al. Semi-supervised linear discriminant analysis for dimension reduction and classification, Pattern Recogn., 57 (2016), 179-189. doi: 10.1016/j.patcog.2016.02.019
    [13] T. M. Rassias, Properties of Isometric Mappings, J. Math. Anal. Appl., 235 (1999), 108-121. doi: 10.1006/jmaa.1999.6363
    [14] F. Kuang, W. Xu, S. Zhang, A novel hybrid KPCA and SVM with GA model for intrusion detection, Appl. Soft Comput., 18 (2014), 178-184. doi: 10.1016/j.asoc.2014.01.028
    [15] Y. Liu, T. Chen, Y. Yao, Nonlinear process monitoring and fault isolation using extended maximum variance unfolding, J. Process Contr., 24 (2014), 880-891. doi: 10.1016/j.jprocont.2014.04.004
    [16] X. He, P. Niyogi, Locality preserving projections, In: Advances in neural information processing systems, 2004, 153-160.
    [17] L. Zhang, L. Qiao, S. Chen, Graph-optimized locality preserving projections, Pattern Recogn., 43 (2010), 1993-2002. doi: 10.1016/j.patcog.2009.12.022
    [18] W. Xu, C. Luo, A. Ji, et al. Coupled locality preserving projections for cross-view gait recognition, Neurocomputing, 224 (2017), 37-44. doi: 10.1016/j.neucom.2016.10.054
    [19] S. Huang, L. Zhuang, Exponential discriminant locality preserving projection for face recognition, Neurocomputing, 208 (2016), 373-377. doi: 10.1016/j.neucom.2016.02.063
    [20] S. B. Chen, J. Wang, C. Y. Liu, et al. Two-dimensional discriminant locality preserving projection based on l1-norm Maximization, Pattern Recogn. Lett., 87 (2017), 147-154. doi: 10.1016/j.patrec.2016.04.007
    [21] X. He, D. Cai, S. Yan, et al. Neighborhood preserving embedding, Tenth IEEE International Conference on Computer Vision, 2005, 1208-1213.
    [22] D. Cai, X. He, K. Zhou, et al. Locality sensitive discriminant analysis, In: IJCAI International Joint Conference on Artificial Intelligence, 2007, 708-713.
    [23] D. Xu, S. Yan, D. Tao, et al. Marginal Fisher analysis and its variants for human gait recognition and content-based image retrieval, IEEE T. Image Process., 16 (2007), 2811-2821. doi: 10.1109/TIP.2007.906769
    [24] H. Wang, L. Feng, L. Yu, et al. Multi-view sparsity preserving projection for dimension reduction, Neurocomputing, 216 (2016), 286-295. doi: 10.1016/j.neucom.2016.07.044
    [25] L. Qiao, S. Chen, X. Tan, Sparsity preserving projections with applications to face recognition, Pattern Recogn., 43 (2010), 331-341. doi: 10.1016/j.patcog.2009.05.005
    [26] L. Weng, F. Dornaika, Z. Jin, Flexible constrained sparsity preserving embedding, Pattern Recogn., 60 (2016), 813-823. doi: 10.1016/j.patcog.2016.06.027
    [27] Q. Gao, Y. Huang, H. Zhang, et al. Discriminative sparsity preserving projections for image recognition, Pattern Recogn., 48 (2015), 2543-2553. doi: 10.1016/j.patcog.2015.02.015
    [28] W. Cai, A dimension reduction algorithm preserving both global and local clustering structure, Knowl-Based. Syst., 118 (2017), 191-203. doi: 10.1016/j.knosys.2016.11.020
    [29] S. Bao, L. Luo, J. Mao, et al. Improved fault detection and diagnosis using sparse global-local preserving projection, J. Process Contr., 47 (2016), 121-135. doi: 10.1016/j.jprocont.2016.09.007
    [30] L. Liu, B. Zhang, H. Zhang, et al. Graph steered discriminative projections based on collaborative representation for Image recognition, Multimed. Tools Appl., 78 (2019), 24501-24518. doi: 10.1007/s11042-018-7117-8
    [31] G. E. Hinton, R. R. Salakhutdinov, Reducing the dimensionality of data with neural networks, Science, 313 (2006), 504-507. doi: 10.1126/science.1127647
    [32] D. Wang, J. Gu, VASC: Dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder, Genom. Proteom. Bioinf., 16 (2018), 320-331. doi: 10.1016/j.gpb.2018.08.003
    [33] B. J. Frey, D. Dueck, Clustering by passing messages between data points, Science, 315 (2007), 972-976. doi: 10.1126/science.1136800
    [34] G. Wen, L. Jiang, J. Wen, Using locally estimated geodesic distance to optimize neighborhood graph for isometric data embedding, Pattern Recogn., 41 (2008), 2226-2236. doi: 10.1016/j.patcog.2007.12.015
    [35] G. Shamai, R. Kimmel, Geodesic distance descriptors, In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2017, 6410-6418.
    [36] Y. Fan, L. Hou, K. X. Yan, On the density estimation of air pollution in Beijing, Econ. lett., 163 (2018), 110-113. doi: 10.1016/j.econlet.2017.12.020
    [37] B. He, Z. Lin, Y. F. Li, An automatic registration algorithm for the scattered point clouds based on the curvature feature, Opt. Laser Technol., 46 (2013), 53-60. doi: 10.1016/j.optlastec.2012.04.027
    [38] M. U. Ali, S. Ahmed, J. Ferzund, et al. Using PCA and Factor Analysis for dimensionality reduction of Bio-informatics Data, IJACSA., 8 (2017), 415-426.
    [39] G. Nyamundanda, L. Brennan, I. C. Gormley, Probabilistic principal component analysis for metabolomic data, BMC Bioinformatics, 11 (2010), 571.
    [40] R. Sharifi, R. Langari, Nonlinear sensor fault diagnosis using mixture of probabilistic PCA models, Mech. Syst. Signal Pr., 85 (2017), 638-650. doi: 10.1016/j.ymssp.2016.08.028
    [41] K. Bunte, S. Haase, M. Biehl, et al. Stochastic neighbor embedding (SNE) for dimension reduction and visualization using arbitrary divergences, Neurocomputing, 90 (2012), 23-45. doi: 10.1016/j.neucom.2012.02.034
    [42] A. Gisbrecht, A. Schulz, B. Hammer, Parametric nonlinear dimensionality reduction using kernel t-SNE, Neurocomputing, 147 (2015), 71-82. doi: 10.1016/j.neucom.2013.11.045
    [43] J. A. Cook, I. Sutskever, A. Mnih, et al. Visualizing similarity data with a mixture of maps, PMLR., 2 (2007), 67-74.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3649) PDF downloads(266) Cited by(0)

Article outline

Figures and Tables

Figures(14)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog