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Abstract: Based on the idea that different data contributes differently to dimension reduction, we
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common data. The representative data have dominant features while the common data have less
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demonstrate the competitive performance of the proposed method with other methods.
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1. Introduction

With the rapid growth of digital information in recent years, the effective management and rational
utilization of large-scale information become urgent in practical applications, such as cross-modal
retrieval [1,2], control system [3–6], and data analysis [7,8]. Dimension reduction becomes an effective
tool to find valuable information with less information loss and strong discriminant ability in low-
dimensional space.

A large number of dimension reduction methods have been proposed in the past few decades.
Principal Components Analysis (PCA) [9] and Linear Discriminant Analysis (LDA) [10–12] are the
most popular methods due to their simplification and efficiency. PCA maximizes the global variance
to obtain the low-dimensional subspace, while LDA maximizes the ratio between the trace of
between-class scatter and the trace of within-class scatter. PCA and LDA are linear methods, and they
cannot achieve appreciated projection results for the nonlinear high-dimensional data, so many
manifold learning methods have been developed. Representative algorithms mainly include Isometric
Mapping [13], Kernel Principal Component Analysis [14], and Maximum Variance Unfolding [15].
These methods are nonlinear dimension reduction methods and can effectively show the structure of
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the original data, but they preserve solely the global structure information.
Locality Preserving Projection aims to find an optimal subspace that can preserve the local

relationship between adjacent samples as much as possible [16–20]. Neighborhood Preserving
Embedding [21], Locality Sensitive Discriminant Analysis [22], and Marginal Fisher Analysis [23]
are all local methods. Sparsity Preserving Projection [24, 25] is also one of the most influential
methods and preserves the sparse reconstructive relationship of the data. The sparse representation
structure means the sparse reconstructive relationship of the data through basis vectors with few
nonzero elements in sparse subspace. To extend the Sparsity Preserving Projection to a
semi-supervised embedding method, Weng et al. [26] introduce the idea of in-class constraints and
propose a semi-supervised method for data embedding named Constrained Sparsity Preserving
Embedding. Besides, the representative methods also include Sparsity Preserving Discriminant
Analysis [27] and Multi-view Sparsity Preserving Projection [24]. Taking into account the local and
global structure information, Cai et al. [28] present a linear dimension reduction algorithm named
Global and Local Structure Preserving Projection to keep both global and local clustering structures
hidden in data. A sparse dimension reduction method named Sparse Global-Local Preserving
Projections is proposed [29]. The method preserves both the global and local structures of the data set
and extracts sparse transformation vectors that can reveal meaningful correlations between variables.
Liu et al. [30] utilize the collaborative representation to construct within-class and between-class
graphs and transform the dimensionality reduction task into a graph embedding framework. Hinton et
al. [31] describe an effective way of initializing the weights that allows deep auto-encoder networks to
learn low-dimensional codes that work much better than PCA to reduce the dimensionality. A deep
variational auto-encoder [32] is utilized for unsupervised dimension reduction of single-cell RNA-seq
data. The method can explicitly model the dropout events and find the nonlinear hierarchical feature
representations of the original data.

Figure 1. Three pictures from one person in Yale B dataset.

In fact, in real applications, some data have special meanings and the importance of each point
is different. One example is illustrated by the three figures in Figure 1 which describe one person.
The discriminative features that can be extracted from the figures are different. This inspires us to
pay more attention to the important points in the process of dimension reduction, whereas the existing
approaches usually ignore the different importance of points. In this paper, we partition the data in a
high-dimensional space into two classes: the representative data and the common data, and deal with
different kinds of data with different methods. The representative data dominate the feature of the
entire model and their projection largely determines the projection of the whole model. Therefore, we
focus on the representative data in dimension reduction, and then the projections of the common data
are then recovered from the projected representative data. The contributions of this paper are stated as
follows:
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• A weighted affinity propagation algorithm is proposed to cluster the data with different weights.
The weight of each point provides an importance factor for clustering, which makes the data with
high weights play more important roles in the clustering process.
• Two approaches of dimension reduction are utilized to preserve the structure information of the

representative data and common data with different aims. The data that have more discriminative
features or more importance are paid more attention to in the process of dimension reduction.

The rest of this paper is organized as follows. The related work is introduced in Section 2. Section
3 describes the details of the proposed method. The contents include data partition and structure
information preserving projections of the representative data and common data. The experimental
results and discussions are presented in Section 4. Finally, Section 5 summarizes this work.

2. Related work

2.1. Affinity propagation algorithm

Affinity Propagation (AP) is a clustering method proposed by Frey and Dueck [33]. Compared
with other methods, AP clustering achieves the number of clusters automatically through message
exchange. By exchanging messages among data points simultaneously, AP determines whether a point
should be an exemplar (cluster center), or the exemplar to which it should belong.

AP algorithm passes real-valued messages between points until a high-quality set of exemplars
and corresponding clusters are found. The responsibility r(i, k) is the message sent from data xi to
candidate exemplar point xk and reflects the possibility of point xk to be the exemplar. The availability
a(i, k) reflects how appropriate it would be for point xi to choose candidate exemplar xk as its exemplar.
Mathematically, the responsibility r(i, k) and the availability a(i, k) are updated as

r(i, k) = s(i, k) −max
k′,k
{a(i, k′) + r(i, k′)} (2.1)

a(i, k) =

{
min{0, r(k, k) +

∑
i′,i,k max{0, r(i′, k)}}, i , k∑

i′,k max{0, r(i′, k)}}, i = k
(2.2)

where s(i, j) describes the similarity relationship between point xi and point x j and the negative squared
Euclidean distance may be considered as the similarity measure.

The responsibility and the availability are updated repeatedly until some step criterion is met. For
example, the iterative process can be terminated after a fixed number of iterations. Namely, for point
xi the value of k is

k = arg max
j
{a(i, j) + r(i, j)} (2.3)

If k = i, then point xi is an exemplar or cluster center. If k , i, then point xk is an exemplar for point
xi.

2.2. Geodesic distance measure

The distance function determines how close the data are. Euclidean distance is widely used to
calculate the distance between two data points, while sometimes it cannot reflect the real distance [34,
35]. For the points in Figure 2(a), the Euclidean distance between two specified points is represented
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by dotted line in Figure 2(c). According to this metric the two points appear deceptively close, while
they are on the opposite parts. Geodesic distance between two points is defined usually as the length
of the shortest paths. Figure 2(d) shows the benefit of Geodesic distance. In this case, the two points
linked by dottted line are not neighbors according to Geodesci distance measure.

(a) Original data (b) Graph construction

(c) Euclidean distance (d) Geodesic distance

Figure 2. The different distance expression. The blue dotted line represents the Euclidean
distance, the red line represents the Geodesic distance.

For two points s, t ∈ X, there exists a shortest Geodesic path from s to t. To compute the Geodesic
distance between s and t, we approximate the Geodesic path on graph G. If the Euclidean distance
between two points is lower than a given threshold, the line-segment between two points is chosen as
the edge of graph G as shown in Figure 2(b). The Euclidean distance is assigned to the edge as the
weight.

The Geodesic distance between s and t is defined as follows

dG(s, t) = min Path(s, t) = min
p∈Path

min
xi∈p,xi,s,t

d(s, x1) + d(x1, x2) + · · · + d(x|p|, t) (2.4)

where d(xi, x j) = ‖xi − x j‖, Path denotes the path set that contains all the paths between points s and t,
p is one of the paths, xi is the point on the path p.

The graph G is a weighted undirected graph and there exist several algorithms to achieve the shortest
distance of the graph G, such as Floyd-Warshall algorithm, which gets the shortest distance between
any two points and outputs the correct result as long as no negative cycles exist in the graph G. The
shortest distance is taken as the approximation of the Geodesic distance, which reflects the distance
more accurately. The distance measure in this paper is based on Geodesic distance and applied in the
search of k nearest neighbors.
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3. Description of the proposed method

For the data that have special meaning or different discriminative features, the dimension reduction
approach based on data partition and structure information preserving is proposed. Firstly, data points
are partitioned into representative data and common data through the weighted affinity propagation
clustering algorithm. Furthermore, sparse relationship and Geodesic distance preserving projections
are adopted to project the representative data from the original space to the low-dimensional space.
Finally, the location of the common data can be achieved through the linear combination of its adjacent
representative points. The outline of the proposed method is shown in Figure 3.

Figure 3. Outline of the proposed method.

3.1. Weight estimation of data points

In the process of dimension reduction, the data have different discriminative features or importance,
so it is not a good choice to regard the data as the same. In many practical applications, the weights
should be estimated except the data that have weights itself.

The density has some connection with the importance. In general, the bigger the value of density
is, the more important it is. Based on the assumption, we introduce the kernel function to describe
the importance as the weight. For any x ∈ X, where X = {x1, · · · , xn} is the dataset, the kernel weight
estimator f (x; h) is given by the following formula

f (x; h) =
1

nh

n∑
i=1

k(
xi − x

h
) (3.1)

where h > 0 is the bandwidth, and k(·) is the Gaussian kernel function.
Kernel weight estimator uses a fixed bandwidth h over the whole data support. We use the

data-driven least squares cross-validation method to select the bandwidth h by minimizing the
cross-validation function CV f (h) [36]

CV f (h) =
1

n2h

n∑
i=1

n∑
j=1

k̄(
xi − x j

h
) −

1
n(n − 1)h

n∑
i=1

n∑
j=1, j,i

k(
xi − x j

h
) (3.2)
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In the practical applications, the weights of the data have special meaning. Three-dimensional
points have not topological information, so it is difficult to do some operations, such as deformation
and surface reconstruction. Curvature is the geometrical property and a good invariant feature of local
surfaces. Curvature in 3D space usually refers to Gaussian curvature, mean curvature and principal
curvature. Gaussian curvature K and mean curvature H can be estimated using the method proposed
by [37]. The principal curvatures k1, k2 are calculated by Gaussian curvature K and mean curvature H: k1 = H −

√
H2 − K

k2 = H +
√

H2 − K
(3.3)

Curvature can be negative or positive according to whether it is consistent with the manifold
orientation. Here, the absolute value of the curvature is taken as the weight. The points with large
weights are more important than the others and should be paid more attention to in the process of
dimension reduction.

3.2. Weighted affinity propagation clustering algorithm

In many applications, each point has a special meaning and the importance of each point is different.
It is obvious that the data should have different possibilities to become an exemplar. To give the same
possibility of becoming the exemplar for the data with different importance is not a good choice. That
ignores the different importance of points, so we introduce the weighted affinity propagation clustering
algorithm to solve the problem.

In the traditional AP algorithm, a point has more possibility to be the exemplar if there are more
neighbors around it. Therefore, for the point x with high weight, we add virtual points around it to
increase the possibility of the point x to be the exemplar. The values and position of virtual points are
the same as the point x. For the number of virtual points, it depends on the weight of the given point x.
The function V(w) reflecting the relationship between the number of virtual points and the weight of
the given point is constructed. As the range of the weights is different in real applications, the number
of virtual points cannot be approximated accurately.

Let xi be the point with weight wi, the number of virtual points is ni. For points set X, the sum of
the virtual points is

∑N
i=1 ni, where N is the number of points in the set X. Before the virtual points

are added to the points set X, the responsibility r(i, k) and the availability a(i, k) are N × N matrices.
After M virtual points are added, the two matrices change into (N + M) × (N + M) matrices. The
virtual points are the copies of the original point in the dataset S , so the responsibility r(i, k) and the
availability a(i, k) of virtual points are the same for the original points.

The rules for message propagation are updated as follows

r(t+1)(i, k) = (1 − λ) × (s(i, k) −max
k′=k
{a(t)(i, k′) + s(i, k′)}) + λ × r(t)(i, k) (3.4)

a(t+1)(i, k) =

{
(1 − λ) ×min{0, r(t)(k, k) +

∑
i′,i,k max{0, r(t)(i′, k)}} + λ × a(t)(i, k), i , k

(1 − λ) ×
∑

i′,k max{0, r(t)(i′, k)}}, i = k
(3.5)

where λ is damping factor in the iterative steps.
The higher value of the damping factor λ leads to slower convergence rates. In the iterative process

of the algorithm, oscillation and non-convergence occur when two or more points are suitable as
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representative points in the same class cluster. The original points are copied many times, so the
values of r(i, k) and a(i, k) of an original point and its virtual points should be unified and the sum is
considered to judge whether the point is the exemplar. An example of the weighted AP algorithm is
shown in Figure 4.

(a) Original data (b) Graph construction (c) Euclidean distance

Figure 4. The different distance expression. The blue dotted line represents the Euclidean
distance, the red line represents the Geodesic distance.

The exemplar means a cluster center and is assumed to be more important than the other points in
one class. Therefore, we choose the exemplars as the representative points and the rest as the common
ones. Besides the exemplars, the points whose weights are higher than a given threshold are also taken
as the representative points. These points are important but far away from the other points. In Figure
4(c), the red points are the representative data and the rest points are the common data.

3.3. Structure information preserving for the representative data

In this section, we give the structure information preserving projection for the representative data.
The structure information refers to sparse neighborhood and Geodesic distance. The representative data
have more importance and determines the distribution of the original data, so the dimension reduction
of the representative data is expected to obtain more discriminative features.

3.3.1. Sparse neighborhood preserving projection

The basic idea of sparse neighborhood preserving projection is that the same weight matrix that
reconstructs the point xi should also reconstruct its projection yi through its neighbors. Sparse
neighborhood preserving projection constructs sparse reconstructive weights between representative
data and preserves the neighborhood similarity relationship in the low-dimensional subspace. Assume
Xi denotes the set of neighbors of point xi, to minimize the reconstruction error, the weight matrix wS

i
corresponding to xi are obtained by solving an l1-minimization problem

min ‖wS
i ‖1, s.t.‖xi − XiwS

i ‖ < ε (3.6)

The weight matrix wS
i denotes the reconstruction coefficients following the sparse rule and can be

achieved by calculating formula (3.6). The sparse reconstruction error function ES (xi) in the projection
space can be expressed as the following
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ES (xi) =

N∑
i=1

‖PT
i xi − PT

i XwS
i ‖

2 (3.7)

3.3.2. Geodesic distance preserving projection

To preserve the neighborhood relationship between the point and its neighbors, the sparse
neighborhood preserving projection is utilized. However, for some data like Swiss Roll, the sparse
neighborhood relationship is not enough to reflect the real relationship, so the Geodesic distance
preserving projection is proposed to describe the structure of data points in another way.

Geodesic distance projection preserves the proportion of the Geodesic distances between these
points in the set. The matrix wG

i gives the Geodesic distance relationship between point xi and its
neighbors. The component wG

i, j in the matrix wG
i can be defined as the following

wG
i, j =

e−dG(xi,x j)∑
x j∈InClass(xi) e−dG(xi,x j)

(3.8)

The weight value wG
i, j denotes the distance relationship between xi and x j. In the projection space,

to keep the Geodesic distance relationship the reconstructive error function ED(xi) is as follows

ED(xi) =

N∑
i=1

‖PT
i xi − PT

i XwG
i ‖

2 (3.9)

3.3.3. Sparse neighborhood and Geodesic distance preserving projection

The neighbors of the point xi can be k-NN or ε-Neighbors. Here, k-NN is used to choose the
neighbors of point xi. To keep sparse neighborhood relationship, we minimize the error function ES (xi).
At the same time, we minimize the error function ED(xi) to keep the Geodesic distance. To preserve
the two relationships in the process of dimension reduction, we get the following total error function

E(X) =

N∑
i=1

E(xi)

= λ1

N∑
i=1

ES (xi) + λ2

N∑
i=1

ED(xi)

= λ1

N∑
i=1

‖PT
i xi − PT

i XwS
i ‖

2 + λ2

N∑
i=1

‖PT
i xi − PT

i XwG
i ‖

2

(3.10)

where λ1 and λ2 are parameters to adjust the balance of the sparse neighborhood relationship and
Geodesic distance. The N projection matrices are independent of each other and thus the objective
function can be considered as the sum of N subfunctions E(xi) which are separately optimized, so we
can get the following formula
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E(Xi) = λ1

M∑
i=1

‖PT
i xi − PT

i XwS
i, j‖

2 + λ2

M∑
i=1

‖PT
i xi − PT

i XwG
i, j‖

2

= λ1

M∑
i=1

tr[PT
i (xi, j − XiwS

i, j)(xi, j − XiwS
i, j)

T Pi] + λ2

M∑
i=1

tr[PT
i (xi, j − XiwG

i, j)(xi, j − XiwG
i, j)

T Pi]

=

M∑
i=1

tr[PT
i (λ1MS

i + λ2MG
i )Pi]

(3.11)
where MS

i = (xi, j − XiwS
i, j)(xi, j − XiwS

i, j)
T and MG

i = (xi, j − XiwG
i, j)(xi, j − XiwG

i, j)
T .

To avoid degenerate solutions, a constraint PT
i XiXT

i Pi = I is added. Therefore, the objective function
can be expressed as the following optimization function

min tr(PT
i Xi(I − wi − wT

i + wT
i wi)XT

i Pi), s.t.PT
i XiXT

i Pi = I (3.12)

where wi = λ1wS
i + λ2wG

i , λ1 and λ2 satisfy this condition that λ1 + λ2 = 1.
The projection matrix that minimizes the objective function is given by the minimum eigenvalue

solution to the generalized eigenvalue problem

Xi(I − wi − wT
i + wT

i wi)XT
i Pi = λXiXT

i Pi (3.13)

The optimization problem can be solved with the generalized eigenvalue decomposition mentioned
in the related work as E(xi) = λk

i Pi. For the data point xi, the projection in the low-dimensional space
is yi = PT

i xi.

Algorithm 1: Sparse neighborhood and Geodesic distance preserving projection.
Input: Representative dataset X = x1, x2, . . . , xN , the graph G and the value of λ1 and λ2.
Output: Project matrices Pi, i = 1, 2, . . . ,N.
Step 1: Transform the optimization problem to a generalized eigenvalue problem; calculate
sparse weight matrix wS

i and gastric distance matrix wG
i ;

Step 2: Solve problem and sort the eigenvalue as λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 ≥ λd+1 ≥ · · · ≥ λD;
Step 3: Select the eigenvectors that correspond to positive eigenvalues to form the projection
matrix.

3.4. Structure information preserving for the common data

For a common point, because of the uncertain projection position of its adjacent common data, the
performance and computational cost of dimension reduction cannot be guaranteed if the location of
the common data depends on all the adjacent representative and common data. On the other hand,
the representative data have more importance than the common one, so the projection location of the
common data can be achieved solely according to its adjacent representative ones. Here, the structure
information preserving is to keep the Geodesic distance relationship between the common point and
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Figure 5. Linear combination of representative points. The red points are the representative
points, the black point represents the common point.

its adjacent representative points, which not only preserves the distance relationship but also reduces
the running time.

The unknown position of a common point in the low-dimensional space is achieved through the
linear combination of its adjacent representative points as shown in Figure 5. The crucial issue for
the success of the linear combination method is whether we can obtain appropriate weights for all
component systems in an efficient manner. The linear combination can be expressed as follows

yi =

n∑
j=1

λ jy j (3.14)

where yi is the projection coordinate of the j-th representative point in the adjacent set Qi, λ j is the
weight assigned to the projection point y j. The adjacent representative points set Qi of the common
point xi is defined as follows: y j ∈ Qi, if dG(xi, x j) < d and y j < Qi, otherwise.

Here, we utilize the distance representation method to construct the relationship between the
common point and its adjacent representative points in the original space. The distance representation
can discover the local relationship and has natural discriminating power. Given the weight threshold,
all points within the threshold band are included into the neighbor data set. The definition of the
weight λ j is the following

λ j =
e−dG(xi,x j)p∑

x j∈Qi
e−dG(xi,x j)p (3.15)

where p is the adjustable parameter.
Through the linear combination of the adjacent representative points of common data xi, we directly

achieve the projection location of the common data xi in the low-dimensional space. The method
preserves the Geodesic distance relationship between the common and its representative points and
avoids the solution of equations.

4. Experiments and analysis

To evaluate the performance of the proposed method, we do comparison experiments with the
related methods such as Linear Discriminant Analysis (LDA), Locality Preserving Projection (LPP),
Multidimensional Scaling (MDS), Factor Analysis (FA) [38], Principal Component Analysis (PCA),
Probabilistic Principal Component Analysis (PPCA) [39, 40], Stochastic Neighbor Embedding
(SNE) [41], Kernel t-distributed Stochastic Neighbor Embedding (Kt-SNE) [42], Symmetric
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Stochastic Neighbor Embedding (SSNE) [43] and Variational Auto-encoder(VAE) [32] on benchmark
datasets. FA is a statistical method used to describe variability among correlated variables in terms of
a potentially lower number of unobserved variables called factors. The difference between FA and
PCA is whether the objective function clearly identify certain unobservable factors from the observed
variables. PPCA is an expression of PCA as the maximum likelihood solution of a probabilistic latent
variable model, so the information about uncertainty of measurements can be utilized to produce a
more accurate model. Kt-SNE and SSNE are proposed based on Stochastic Neighbor Embedding
which minimizes the Kullback-Leibler divergence between the similarity matrix of a
high-dimensional data set and its counterpart from a low-dimensional embedding. Kt-SNE preserves
the flexibility of basic t-SNE, but enables explicit out-of-sample extensions. SSNE uses a
symmetrized cost function with simpler gradients. VAE is an autoencoder whose training is
regularized to avoid overfitting and ensures the latent space has good properties. The mentioned
methods include classical methods and the improved methods.

The datasets with class labels are projected to the low-dimensional space and the projection points
are classified using AP algorithm and SVM classifier in different experiments. Here, classification
accuracy is introduced to evaluate the performance of different methods and is described as the
following

Acc =

∑N
i=1 δ(yi, ci)

N
(4.1)

where N is the number of data points, yi and ci denote the class label after and before dimension
reduction, δ(y, c) is a function that equals one if y = c and equals zero otherwise.

4.1. Experiments on three-dimensional datasets

To visualize the results of dimension reduction, 3D datasets are projected on 2D surface to
intuitively show the performance of different methods. In our experiments, 3D datasets include
Vowel, Haberman, Swiss Roll and Rabbit model. Vowel dataset has 871 samples and 6 classes, and
Haberman dataset has 36 samples and 2 classes. The visualization results of dimension reduction are
shown in the Figure 6 and 7 and the classification accuracy is given in Table 1.

Table 1. Classification accuracy on three different datasets.

Method
Dataset FA LDA LPP MDS PCA PPCA Kt-SNE SNE SSNE Ours

Swiss Roll 0.5847 0.8423 0.6980 0.9290 0.9290 0.8760 0.9067 0.9713 0.5847 0.9823
Vowel 0.5109 0.5993 0.4811 0.6383 0.6383 0.4937 0.7141 0.6923 0.2181 0.7566

Haberman 0.5131 0.4547 0.5327 0.5948 0.5948 0.5797 0.6634 0.683 0.5784 0.6830

Swiss Roll is a typical dataset where the Euclidean distance of two points may be small but the
Geodesic distance is large. As Swiss Roll is developable and Gaussian curvature of every point is
zero, the absolute values of mean curvature are taken as the weights. In this experiment, Swiss Roll is
constructed using Matlab program as shown in Figure 8(a) and the generation process of the dataset is
as follows: N = 3000; t = (3π/2)× (1+2× rand(1,N)); s = 20× rand(1,N); X = [t ·cos(t); s; t · sin(t)].
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(a) Vowel dataset (b) FA (c) LDA (d) LPP

(e) MDS (f) PCA (g) PPCA (h) SNE

(i) SSNE (j) Kt-SNE (k) VAE (l) Our method

Figure 6. The dimension reduction of Vowel dataset.

(a) Haberman dataset (b) FA (c) LDA (d) LPP

(e) MDS (f) PCA (g) PPCA (h) SNE

(i) SSNE (j) Kt-SNE (k) VAE (l) Our method

Figure 7. The dimension reduction of Haberman dataset.
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(a) Swiss Roll (b) FA (c) LDA (d) LPP

(e) MDS (f) PCA (g) PPCA (h) SNE

(i) SSNE (j) Kt-SNE
(k) VAE (l) Our method

Figure 8. The dimension reduction of Swiss Roll.

The projection results using comparative methods are shown in Figure 8(b)-8(k) and Figure 8(l) is the
projection results of our method.

The comparative methods based on Euclidean distance, such as MDS, PCA, PPCA and SNE,
achieve good dimension reduction results on the Swiss Roll dataset, while the distribution shapes of
projection points cannot meet the need in the field of surface construction. Swiss Roll is developable,
which means that Swiss Roll can be fully flattened on the 2D surface. In this experiment our method
preserves the Geodesic distance of representative data by adjusting λ1=0, λ2=1 in formula (3.10), then
Swiss Roll is unfolded on the 2D surface as shown in Figure 8(l). Compared with these methods, our
method not only achieves higher classification accuracy but also is useful in the model design.

(a) Point cloud of rabbit model (b) Clustering result using weighted AP algorithm

Figure 9. 3D rabbit model.

Rabbit model is widely used to test the results in the computer aided design. The rabbit model has
30,000 points as shown in Figure 9(a) and is divided into 9 classes through the weighted AP clustering
algorithm mentioned in Section 3.2.
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(a) FA (b) LDA (c) LPP (d) MDS

(e) PCA (f) PPCA (g) SNE (h) SSNE

(i) Kt-SNE (j) VAE (k) Our method

Figure 10. The dimension reduction of Swiss Roll.

We can see from the results shown in Figure 10 that the results using LDA, LPP, MDS, PCA, PPCA
and our method can reflect the shape of the rabbit. The difference between these methods is the different
viewpoint. From the results, we also observe that the projected points are overlapped in the 2D space.
The reason is that the rabbit model is closed and no method can avoid overlapping except splitting the
rabbit model into different parts. From the experiments results, we can find that the proposed method
get better experimental results than the mentioned methods for 3D data points.

4.2. Experiments on high-dimensional datasets

In this subsection, we show the classification performance of the proposed methods on three
different types of high-dimensional datasets. The high-dimensional datasets include control uni,
YaleB and caltech101 silhouettes 16 uni. Control uni dataset is a measure dataset and there are 600
samples and 6 classes. For each data, the original dimension is 60. Yale B dataset contains 2414
front-view face images of 38 individuals as shown in Figure 11. The original dimension of each
sample is 1024. The data in caltech101 silhouettes 16 uni dataset is sparse and the original
dimension is 256. There are 8641 samples and 101 classes in the dataset. In our experiments, these
methods are compared under different dimensions.

Figure 11. Yale B dataset.

In the experiments, the values of δ1 and δ2 in formula (3.14) are both 0.5, which makes the
projection of representative points preserve sparse relationship and Geodesic distance at the same
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time. The value p in formula (3.15) changes from 0.5 to 3 to get the influence of the common data on
the projection results. The classification accuracy graphs with different values of p on control uni
dataset, YaleB dataset and caltech101 silhouettes 16 uni dataset are shown in Figure 12(a),13(a) and
14(a), respectively. On control uni dataset, the best result in our method with p = 3 is compared with
the results of other methods and the classification accuracy graph of different methods is shown in
Figure 12(b). On YaleB dataset and caltech101 silhouettes 16 uni dataset, classification accuracy
graphs are shown in Figure 13(b) and 14(b), where the values of p are both 2 in our method. In these
graphs, the vertical axis is the classification accuracy and the horizontal axis represents the dimension.

(a) Classification accuracy with different value p (b) Classification accuracy of different methods

Figure 12. Classification accuracy on control uni dataset.

(a) Classification accuracy with different value p (b) Classification accuracy of different methods

Figure 13. Classification accuracy on Yale B dataset.

(a) Classification accuracy with different value p (b) Classification accuracy of different methods

Figure 14. Classification accuracy on caltech101 silhouettes 16 uni dataset.

Different value p affects the relationships between the common point and its adjacent representative
points. The results shown in Figure 12(a),13(a) and 14(a) illustrate that the distribution of the common
data affects the classification accuracy, and the value p in the best case varies for different datasets.
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The classification accuracy graphs of different methods in Figure 12(b),13(b) and 14(b) show that
the classification results using the methods such as LDA, LPP, PCA, SNE and our method vary in a
small range, which means that the dimension has little influence on the classification results using these
methods and these methods are stable for the dimensional factors. From the classification accuracy we
can see that the worst results of three datasets are less than 30%, 10% and 10%, while our results
are the best under any given dimensions and more than 90%, 68% and 80%. From the stability and
accuracy, our method achieves a good performance and is superior to the mentioned methods.

4.3. Parameter analysis of λ1 and λ2

In this subsection, we mainly analyze the effects of parameter λ1 and λ2 on the dimension
reduction results. In the objective formula (3.10), λ1 and λ2 are utilized to adjust the proportion of
sparse neighborhood to Geodesic distance relationship. For the three high-dimensional datasets, the
values of classification accuracy with different parameters λ1 and λ2 are listed in Table 2,3 and 4.

Table 2. The classification accuracy on control uni dataset with p = 3.

Dim λ1, λ2 = 0, 1 λ1, λ2 = 0.2, 0.8 λ1, λ2 = 0.5, 0.5 λ1, λ2 = 0.8, 0.2 λ1, λ2 = 1, 0
50 0.9367 0.9367 0.9400 0.9400 0.9400
40 0.9333 0.9333 0.9367 0.9367 0.9367
30 0.9333 0.9300 0.9367 0.9400 0.9400
20 0.9333 0.9333 0.9400 0.9400 0.9400
10 0.9233 0.9333 0.9433 0.9400 0.9267

Table 3. The classification accuracy on Yale B dataset with p = 2.

Dim λ1, λ2 = 0, 1 λ1, λ2 = 0.2, 0.8 λ1, λ2 = 0.5, 0.5 λ1, λ2 = 0.8, 0.2 λ1, λ2 = 1, 0
1000 0.5527 0.5222 0.5752 0.5405 0.5924
900 0.6023 0.6046 0.5434 0.6695 0.6443
800 0.5297 0.5846 0.6350 0.6665 0.5814
700 0.5246 0.5890 0.5717 0.6282 0.5917
600 0.5477 0.5587 0.6095 0.6339 0.6682

Table 4. The classification accuracy on caltech101 silhouettes 16 uni dataset with p = 2.

Dim λ1, λ2 = 0, 1 λ1, λ2 = 0.2, 0.8 λ1, λ2 = 0.5, 0.5 λ1, λ2 = 0.8, 0.2 λ1, λ2 = 1, 0
240 0.7180 0.7246 0.7213 0.7235 0.7191
210 0.6998 0.6730 0.7250 0.7179 0.7254
170 0.6619 0.7534 0.7285 0.6776 0.6863
120 0.6664 0.7379 0.7531 0.7254 0.7201
80 0.7155 0.7131 0.7052 0.7209 0.6765

Table 2,3 and 4 illustrate that the classification accuracies vary slightly with the change of λ1 and
λ2. This is to say that different values of λ1 and λ2 have little influence on the extraction of discriminate
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features in most cases, but the structure of feature vectors in the projection space are different. Maybe
there are not important for the high-dimensional datasets, whereas for the 3D datasets the visualization
results in 2D space are fully different. As shown in Figure 8, the classification accuracies using SNE
and our method are both high, but the distributions of the projection points have great difference.

On the other hand, SVM is used as the classifier in this subsection. 80% of the data are used for
training and the remaining data are used for testing, while the projection points in the other experiments
are classified using AP algorithm. The experimental results are shown in Table 2,3 and 4 with the
parameters λ1 = 0.5 and λ2 = 0.5, and the corresponding classification accuracy values of our methods
in Figure 12(b),13(b) and 14(b) are different. The reason is that the projection points are classified
using different classifiers, which implies that the classifier has effect on the classification accuracy.

4.4. Computational efficiency

To evaluate the computational complexity of our method, we conduct experiments to compare the
running time of each method. Table 5 records the running time of each method on three
high-dimensional datasets. For each method, we choose the optimal parameter setting in terms of
optimal results. The results of each method on the three datasets are repeated 10 independent times,
and the mean results are reported. The calculations are executed on a Linux server with 32 processors
(2.10GHz for each) and 64 GB RAM memory by MATLAB implementations.

Table 5 illustrates that the comparative methods, such as LDA, MDS and PCA, run faster than the
proposed method, while the computational efficiency of these methods based on SNE is lower. In our
method, data partition is performed before the solution of objective function, and the calculation of
Geodesic distance and clustering of the weighted points occupy most of the time.

Table 5. The running time of different methods on high-dimensional datasets (in seconds).

Dataset
Method control uni YaleB caltech101 silhouettes 16 uni

FA 0.1873 90.8678 16.3910
LDA 0.0089 1.6779 0.0580
LPP 0.0476 2.6535 12.14476
MDS 0.0018 0.1924 0.0405
PCA 0.0013 0.1888 0.0378

PPCA 5.7341 131.0023 167.1789
Kt-SNE 6.4335 25.3993 66.5125

SNE 104.1011 361.7535 114.2378
SSNE 99.7138 396.2319 164.1256
Ours 0.2604 29.2127 16.3784

Floyd-Warshall algorithm is adopted to construct the graph to calculate the Geodesic distance.
Though there are algorithms with a better worst-case runtime than Floyd-Warshall algorithm, but
these algorithms are much more complicated and involve complicated data structure. Therefore,
Floyd-Warshall algorithm with time complexity is O(n3) is still the best choice in our experiment.
Compared with AP algorithm, the weighted AP algorithm adds virtual points in the dataset and has
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the same the time complexity O(n3) in each iteration. To reduce the running time, we optimize the
data structure and algorithm process. In short, some methods are faster than our method, whereas our
method achieves a significant improvement in the classification accuracy and the visualization results.

5. Conclusion

Since the importance of data is different in many applications, we partition them into representative
data and common data. Two structure preserving methods are adopted to reduce the dimension. For
the representative data, the projection preserves the sparse neighborhood relationship and the Geodesic
distance. According to the distribution of the representative data, the position of the common data can
be located through the linear combination. The proposed method reduces the distortion in the process
of the dimension reduction and extracts more discriminative information. In the future work, we will
focus on the dimension reduction of weighted points with large-scale size.
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